

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	·
Total RAM Bits	516096
Number of I/O	620
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000-2fgg896

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
HSTL (I)	1.5	0.17	2.03
HSTL (II)	1.5	0.17	2.03
SSTL2 (I)	2.5	1.38	4.48
SSTL2 (II)	2.5	1.38	4.48
SSTL3 (I)	3.3	3.21	9.26
SSTL3 (II)	3.3	3.21	9.26
Differential		•	-
LVDS/B-LVDS/M-LVDS	2.5	2.26	1.50
LVPECL	3.3	5.71	2.17

Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings (continued)

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended	•			
3.3 V LVTTL/LVCMOS	35	3.3	-	474.70
3.3 V LVTTL/LVCMOS Wide Range ⁴	35	3.3	-	474.70
2.5 V LVCMOS	35	2.5	-	270.73
1.8 V LVCMOS	35	1.8	-	151.78
1.5 V LVCMOS (JESD8-11)	35	1.5	-	104.55
3.3 V PCI	10	3.3	-	204.61
3.3 V PCI-X	10	3.3	-	204.61
Voltage-Referenced				
3.3 V GTL	10	3.3	-	24.08
2.5 V GTL	10	2.5	-	13.52
3.3 V GTL+	10	3.3	-	24.10
2.5 V GTL+	10	2.5	-	13.54
HSTL (I)	20	1.5	7.08	26.22
HSTL (II)	20	1.5	13.88	27.22
SSTL2 (I)	30	2.5	16.69	105.56
SSTL2 (II)	30	2.5	25.91	116.60

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

		Equivalent			VIL	VIH		VOL	VOH	IOL ³	IOH ³
I/O Standard	Drive Strength		Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI					Per PC	CI Specificatio	n				
3.3 V PCI-X					Per PCI	-X Specificati	on				
3.3 V GTL	20 mA ²	20 mA ²	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20
2.5 V GTL	20 mA ²	20 mA ²	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20
3.3 V GTL+	35 mA	35 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35
2.5 V GTL+	33 mA	33 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	33	33
HSTL (I)	8 mA	8 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	8	8
HSTL (II)	15 mA ²	15 mA ²	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	15	15
SSTL2 (I)	15 mA	15 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	15	15
SSTL2 (II)	18 mA	18 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI – 0.43	18	18
SSTL3 (I)	14 mA	14 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14
SSTL3 (II)	21 mA	21 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI - 0.9	21	21

 Table 2-13 • Summary of Maximum and Minimum DC Input and Output Levels

 Applicable to Commercial and Industrial Conditions

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. Output drive strength is below JEDEC specification.

3. Currents are measured at 85°C junction temperature.

4. Output Slew Rates can be extracted from IBIS Models, located at http://www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.

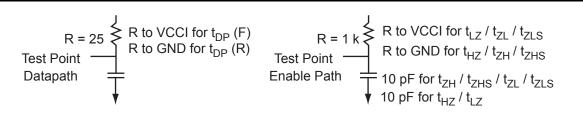
Microsemi.

ProASIC3E DC and Switching Characteristics

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-45 • Minimum and Maximum DC Input and Output Levels


3.3 V PCI/PCI-X	V	VIL VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL¹	IIH ²	
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Per PCI specification		Per PCI curves									10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V< VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-11.

Figure 2-11 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-46.

Table 2-46 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for $t_{DP(R)}$ 0.615 * VCCI for $t_{DP(F)}$	-	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

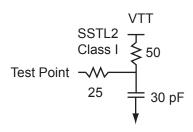
Table 2-47 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.66	2.81	0.04	1.05	1.67	0.43	2.86	2.00	3.28	3.61	5.09	4.23	ns
–1	0.56	2.39	0.04	0.89	1.42	0.36	2.43	1.70	2.79	3.07	4.33	3.60	ns
-2	0.49	2.09	0.03	0.78	1.25	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

SSTL2 Class I


Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class I		VIL		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH	
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
15 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	15	15	87	83	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-18 • AC Loading

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-68 • SSTL 2 Class I

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.13	0.04	1.33	0.43	2.17	1.85			4.40	4.08	ns
–1	0.56	1.81	0.04	1.14	0.36	1.84	1.57			3.74	3.47	ns
-2	0.49	1.59	0.03	1.00	0.32	1.62	1.38			3.29	3.05	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Microsemi

