

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	221
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	324-BGA
Supplier Device Package	324-FBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000-fg324i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3E Device Family Overview

VersaTiles

The ProASIC3E core consists of VersaTiles, which have been enhanced beyond the ProASIC^{PLUS®} core tiles. The ProASIC3E VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-2 for VersaTile configurations.

User Nonvolatile FlashROM

ProASIC3E devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- · Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard ProASIC3E IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks, as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3E development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

Microsemi.

ProASIC3E DC and Switching Characteristics

Symbol	Paran	neter	Commercial	Industrial	Units
T _A	Ambient temperature		0 to +70	-40 to +85	°C
TJ	Junction temperature		0 to +85	-40 to +100	°C
VCC	1.5 V DC core supply volta	ge	1.425 to 1.575	1.425 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage	Programming Mode ²	3.15 to 3.45	3.15 to 3.45	V
		Operation ³	0 to 3.6	0 to 3.6	V
VCCPLL	Analog power supply (PLL))	1.425 to 1.575	1.425 to 1.575	V
VCCI and VMV ⁴	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	3.0 V DC supply voltage ⁵		2.7 to 3.6	2.7 to 3.6	V
	LVDS/B-LVDS/M-LVDS diff	ferential I/O	2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Table 2-2 • Recommended Operating Conditions¹

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

2. The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to $85^{\circ}C$.

3. VPUMP can be left floating during normal operation (not programming mode).

- 4. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-13 on page 2-16. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.
- 5. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools.
- 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature ¹

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

Thermal Characteristics

Introduction

The temperature variable in Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ 1 can be used to calculate junction temperature.

 T_J = Junction Temperature = $\Delta T + T_A$

where:

T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ja} = Junction-to-ambient of the package. θ_{ja} numbers are located in Table 2-5.

P = Power dissipation

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The absolute maximum junction temperature is 110°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{110°C - 70°C}{13.6°C/W} = 5.88 \text{ W}$$

Package Type	Pin Count	θ_{jc}	Still Air	200 ft./min.	500 ft./min.	Units
Plastic Quad Flat Package (PQFP)	208	8.0	26.1	22.5	20.8	C/W
Plastic Quad Flat Package (PQFP) with embedded heat spreader in A3PE3000	208	3.8	16.2	13.3	11.9	C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.8	26.9	22.8	21.5	C/W
	484	3.2	20.5	17.0	15.9	C/W
	676	3.2	16.4	13.0	12.0	C/W
	896	2.4	13.6	10.4	9.4	C/W

Table 2-5 • Package Thermal Resistivities

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 70^{\circ}$ C, VCC = 1.425 V)

Array Voltage VCC (V)	Junction Temperature (°C)									
	–40°C	0°C	25°C	70°C	85°C	100°C				
1.425	0.87	0.92	0.95	1.00	1.02	1.04				
1.500	0.83	0.88	0.90	0.95	0.97	0.98				
1.575	0.80	0.85	0.87	0.92	0.93	0.95				

EQ 1

EQ 2

Figure 2-3 • Input Buffer Timing Model and Delays (example)

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

2.5 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-57 • Minimum and Maximum DC Input and Output Levels

2.5 V GTL+	VIL		VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
33 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	_	33	33	124	169	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-15 • AC Loading

Table 2-58 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-59 • 2.5 V GTL+

```
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.0 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.21	0.04	1.51	0.43	2.25	2.10			4.48	4.34	ns
-1	0.51	1.88	0.04	1.29	0.36	1.91	1.79			3.81	3.69	ns
-2	0.45	1.65	0.03	1.13	0.32	1.68	1.57			3.35	3.24	ns

Timing Characteristics

Table 2-80 • LVDS

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.87	0.04	1.82	ns
-1	0.56	1.59	0.04	1.55	ns
-2	0.49	1.40	0.03	1.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in the LVDS section in Table 2-80.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

Input Register

Timing Characteristics

Table 2-86 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.27	0.32	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.26	0.30	0.35	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.37	0.42	0.50	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.32	0.37	0.43	ns

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Output Register

Timing Characteristics

Table 2-87 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.59	0.67	0.79	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.31	0.36	0.42	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.44	0.50	0.59	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OCKMPWH}	Clock Minimum Pulse Width High for the Output Data Register	0.36	0.41	0.48	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.32	0.37	0.43	ns

Figure 2-29 • Output Enable Register Timing Diagram

Timing Characteristics

Table 2-88 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.59	0.67	0.79	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.31	0.36	0.42	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.50	0.58	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.36	0.41	0.48	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.32	0.37	0.43	ns

Eiguro	2 22 .	Autout	סחח	Timina	Diagram
riyure	2-33 -	Output	DDK	rinning	Diagram

Timing Characteristics

Table 2-92 • Output DDR Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.70	0.80	0.94	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	0.80	0.91	1.07	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	0.00	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.22	0.25	0.30	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.22	0.25	0.30	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.36	0.41	0.48	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.32	0.37	0.43	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	1404	1232	1048	MHz

FG324

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

FG484

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

🌜 Microsemi.