ProASIC3E DC and Switching Characteristics

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCI	Supply Voltage	2.375	2.5	2.625	V
VOL	Output Low Voltage	0.9	1.075	1.25	V
VOH	Output High Voltage	1.25	1.425	1.6	V
IOL ¹	Output Lower Current	0.65	0.91	1.16	mA
IOH ¹	Output High Current	0.65	0.91	1.16	mA
VI	Input Voltage			2.925	V
IIH ²	Input High Leakage Current			10	μA
IIL ²	IL ² Input Low Leakage Current			10	μA
VODIFF	Differential Output Voltage	250	350	450	mV
VOCM	Output Common Mode Voltage	1.125	1.25	1.375	V
VICM	Input Common Mode Voltage	0.05	1.25	2.35	V
VIDIFF	Input Differential Voltage ²	100	350		mV

Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network).

2. Currents are measured at 85°C junction temperature.

Table 2-79 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)
1.075	1.325	Cross point	-

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-80 • LVDS

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.87	0.04	1.82	ns
-1	0.56	1.59	0.04	1.55	ns
-2	0.49	1.40	0.03	1.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in the LVDS section in Table 2-80.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

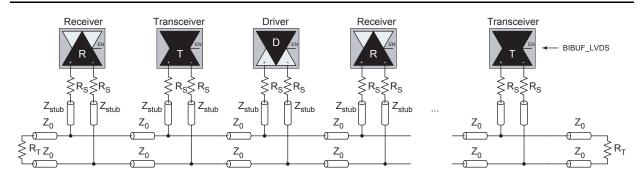


Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

Microsemi

ProASIC3E DC and Switching Characteristics

Table 2-84 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
tOESUD	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OESUE}	Enable Setup Time for the Output Enable Register	K, H
t _{OEHE}	Enable Hold Time for the Output Enable Register	K, H
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Note: *See Figure 2-25 on page 2-53 for more information.

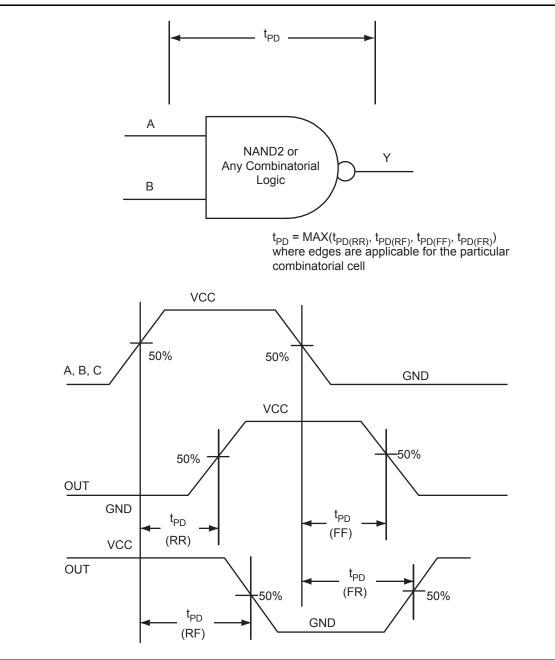


Figure 2-35 • Timing Model and Waveforms

Global Resource Characteristics

A3PE600 Clock Tree Topology

Clock delays are device-specific. Figure 2-38 is an example of a global tree used for clock routing. The global tree presented in Figure 2-38 is driven by a CCC located on the west side of the A3PE600 device. It is used to drive all D-flip-flops in the device.

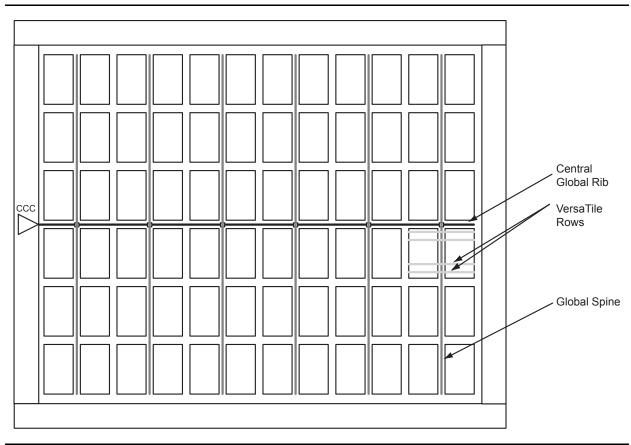


Figure 2-38 • Example of Global Tree Use in an A3PE600 Device for Clock Routing

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-70. Table 2-95 on page 2-69, Table 2-96 on page 2-69, and Table 2-97 on page 2-69 present minimum and maximum global clock delays within the device. Minimum and maximum delays are measured with minimum and maximum loading.

ProASIC3E DC and Switching Characteristics

Clock Conditioning Circuits

CCC Electrical Specifications

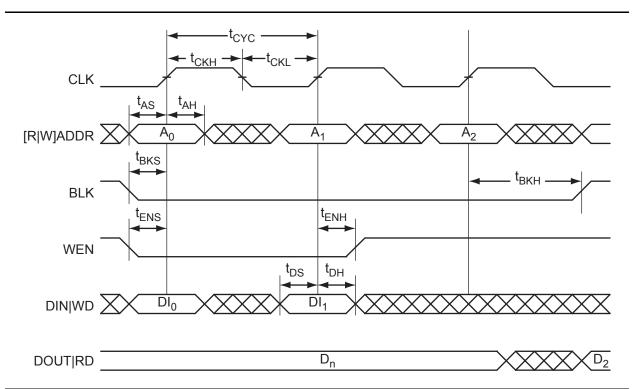
Timing Characteristics

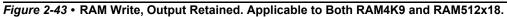
Table 2-98 • ProASIC3E CCC/PLL Specification

Parameter		Minimum	Typical	Maximum	Units
Clock Conditioning Circuitry Inp	out Frequency f _{IN_CCC}	1.5		350	MHz
Clock Conditioning Circuitry Ou	tput Frequency f _{OUT_CCC}	0.75		350	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}			160 ³		ps
Serial Clock (SCLK) for Dynam	ic PLL ⁴			125	MHz
Number of Programmable Values in Each Programmable Delay Block				32	
Input Period Jitter				1.5	ns
CCC Output Peak-to-Peak Per	Max	<pre> Peak-to-Pe </pre>	ak Period Jitter		
		1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz		0.50%		0.70%	
24 MHz to 100 MHz		1.00%		1.20%	
100 MHz to 250 MHz		1.75%		2.00%	
250 MHz to 350 MHz		2.50%		5.60%	
Acquisition Time	LockControl = 0			300	μs
	LockControl = 1			6.0	ms
Tracking Jitter ⁵	LockControl = 0			1.6	ns
	LockControl = 1			0.8	ns
Output Duty Cycle		48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}		0.6		5.56	ns
Delay Range in Block: Program	imable Delay 2 ^{1,2}	0.025		5.56	ns
Delay Range in Block: Fixed D	elay ^{1,4}		2.2		ns

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-5 for deratings


2. $T_J = 25^{\circ}C$, VCC = 1.5 V.


3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help for more information.

4. Maximum value obtained for a -2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

Wicrosemi. ProASIC3E DC and Switching Characteristics

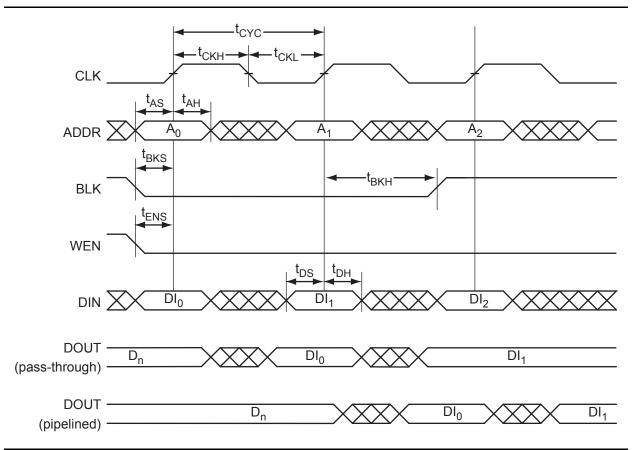


Figure 2-44 • RAM Write, Output as Write Data. Applicable to RAM4K9 Only.

🌜 Microsemi.