Package Pin Assignments

	FG484		FG484		FG484
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function
N17	IO57NPB3V0	R9	VCCIB5	U1	NC
N18	IO55NPB3V0	R10	VCCIB5	U2	IO107PDB6V0
N19	IO57PPB3V0	R11	IO84NDB5V0	U3	IO107NDB6V0
N20	NC	R12	IO84PDB5V0	U4	GEB1/IO103PDB6V0
N21	IO56NDB3V0	R13	VCCIB4	U5	GEB0/IO103NDB6V0
N22	IO58PDB3V0	R14	VCCIB4	U6	VMV6
P1	NC	R15	VMV3	U7	VCCPLE
P2	IO111PDB6V1	R16	VCCPLD	U8	IO101NPB5V2
P3	IO115NPB6V1	R17	GDB1/IO66PPB3V1	U9	IO95PPB5V1
P4	IO113NPB6V1	R18	GDC1/IO65PDB3V1	U10	IO92PDB5V1
P5	IO109PPB6V0	R19	IO61NDB3V1	U11	IO90PDB5V1
P6	IO108PDB6V0	R20	VCC	U12	IO82PDB5V0
P7	IO108NDB6V0	R21	IO59NDB3V0	U13	IO76NDB4V1
P8	VCCIB6	R22	IO62PDB3V1	U14	IO76PDB4V1
P9	GND	T1	NC	U15	VMV4
P10	VCC	T2	IO110NDB6V0	U16	ТСК
P11	VCC	Т3	NC	U17	VPUMP
P12	VCC	T4	IO105PDB6V0	U18	TRST
P13	VCC	Т5	IO105NDB6V0	U19	GDA0/IO67NDB3V1
P14	GND	Т6	GEC1/IO104PPB6V0	U20	NC
P15	VCCIB3	Τ7	VCOMPLE	U21	IO64NDB3V1
P16	GDB0/IO66NPB3V1	Т8	GNDQ	U22	IO63PDB3V1
P17	IO60NDB3V1	Т9	GEA2/IO101PPB5V2	V1	NC
P18	IO60PDB3V1	T10	IO92NDB5V1	V2	NC
P19	IO61PDB3V1	T11	IO90NDB5V1	V3	GND
P20	NC	T12	IO82NDB5V0	V4	GEA1/IO102PDB6V0
P21	IO59PDB3V0	T13	IO74NDB4V1	V5	GEA0/IO102NDB6V0
P22	IO58NDB3V0	T14	IO74PDB4V1	V6	GNDQ
R1	NC	T15	GNDQ	V7	GEC2/IO99PDB5V2
R2	IO110PDB6V0	T16	VCOMPLD	V8	IO95NPB5V1
R3	VCC	T17	VJTAG	V9	IO91NDB5V1
R4	IO109NPB6V0	T18	GDC0/IO65NDB3V1	V10	IO91PDB5V1
R5	IO106NDB6V0	T19	GDA1/IO67PDB3V1	V11	IO83NDB5V0
R6	IO106PDB6V0	T20	NC	V12	IO83PDB5V0
R7	GEC0/IO104NPB6V0	T21	IO64PDB3V1	V13	IO77NDB4V1
R8	VMV5	T22	IO62NDB3V1	V14	IO77PDB4V1

	FG484		FG484
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
N17	IO91NPB3V0	R9	VCCIB5
N18	IO90NPB3V0	R10	VCCIB5
N19	IO91PPB3V0	R11	IO135NDB5V0
N20	GNDQ	R12	IO135PDB5V0
N21	IO93NDB3V0	R13	VCCIB4
N22	IO95PDB3V1	R14	VCCIB4
P1	NC	R15	VMV3
P2	IO183PDB6V2	R16	VCCPLD
P3	IO187NPB6V2	R17	GDB1/IO109PPB3V2
P4	IO184NPB6V2	R18	GDC1/IO108PDB3V2
P5	IO176PPB6V1	R19	IO99NDB3V1
P6	IO182PDB6V1	R20	VCC
P7	IO182NDB6V1	R21	IO98NDB3V1
P8	VCCIB6	R22	IO101PDB3V1
P9	GND	T1	NC
P10	VCC	T2	IO177NDB6V1
P11	VCC	Т3	NC
P12	VCC	T4	IO171PDB6V0
P13	VCC	T5	IO171NDB6V0
P14	GND	Т6	GEC1/IO169PPB6V0
P15	VCCIB3	T7	VCOMPLE
P16	GDB0/IO109NPB3V2	Т8	GNDQ
P17	IO97NDB3V1	Т9	GEA2/IO166PPB5V3
P18	IO97PDB3V1	T10	IO145NDB5V1
P19	IO99PDB3V1	T11	IO141NDB5V0
P20	VMV3	T12	IO139NDB5V0
P21	IO98PDB3V1	T13	IO119NDB4V1
P22	IO95NDB3V1	T14	IO119PDB4V1
R1	NC	T15	GNDQ
R2	IO177PDB6V1	T16	VCOMPLD
R3	VCC	T17	VJTAG
R4	IO176NPB6V1	T18	GDC0/IO108NDB3V2
R5	IO174NDB6V0	T19	GDA1/IO110PDB3V2
R6	IO174PDB6V0	T20	NC
R7	GEC0/IO169NPB6V0	T21	IO103PDB3V2
R8	VMV5	T22	IO101NDB3V1

FG484				
Pin Number	A3PE1500 Function			
U1	IO175PPB6V1			
U2	IO173PDB6V0			
U3	IO173NDB6V0			
U4	GEB1/IO168PDB6V0			
U5	GEB0/IO168NDB6V0			
U6	VMV6			
U7	VCCPLE			