Package Pin Assignments

	FG324		FG324		FG324
Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA
G1	GND	J1	IO267NDB6V4	L1	IO263NDB6V3
G2	IO287PDB7V1	J2	GFA0/IO273NDB6V4	L2	VCCIB6
G3	IO287NDB7V1	J3	VCOMPLF	L3	IO259PDB6V3
G4	IO283PPB7V1	J4	GFA2/IO272PDB6V4	L4	IO259NDB6V3
G5	VCCIB7	J5	GFB0/IO274NPB7V0	L5	GND
G6	IO279PDB7V0	J6	GFC0/IO275NDB7V0	L6	IO270NPB6V4
G7	IO291NPB7V2	J7	GFC1/IO275PDB7V0	L7	VCC
G8	VCC	J8	GND	L8	VCC
G9	IO26NDB0V3	J9	GND	L9	GND
G10	IO34NDB0V4	J10	GND	L10	GND
G11	VCC	J11	GND	L11	VCC
G12	IO94NPB2V1	J12	GCA2/IO115PDB3V0	L12	VCC
G13	IO98PDB2V2	J13	GCA1/IO114PDB3V0	L13	IO132PDB3V2
G14	VCCIB2	J14	GCA0/IO114NDB3V0	L14	GND
G15	GCC0/IO112NPB2V3	J15	GCB0/IO113NDB2V3	L15	IO117NDB3V0
G16	IO104PDB2V2	J16	VCOMPLC	L16	IO128NPB3V1
G17	IO104NDB2V2	J17	IO120NPB3V0	L17	VCCIB3
G18	GND	J18	IO108NDB2V3	L18	IO124PPB3V1
H1	IO267PDB6V4	K1	IO263PDB6V3	M1	GND
H2	VCCIB7	K2	GFA1/IO273PDB6V4	M2	IO255PDB6V2
H3	IO283NPB7V1	K3	VCCPLF	M3	IO255NDB6V2
H4	GFB1/IO274PPB7V0	K4	IO272NDB6V4	M4	IO251PPB6V2
H5	GND	K5	GFC2/IO270PPB6V4	M5	VCCIB6
H6	IO279NDB7V0	K6	GFB2/IO271PDB6V4	M6	GEB0/IO235NDB6V0
H7	VCC	K7	IO271NDB6V4	M7	GEB1/IO235PDB6V0
H8	VCC	K8	GND	M8	VCC
H9	GND	K9	GND	M9	IO192PPB4V4
H10	GND	K10	GND	M10	IO154NPB4V0
H11	VCC	K11	GND	M11	VCC
H12	VCC	K12	IO115NDB3V0	M12	GDA0/IO153NPB3V4
H13	IO98NDB2V2	K13	GCB2/IO116PDB3V0	M13	IO132NDB3V2
H14	GND	K14	IO116NDB3V0	M14	VCCIB3
H15	GCB1/IO113PDB2V3	K15	GCC2/IO117PDB3V0	M15	IO134NDB3V2
H16	GCC1/IO112PPB2V3	K16	VCCPLC	M16	IO134PDB3V2
H17	VCCIB2	K17	IO124NPB3V1	M17	IO128PPB3V1
H18	IO108PDB2V3	K18	IO120PPB3V0	M18	GND

	FG484		FG484
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
N17	IO91NPB3V0	R9	VCCIB5
N18	IO90NPB3V0	R10	VCCIB5
N19	IO91PPB3V0	R11	IO135NDB5V0
N20	GNDQ	R12	IO135PDB5V0
N21	IO93NDB3V0	R13	VCCIB4
N22	IO95PDB3V1	R14	VCCIB4
P1	NC	R15	VMV3
P2	IO183PDB6V2	R16	VCCPLD
P3	IO187NPB6V2	R17	GDB1/IO109PPB3V2
P4	IO184NPB6V2	R18	GDC1/IO108PDB3V2
P5	IO176PPB6V1	R19	IO99NDB3V1
P6	IO182PDB6V1	R20	VCC
P7	IO182NDB6V1	R21	IO98NDB3V1
P8	VCCIB6	R22	IO101PDB3V1
P9	GND	T1	NC
P10	VCC	T2	IO177NDB6V1
P11	VCC	Т3	NC
P12	VCC	T4	IO171PDB6V0
P13	VCC	Т5	IO171NDB6V0
P14	GND	Т6	GEC1/IO169PPB6V0
P15	VCCIB3	T7	VCOMPLE
P16	GDB0/IO109NPB3V2	Т8	GNDQ
P17	IO97NDB3V1	Т9	GEA2/IO166PPB5V3
P18	IO97PDB3V1	T10	IO145NDB5V1
P19	IO99PDB3V1	T11	IO141NDB5V0
P20	VMV3	T12	IO139NDB5V0
P21	IO98PDB3V1	T13	IO119NDB4V1
P22	IO95NDB3V1	T14	IO119PDB4V1
R1	NC	T15	GNDQ
R2	IO177PDB6V1	T16	VCOMPLD
R3	VCC	T17	VJTAG
R4	IO176NPB6V1	T18	GDC0/IO108NDB3V2
R5	IO174NDB6V0	T19	GDA1/IO110PDB3V2
R6	IO174PDB6V0	T20	NC
R7	GEC0/IO169NPB6V0	T21	IO103PDB3V2
R8	VMV5	T22	IO101NDB3V1

	FG484
Pin Number	A3PE1500 Function
U1	IO175PPB6V1
U2	IO173PDB6V0
U3	IO173NDB6V0
U4	GEB1/IO168PDB6V0
U5	GEB0/IO168NDB6V0
U6	VMV6
U7	VCCPLE
U8	IO166NPB5V3
U9	IO157PPB5V2
U10	IO145PDB5V1
U11	IO141PDB5V0
U12	IO139PDB5V0
U13	IO121NDB4V1
U14	IO121PDB4V1
U15	VMV4
U16	ТСК
U17	VPUMP
U18	TRST
U19	GDA0/IO110NDB3V2
U20	NC
U21	IO103NDB3V2
U22	IO105PDB3V2
V1	NC
V2	IO175NPB6V1
V3	GND
V4	GEA1/IO167PDB6V0
V5	GEA0/IO167NDB6V0
V6	GNDQ
V7	GEC2/IO164PDB5V3
V8	IO157NPB5V2
V9	IO151NDB5V2
V10	IO151PDB5V2
V11	IO137NDB5V0
V12	IO137PDB5V0
V13	IO123NDB4V1
V14	IO123PDB4V1

	FG484		FG484		FG484
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
H19	IO100PDB2V2	K11	GND	M3	IO272NDB6V4
H20	VCC	K12	GND	M4	GFA2/IO272PDB6V4
H21	VMV2	K13	GND	M5	GFA1/IO273PDB6V4
H22	IO105PDB2V2	K14	VCC	M6	VCCPLF
J1	IO285NDB7V1	K15	VCCIB2	M7	IO271NDB6V4
J2	IO285PDB7V1	K16	GCC1/IO112PPB2V3	M8	GFB2/IO271PDB6V4
J3	VMV7	K17	IO108NDB2V3	M9	VCC
J4	IO279PDB7V0	K18	IO108PDB2V3	M10	GND
J5	IO283PDB7V1	K19	IO110NPB2V3	M11	GND
J6	IO281PDB7V0	K20	IO106NPB2V3	M12	GND
J7	IO287NDB7V1	K21	IO109NDB2V3	M13	GND
J8	VCCIB7	K22	IO107NDB2V3	M14	VCC
J9	GND	L1	IO257PSB6V2	M15	GCB2/IO116PPB3V0
J10	VCC	L2	IO276PDB7V0	M16	GCA1/IO114PPB3V0
J11	VCC	L3	IO276NDB7V0	M17	GCC2/IO117PPB3V0
J12	VCC	L4	GFB0/IO274NPB7V0	M18	VCCPLC
J13	VCC	L5	GFA0/IO273NDB6V4	M19	GCA2/IO115PDB3V0
J14	GND	L6	GFB1/IO274PPB7V0	M20	IO115NDB3V0
J15	VCCIB2	L7	VCOMPLF	M21	IO126PDB3V1
J16	IO84NDB2V0	L8	GFC0/IO275NPB7V0	M22	IO124PSB3V1
J17	IO104NDB2V2	L9	VCC	N1	IO255PPB6V2
J18	IO104PDB2V2	L10	GND	N2	IO253NDB6V2
J19	IO106PPB2V3	L11	GND	N3	VMV6
J20	GNDQ	L12	GND	N4	GFC2/IO270PPB6V4
J21	IO109PDB2V3	L13	GND	N5	IO261PPB6V3
J22	IO107PDB2V3	L14	VCC	N6	IO263PDB6V3
K1	IO277NDB7V0	L15	GCC0/IO112NPB2V3	N7	IO263NDB6V3
K2	IO277PDB7V0	L16	GCB1/IO113PPB2V3	N8	VCCIB6
K3	GNDQ	L17	GCA0/IO114NPB3V0	N9	VCC
K4	IO279NDB7V0	L18	VCOMPLC	N10	GND
K5	IO283NDB7V1	L19	GCB0/IO113NPB2V3	N11	GND
K6	IO281NDB7V0	L20	IO110PPB2V3	N12	GND
K7	GFC1/IO275PPB7V0	L21	IO111NDB2V3	N13	GND
K8	VCCIB7	L22	IO111PDB2V3	N14	VCC
K9	VCC	M1	GNDQ	N15	VCCIB3
K10	GND	M2	IO255NPB6V2	N16	IO116NPB3V0