U8	IO166NPB5V3			
U9	IO157PPB5V2			
U10	IO145PDB5V1			
U11	IO141PDB5V0			
U12	IO139PDB5V0			
U13	IO121NDB4V1			
U14	IO121PDB4V1			
U15	VMV4			
U16	ТСК			
U17	VPUMP			
U18	TRST			
U19	GDA0/IO110NDB3V2			
U20	NC			
U21	IO103NDB3V2			
U22	IO105PDB3V2			
V1	NC			
V2	IO175NPB6V1			
V3	GND			
V4	GEA1/IO167PDB6V0			
V5	GEA0/IO167NDB6V0			
V6	GNDQ			
V7	GEC2/IO164PDB5V3			
V8	IO157NPB5V2			
V9	IO151NDB5V2			
V10	IO151PDB5V2			
V11	IO137NDB5V0			
V12	IO137PDB5V0			
V13	IO123NDB4V1			
V14	IO123PDB4V1			

Package Pin Assignments

	FG484		FG484	FG484	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
C21	IO94PPB2V1	E13	IO58NDB1V2	G5	IO297PDB7V2
C22	VCCIB2	E14	IO58PDB1V2	G6	GAC2/IO307PDB7V4
D1	IO293PDB7V2	E15	GBC1/IO79PDB1V4	G7	VCOMPLA
D2	IO303NDB7V3	E16	GBB0/IO80NDB1V4	G8	GNDQ
D3	IO305NDB7V3	E17	GNDQ	G9	IO26NDB0V3
D4	GND	E18	GBA2/IO82PDB2V0	G10	IO26PDB0V3
D5	GAA0/IO00NDB0V0	E19	IO86NDB2V0	G11	IO36PDB0V4
D6	GAA1/IO00PDB0V0	E20	GND	G12	IO42PDB1V0
D7	GAB0/IO01NDB0V0	E21	IO90NDB2V1	G13	IO50PDB1V1
D8	IO20PDB0V2	E22	IO98PDB2V2	G14	IO60NDB1V2
D9	IO22PDB0V2	F1	IO299NPB7V3	G15	GNDQ
D10	IO30PDB0V3	F2	IO301NDB7V3	G16	VCOMPLB
D11	IO38NDB0V4	F3	IO301PDB7V3	G17	GBB2/IO83PDB2V0
D12	IO52NDB1V1	F4	IO308NDB7V4	G18	IO92PDB2V1
D13	IO52PDB1V1	F5	IO309NDB7V4	G19	IO92NDB2V1
D14	IO66NDB1V3	F6	VMV7	G20	IO102PDB2V2
D15	IO66PDB1V3	F7	VCCPLA	G21	IO102NDB2V2
D16	GBB1/IO80PDB1V4	F8	GAC0/IO02NDB0V0	G22	IO105NDB2V2
D17	GBA0/IO81NDB1V4	F9	GAC1/IO02PDB0V0	H1	IO286PSB7V1
D18	GBA1/IO81PDB1V4	F10	IO32NDB0V3	H2	IO291NPB7V2
D19	GND	F11	IO32PDB0V3	H3	VCC
D20	IO88PDB2V0	F12	IO44PDB1V0	H4	IO295NDB7V2
D21	IO90PDB2V1	F13	IO50NDB1V1	H5	IO297NDB7V2
D22	IO94NPB2V1	F14	IO60PDB1V2	H6	IO307NDB7V4
E1	IO293NDB7V2	F15	GBC0/IO79NDB1V4	H7	IO287PDB7V1
E2	IO299PPB7V3	F16	VCCPLB	H8	VMV0
E3	GND	F17	VMV2	H9	VCCIB0
E4	GAB2/IO308PDB7V4	F18	IO82NDB2V0	H10	VCCIB0
E5	GAA2/IO309PDB7V4	F19	IO86PDB2V0	H11	IO36NDB0V4
E6	GNDQ	F20	IO96PDB2V1	H12	IO42NDB1V0
E7	GAB1/IO01PDB0V0	F21	IO96NDB2V1	H13	VCCIB1
E8	IO20NDB0V2	F22	IO98NDB2V2	H14	VCCIB1
E9	IO22NDB0V2	G1	IO289NDB7V1	H15	VMV1
E10	IO30NDB0V3	G2	IO289PDB7V1	H16	GBC2/IO84PDB2V0
E11	IO38PDB0V4	G3	IO291PPB7V2	H17	IO83NDB2V0
E12	IO44NDB1V0	G4	IO295PDB7V2	H18	IO100NDB2V2

Microsemi

Package Pin Assignments

	FG676	FG676			FG676
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
G13	IO21NDB0V2	H23	IO69PDB2V1	K7	IO217NDB7V3
G14	IO27PDB0V3	H24	IO76PDB2V2	K8	VCCIB7
G15	IO35NDB1V0	H25	IO76NDB2V2	K9	VCC
G16	IO39PDB1V0	H26	IO78NDB2V2	K10	GND
G17	IO51NDB1V2	J1	IO197NDB7V0	K11	GND
G18	IO53NDB1V2	J2	IO197PDB7V0	K12	GND
G19	VCCIB1	J3	VMV7	K13	GND
G20	GBA2/IO58PPB2V0	J4	IO215NDB7V3	K14	GND
G21	GNDQ	J5	IO215PDB7V3	K15	GND
G22	IO64NDB2V1	J6	IO214PDB7V3	K16	GND
G23	IO64PDB2V1	J7	IO214NDB7V3	K17	GND