	FG676
Pin Number	A3PE1500 Function
W25	IO96PDB3V1
W26	IO94NDB3V0
Y1	IO175NDB6V1
Y2	IO175PDB6V1
Y3	IO173NDB6V0
Y4	IO173PDB6V0
Y5	GEC1/IO169PPB6V0
Y6	GNDQ
Y7	VMV6
Y8	VCCIB5
Y9	IO163NDB5V3
Y10	IO159PDB5V3
Y11	IO153PDB5V2
Y12	IO147PDB5V1
Y13	IO139PDB5V0
Y14	IO137PDB5V0
Y15	IO125NDB4V1
Y16	IO125PDB4V1
Y17	IO115NDB4V0
Y18	IO115PDB4V0
Y19	VCC
Y20	VPUMP
Y21	VCOMPLD
Y22	VCCPLD
Y23	IO100NDB3V1
Y24	IO100PDB3V1
Y25	IO96NDB3V1
Y26	IO98PDB3V1

	FG896		FG896		FG896
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
AG9	IO225NPB5V3	AH15	IO195NDB5V0	AJ21	IO173PDB4V2
AG10	IO223NPB5V3	AH16	IO185NDB4V3	AJ22	IO163NDB4V1
AG11	IO221PDB5V3	AH17	IO185PDB4V3	AJ23	IO163PDB4V1
AG12	IO221NDB5V3	AH18	IO181PDB4V3	AJ24	IO167NPB4V1
AG13	IO205NPB5V1	AH19	IO177NDB4V2	AJ25	VCC
AG14	IO199NDB5V0	AH20	IO171NPB4V2	AJ26	IO156NPB4V0
AG15	IO199PDB5V0	AH21	IO165PPB4V1	AJ27	VCC
AG16	IO187NDB4V4	AH22	IO161PPB4V0	AJ28	TMS
AG17	IO187PDB4V4	AH23	IO157NDB4V0	AJ29	GND
AG18	IO181NDB4V3	AH24	IO157PDB4V0	AJ30	GND
AG19	IO171PPB4V2	AH25	IO155NDB4V0	AK2	GND
AG20	IO165NPB4V1	AH26	VCCIB4	AK3	GND
AG21	IO161NPB4V0	AH27	TDI	AK4	IO217PPB5V2
AG22	IO159NDB4V0	AH28	VCC	AK5	GND
AG23	IO159PDB4V0	AH29	VPUMP	AK6	IO215PPB5V2
AG24	IO158PPB4V0	AH30	GND	AK7	GND
AG25	GDB2/IO155PDB4V0	AJ1	GND	AK8	IO207NDB5V1
AG26	GDA2/IO154PPB4V0	AJ2	GND	AK9	IO207PDB5V1
AG27	GND	AJ3	GEA2/IO233PPB5V4	AK10	IO201NDB5V0
AG28	VJTAG	AJ4	VCC	AK11	IO201PDB5V0
AG29	VCC	AJ5	IO217NPB5V2	AK12	IO193NDB4V4
AG30	IO149NDB3V4	AJ6	VCC	AK13	IO193PDB4V4
AH1	GND	AJ7	IO215NPB5V2	AK14	IO197PDB5V0
AH2	IO233NPB5V4	AJ8	IO213NDB5V2	AK15	IO191NDB4V4
AH3	VCC	AJ9	IO213PDB5V2	AK16	IO191PDB4V4
AH4	GEB2/IO232PPB5V4	AJ10	IO209NDB5V1	AK17	IO189NDB4V4
AH5	VCCIB5	AJ11	IO209PDB5V1	AK18	IO189PDB4V4
AH6	IO219NDB5V3	AJ12	IO203NDB5V1	AK19	IO179PPB4V3
AH7	IO219PDB5V3	AJ13	IO203PDB5V1	AK20	IO175NDB4V2
AH8	IO227NDB5V4	AJ14	IO197NDB5V0	AK21	IO175PDB4V2
AH9	IO227PDB5V4	AJ15	IO195PDB5V0	AK22	IO169NDB4V1
AH10	IO225PPB5V3	AJ16	IO183NDB4V3	AK23	IO169PDB4V1
AH11	IO223PPB5V3	AJ17	IO183PDB4V3	AK24	GND
AH12	IO211NDB5V2	AJ18	IO179NPB4V3	AK25	IO167PPB4V1
AH13	IO211PDB5V2	AJ19	IO177PDB4V2	AK26	GND
AH14	IO205PPB5V1	AJ20	IO173NDB4V2	AK27	GDC2/IO156PPB4V0

Package Pin Assignments

	FG896		FG896		FG896		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function		
T11	VCC	U17	GND	V23	IO128NDB3V1		
T12	GND	U18	GND	V24	IO132PDB3V2		
T13	GND	U19	GND	V25	IO130PPB3V2		
T14	GND	U20	VCC	V26	IO126NDB3V1		
T15	GND	U21	VCCIB3	V27	IO129NDB3V1		
T16	GND	U22	IO120PDB3V0	V28	IO127NDB3V1		
T17	GND	U23	IO128PDB3V1	V29	IO125NDB3V1		
T18	GND	U24	IO124PDB3V1	V30	IO123PDB3V1		
T19	GND	U25	IO124NDB3V1	W1	IO266NDB6V4		
T20	VCC	U26	IO126PDB3V1	W2	IO262NDB6V3		
T21	VCCIB3	U27	IO129PDB3V1	W3	IO260NDB6V3		
T22	IO109NPB2V3	U28	IO127PDB3V1	W4	IO252NDB6V2		
T23	IO116NDB3V0	U29	IO125PDB3V1	W5	IO251NDB6V2		
T24	IO118NDB3V0	U30	IO121NDB3V0	W6	IO251PDB6V2		
T25	IO122NPB3V1	V1	IO268NDB6V4	W7	IO255NDB6V2		
T26	GCA1/IO114PPB3V0	V2	IO262PDB6V3	W8	IO249PPB6V1		
T27	GCB0/IO113NPB2V3	V3	IO260PDB6V3	W9	IO253PDB6V2		
T28	GCA2/IO115PPB3V0	V4	IO252PDB6V2	W10	VCCIB6		
T29	VCCPLC	V5	IO257NPB6V2	W11	VCC		
T30	IO121PDB3V0	V6	IO261NPB6V3	W12	GND		
U1	IO268PDB6V4	V7	IO255PDB6V2	W13	GND		
U2	IO264NDB6V3	V8	IO259PDB6V3	W14	GND		
U3	IO264PDB6V3	V9	IO259NDB6V3	W15	GND		
U4	IO258PDB6V3	V10	VCCIB6	W16	GND		
U5	IO258NDB6V3	V11	VCC	W17	GND		
U6	IO257PPB6V2	V12	GND	W18	GND		
U7	IO261PPB6V3	V13	GND	W19	GND		
U8	IO265NDB6V3	V14	GND	W20	VCC		
U9	IO263NDB6V3	V15	GND	W21	VCCIB3		
U10	VCCIB6	V16	GND	W22	IO134PDB3V2		
U11	VCC	V17	GND	W23	IO138PDB3V3		
U12	GND	V18	GND	W24	IO132NDB3V2		
U13	GND	V19	GND	W25	IO136NPB3V2		
U14	GND	V20	VCC	W26	IO130NPB3V2		
U15	GND	V21	VCCIB3	W27	IO141PDB3V3		
U16	GND	V22	IO120NDB3V0	W28	IO135PDB3V2		

Datasheet Information

Revision	Changes	Page
Revision 11 (August 2012)	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information." to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions ¹ (SAR 38322).	2-1 3-1 2-1
	The drive strength, IOL, and IOH value for 3.3 V GTL and 2.5 V GTL was changed from 25 mA to 20 mA in the following tables (SAR 31924): "Summary of Maximum and Minimum DC Input and Output Levels" table "Summary of I/O Timing Characteristics—Software Default Settings" table "I/O Output Buffer Maximum Resistances ¹ " table "Minimum and Maximum DC Input and Output Levels" table)	2-16 2-19 2-20 2-39
	"Minimum and Maximum DC Input and Output Levels" table Also added note stating "Output drive strength is below JEDEC specification" for Tables 2-17 and 2-19. Additionally, the IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected from 51 to 35 (for 3.3 V GTL+) and from 40 to 33 (for 2.5 V GTL+) in table Table 2-13 (SAR 39714).	2-40
	"Duration of Short Circuit Event Before Failure" table was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37934).	2-22
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34796): "It uses a 5 V-tolerant input buffer and push-pull output buffer." This change was made in revision 10 and omitted from the change table in error.	2-30
Revision 11 (continued)	Figure 2-11 was updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34889).	2-38
	In Table 2-81 VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 37222).	2-52
	Figure 2-47 and Figure 2-48 are new (SAR 34848).	2-79
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38322). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Information