G24	IO72PDB2V2	J8	VCCIB7	K18	VCC
G25	IO72NDB2V2	J9	VCC	K19	VCCIB2
G26	IO78PDB2V2	J10	VCC	K20	IO65PDB2V1
H1	IO208NDB7V2	J11	VCC	K21	IO65NDB2V1
H2	IO208PDB7V2	J12	VCC	K22	IO74PDB2V2
H3	IO209NDB7V2	J13	VCC	K23	IO74NDB2V2
H4	IO209PDB7V2	J14	VCC	K24	IO75PDB2V2
H5	IO219NDB7V3	J15	VCC	K25	IO75NDB2V2
H6	GAC2/IO219PDB7V3	J16	VCC	K26	IO84PDB2V3
H7	VCCIB7	J17	VCC	L1	IO195NDB7V0
H8	VCC	J18	VCC	L2	IO198PPB7V0
H9	VCCIB0	J19	VCCIB2	L3	GNDQ
H10	VCCIB0	J20	IO62PDB2V0	L4	IO201PDB7V1
H11	VCCIB0	J21	IO62NDB2V0	L5	IO201NDB7V1
H12	VCCIB0	J22	IO70NDB2V1	L6	IO210NDB7V2
H13	VCCIB0	J23	IO69NDB2V1	L7	IO210PDB7V2
H14	VCCIB1	J24	VMV2	L8	VCCIB7
H15	VCCIB1	J25	IO80PDB2V3	L9	VCC
H16	VCCIB1	J26	IO80NDB2V3	L10	GND
H17	VCCIB1	K1	IO195PDB7V0	L11	GND
H18	VCCIB1	K2	IO199NDB7V1	L12	GND
H19	VCC	K3	IO199PDB7V1	L13	GND
H20	VCC	K4	IO205NDB7V1	L14	GND
H21	IO58NPB2V0	K5	IO205PDB7V1	L15	GND
H22	IO70PDB2V1	K6	IO217PDB7V3	L16	GND

	FG896		FG896	FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
M23	IO104PPB2V2	N29	IO107PDB2V3	R5	GFB0/IO274NPB7V0
M24	IO102PDB2V2	N30	IO107NDB2V3	R6	IO271NDB6V4
M25	IO102NDB2V2	P1	IO276NDB7V0	R7	GFB2/IO271PDB6V4
M26	IO95PDB2V1	P2	IO278NDB7V0	R8	IO269PDB6V4
M27	IO97NDB2V1	P3	IO280NDB7V0	R9	IO269NDB6V4
M28	IO101NDB2V2	P4	IO284NDB7V1	R10	VCCIB7
M29	IO103NDB2V2	P5	IO279NDB7V0	R11	VCC
M30	IO119PDB3V0	P6	GFC1/IO275PDB7V0	R12	GND
N1	IO276PDB7V0	P7	GFC0/IO275NDB7V0	R13	GND
N2	IO278PDB7V0	P8	IO277PDB7V0	R14	GND
N3	IO280PDB7V0	P9	IO277NDB7V0	R15	GND
N4	IO284PDB7V1	P10	VCCIB7	R16	GND
N5	IO279PDB7V0	P11	VCC	R17	GND
N6	IO285NDB7V1	P12	GND	R18	GND
N7	IO287NDB7V1	P13	GND	R19	GND
N8	IO281NDB7V0	P14	GND	R20	VCC
N9	IO281PDB7V0	P15	GND	R21	VCCIB2
N10	VCCIB7	P16	GND	R22	GCC0/IO112NDB2V3
N11	VCC	P17	GND	R23	GCB2/IO116PDB3V0
N12	GND	P18	GND	R24	IO118PDB3V0
N13	GND	P19	GND	R25	IO111PPB2V3
N14	GND	P20	VCC	R26	IO122PPB3V1
N15	GND	P21	VCCIB2	R27	GCA0/IO114NPB3V0
N16	GND	P22	GCC1/IO112PDB2V3	R28	VCOMPLC
N17	GND	P23	IO110PDB2V3	R29	GCB1/IO113PPB2V3
N18	GND	P24	IO110NDB2V3	R30	IO115NPB3V0
N19	GND	P25	IO109PPB2V3	T1	IO270NDB6V4
N20	VCC	P26	IO111NPB2V3	T2	VCCPLF
N21	VCCIB2	P27	IO105PDB2V2	Т3	GFA2/IO272PPB6V4
N22	IO106NDB2V3	P28	IO105NDB2V2	T4	GFA1/IO273PDB6V4
N23	IO106PDB2V3	P29	GCC2/IO117PDB3V0	T5	IO272NPB6V4
N24	IO108PDB2V3	P30	IO117NDB3V0	Т6	IO267NDB6V4
N25	IO108NDB2V3	R1	GFC2/IO270PDB6V4	T7	IO267PDB6V4
N26	IO95NDB2V1	R2	GFB1/IO274PPB7V0	Т8	IO265PDB6V3
N27	IO99NDB2V2	R3	VCOMPLF	Т9	IO263PDB6V3
N28	IO99PDB2V2	R4	GFA0/IO273NDB6V4	T10	VCCIB6

	FG896				
Pin Number	A3PE3000 Function				
W29	IO131PDB3V2				
W30	IO123NDB3V1				
Y1	IO266PDB6V4				
Y2	IO250PDB6V2				
Y3	IO250NDB6V2				
Y4	IO246PDB6V1				
Y5	IO247NDB6V1				
Y6	IO247PDB6V1				
Y7	IO249NPB6V1				
Y8	IO245PDB6V1				
Y9	IO253NDB6V2				
Y10	GEB0/IO235NPB6V0				