Revision	Changes	Page
Revision 3 (Apr 2008) Packaging v1.2	The following pins had duplicates and the extra pins were deleted from the "PQ208" A3PE3000 table:	4-2
	36, 62, 171	
	Note: There were no pin function changes in this update.	
	The following pins had duplicates and the extra pins were deleted from the "FG324" table:	4-12
	E2, E3, E16, E17, P2, P3, T16, U17	
	Note: There were no pin function changes in this update.	
	The "FG256" pin table was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.	4-9
	The "FG484" was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.	4-22
	The following pins had duplicates and the extra pins were deleted from the "FG896" table:	4-41
	AD6, AE5, AE28, AF29, F5, F26, G6, G25	
	Note: There were no pin function changes in this update.	
Revision 2 (Mar 2008) Product Brief rev. 1	The FG324 package was added to the "ProASIC3E Product Family" table, the "I/Os Per Package1" table, and the "Temperature Grade Offerings" table for A3PE3000.	I, II, IV
Revision 1 (Feb 2008) DC and Switching Characteristics v1.1	In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature 1, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades.	2
	The "PLL Behavior at Brownout Condition" section is new.	2-4
	In the "PLL Contribution—PPLL" section, the following was deleted: FCLKIN is the input clock frequency.	2-10
	In Table 2-14 • Summary of Maximum and Minimum DC Input Levels, the note was incorrect. It previously said T_J and it was corrected and changed to T_A .	2-17
	In Table 2-98 • ProASIC3E CCC/PLL Specification, the SCLK parameter and note 1 are new.	2-70
	Table 2-103 • JTAG 1532 was populated with the parameter data, which was not in the previous version of the document.	2-83
Revision 1 (cont'd) Packaging v1.1	The "PQ208" pin table for A3PE3000 was updated.	4-2
	The "FG324" pin table for A3PE3000 is new.	4-13
	The "FG484" pin table for A3PE3000 is new.	4-17
	The "FG896" pin table for A3PE3000 is new.	4-41
Revision 0 (Jan 2008)	This document was previously in datasheet v2.1. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is 51700098-001-0.	N/A
v2.1 (July 2007)	CoreMP7 information was removed from the "Features and Benefits" section.	1-I
	The M1 device part numbers have been updated in ProASIC3E Product Family, "Packaging Tables", "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix".	1-1

Revision	Changes	Page
Advance v0.5 (continued)	The "RESET" section was updated.	2-25
	The "RESET" section was updated.	2-27
	The "Introduction" of the "Introduction" section was updated.	2-28
	PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 11 • VCCI Voltages and Compatible Standards	2-29
	Table 2-35 • ProASIC3E I/O Features was updated.	2-54
	The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature.	2-32
	The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information.	2-35
	Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices.	2-64
	The notes in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices were updated.	2-64
	The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new.	2-41
	A footnote was added to Table 2-37 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in ProASIC3E Devices (maximum drive strength and high slew selected).	2-55
	Table 2-48 • ProASIC3E I/O Attributes vs. I/O Standard Applications	2-81
	Table 2-55 • ProASIC3 I/O Standards—SLEW and Output Drive (OUT_DRIVE) Settings	2-85
	The "x" was updated in the "Pin Descriptions" section.	2-50
	The "VCC Core Supply Voltage" pin description was updated.	2-50
	The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected.	2-50
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24
	The CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} was updated in Table 2-13 • ProASIC3E CCC/PLL Specification.	2-30
	EXTFB was removed from Figure 2-27 • CCC/PLL Macro.	2-28
	The LVPECL specification in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64
	Table 2-15 • Levels of Hot-Swap Support was updated.	2-34
	The "Cold-Sparing Support" section was updated.	2-34
	"Electrostatic Discharge (ESD) Protection" section was updated.	2-35
	The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.	2-50
	The "VJTAG JTAG Supply Voltage" pin description was updated.	2-50
	The "VPUMP Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground.	2-50