Y11	VCC				
Y12	VCC				
Y13	VCC				
Y14	VCC				
Y15	VCC				
Y16	VCC				
Y17	VCC				
Y18	VCC				
Y19	VCC				
Y20	VCC				
Y21	IO142PPB3V3				
Y22	IO134NDB3V2				
Y23	IO138NDB3V3				
Y24	IO140NDB3V3				
Y25	IO140PDB3V3				
Y26	IO136PPB3V2				
Y27	IO141NDB3V3				
Y28	IO135NDB3V2				
Y29	IO131NDB3V2				
Y30	IO133PDB3V2				

Datasheet Information

Revision	Changes	Page	
Revision 10 (continued)	"TBD" for 3.3 V LVCMOS Wide Range in Table 2-19 • I/O Output Buffer Maximum Resistances ¹ and Table 2-21 • I/O Short Currents IOSH/IOSL was replaced by "Same as regular 3.3 V LVCMOS" (SAR 33853).	2-20, 2-27	
	3.3 V LVCMOS Wide Range information was separated from regular 3.3 V LVCMOS and placed into its own new section, "3.3 V LVCMOS Wide Range". Values of IOSH and IOSL were added in Table 2-29 • Minimum and Maximum DC Input and Output Levels (SAR 33853).		
	The formulas in the table notes for Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 34755).		
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34889).	2-24	
	The titles and subtitles for Table 2-31 • 3.3 V LVCMOS Wide Range High Slew and Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew were corrected (SAR 37227).	2-28, 2-29	
	The following notes were removed from Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels (SAR 34812): ±5%	2-50	
	Differential input voltage = ±350 mV		
	Minimum pulse width High and Low values were added to the tables in the "Global Tree Timing Characteristics" section. The maximum frequency for global clock parameter was removed from these tables because a frequency on the global is only an indication of what the global network can do. There are other limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to determine the design frequency (SAR 36957).	2-68	
	A note was added to Table 2-98 • ProASIC3E CCC/PLL Specification indicating that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 34824).	2-70	
	The following figures were deleted. Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 34872).	2-74, 2-75, 2-79,	
	Figure 2-44 • Write Access after Write onto Same Address	2-82	
	Figure 2-45 • Read Access after Write onto Same Address		
	Figure 2-46 • Write Access after Read onto Same Address		
	Characteristics" tables, Figure 2-49 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SAR 35750).		
	The "Pin Descriptions and Packaging" chapter is new (SAR 34771).	3-1	
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34771).	4-1	
	Pin E6 for the FG256 package was corrected from VvB0 to VCCIB0 (SARs 30364, 31597, 26243).	4-9	
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "ProASIC3E Device Status" table on page II indicates the status for each device in the device family.	N/A	