

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	620
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000-fg896i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

static Microsemi.

ProASIC3E Flash Family FPGAs

I/Os Per Package¹

ProASIC3E Devices	A3P	E600	A3PE	1500 ³	A3PE3000 ³		
Cortex-M1 Devices ²			PE1500	M1A3PE3000			
Package	Single-Ended I/O ¹ Differential I/O Pairs		Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs	
PQ208	147	65	147	65	147	65	
FG256	165	79	-	_	-	-	
FG324	-	-	-	-	221	110	
FG484	270	135	280	139	341	168	
FG676	_	_	444	222	_	_	
FG896	-	-	-	-	620	310	

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3E FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.

- 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 3. For A3PE1500 and A3PE3000 devices, the usage of certain I/O standards is limited as follows:
 - SSTL3(I) and (II): up to 40 I/Os per north or south bank
 - LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
 - SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
- 4. FG256 and FG484 are footprint-compatible packages.
- 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os).
- 6. "G" indicates RoHS-compliant packages. Refer to the "ProASIC3E Ordering Information" on page III for the location of the "G" in the part number.

Package	PQ208	FG256	FG324	FG484	FG676	FG896
Length × Width (mm\mm)	28 × 28	17 × 17	19 × 19	23 × 23	27 × 27	31 × 31
Nominal Area (mm ²)	784	289	361	529	729	961
Pitch (mm)	0.5	1.0	1.0	1.0	1.0	1.0
Height (mm)	3.40	1.60	1.63	2.23	2.23	2.23

Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions

ProASIC3E Device Status

ProASIC3E Devices	Status	M1 ProASIC3E Devices	Status
A3PE600	Production		
A3PE1500	Production	M1A3PE1500	Production
A3PE3000	Production	M1A3PE3000	Production

ProASIC3E Ordering Information

Advanced Architecture

The proprietary ProASIC3E architecture provides granularity comparable to standard-cell ASICs. The ProASIC3E device consists of five distinct and programmable architectural features (Figure 1-1 on page 3):

- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory
- Extensive CCCs and PLLs
- Pro I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the ProASIC3E core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC family of third-generation architecture Flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

Figure 1-1 • ProASIC3E Device Architecture Overview

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
HSTL (I)	1.5	0.17	2.03
HSTL (II)	1.5	0.17	2.03
SSTL2 (I)	2.5	1.38	4.48
SSTL2 (II)	2.5	1.38	4.48
SSTL3 (I)	3.3	3.21	9.26
SSTL3 (II)	3.3	3.21	9.26
Differential			-
LVDS/B-LVDS/M-LVDS	2.5	2.26	1.50
LVPECL	3.3	5.71	2.17

Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings (continued)

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended			•	•
3.3 V LVTTL/LVCMOS	35	3.3	-	474.70
3.3 V LVTTL/LVCMOS Wide Range ⁴	35	3.3	-	474.70
2.5 V LVCMOS	35	2.5	-	270.73
1.8 V LVCMOS	35	1.8	-	151.78
1.5 V LVCMOS (JESD8-11)	35	1.5	-	104.55
3.3 V PCI	10	3.3	-	204.61
3.3 V PCI-X	10	3.3	-	204.61
Voltage-Referenced				
3.3 V GTL	10	3.3	-	24.08
2.5 V GTL	10	2.5	-	13.52
3.3 V GTL+	10	3.3	-	24.10
2.5 V GTL+	10	2.5	-	13.54
HSTL (I)	20	1.5	7.08	26.22
HSTL (II)	20	1.5	13.88	27.22
SSTL2 (I)	30	2.5	16.69	105.56
SSTL2 (II)	30	2.5	25.91	116.60

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	v	ΊL	v	н	VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max., V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	3.6	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	3.6	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	3.6	0.7	1.7	24	24	124	169	10	10

Table 2-33 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
Datapath
$$\xrightarrow{1}{1}$$
 35 pF
 $R = 1 k$
Test Point
Enable Path $\xrightarrow{1}{1}$ R to VCCI for $t_{LZ} / t_{ZL} / t_{ZLS}$
R to GND for $t_{HZ} / t_{ZH} / t_{ZHS}$
 $35 pF$ for $t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$
 $35 pF$ for $t_{HZ} / t_{ZH} / t_{ZLS}$

Figure 2-8 • AC Loading

Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	2.5	1.2	_	35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	12.00	0.04	1.51	1.66	0.43	12.23	11.61	2.72	2.20	14.46	13.85	ns
	–1	0.56	10.21	0.04	1.29	1.41	0.36	10.40	9.88	2.31	1.87	12.30	11.78	ns
	-2	0.49	8.96	0.03	1.13	1.24	0.32	9.13	8.67	2.03	1.64	10.80	10.34	ns
8 mA	Std.	0.66	8.73	0.04	1.51	1.66	0.43	8.89	8.01	3.10	2.93	11.13	10.25	ns
	–1	0.56	7.43	0.04	1.29	1.41	0.36	7.57	6.82	2.64	2.49	9.47	8.72	ns
	-2	0.49	6.52	0.03	1.13	1.24	0.32	6.64	5.98	2.32	2.19	8.31	7.65	ns
12 mA	Std.	0.66	6.77	0.04	1.51	1.66	0.43	6.90	6.11	3.37	3.39	9.14	8.34	ns
	–1	0.56	5.76	0.04	1.29	1.41	0.36	5.87	5.20	2.86	2.89	7.77	7.10	ns
	-2	0.49	5.06	0.03	1.13	1.24	0.32	5.15	4.56	2.51	2.53	6.82	6.23	ns
16 mA	Std.	0.66	6.31	0.04	1.51	1.66	0.43	6.42	5.73	3.42	3.52	8.66	7.96	ns
	–1	0.56	5.37	0.04	1.29	1.41	0.36	5.46	4.87	2.91	3.00	7.37	6.77	ns
	-2	0.49	4.71	0.03	1.13	1.24	0.32	4.80	4.28	2.56	2.63	6.47	5.95	ns
24 mA	Std.	0.66	5.93	0.04	1.51	1.66	0.43	6.04	5.70	3.49	4.00	8.28	7.94	ns
	-1	0.56	5.05	0.04	1.29	1.41	0.36	5.14	4.85	2.97	3.40	7.04	6.75	ns
	-2	0.49	4.43	0.03	1.13	1.24	0.32	4.51	4.26	2.61	2.99	6.18	5.93	ns

Table 2-36 • 2.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

static Microsemi.

ProASIC3E DC and Switching Characteristics

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-45 • Minimum and Maximum DC Input and Output Levels

3.3 V PCI/PCI-X	VIL		VIH		VOL	VOH	H IOL I		IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Per PCI specification	Per PCI curves 1										10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V< VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-11.

Figure 2-11 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-46.

Table 2-46 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for $t_{DP(R)}$ 0.615 * VCCI for $t_{DP(F)}$	-	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-47 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.66	2.81	0.04	1.05	1.67	0.43	2.86	2.00	3.28	3.61	5.09	4.23	ns
-1	0.56	2.39	0.04	0.89	1.42	0.36	2.43	1.70	2.79	3.07	4.33	3.60	ns
-2	0.49	2.09	0.03	0.78	1.25	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-26 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Timing Characteristics

Table 2-95 • A3PE600 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2 -		-1 Std.		td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.83	1.04	0.94	1.18	1.11	1.39	ns
t _{RCKH}	Input High Delay for Global Clock	0.81	1.06	0.93	1.21	1.09	1.42	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.25		0.28		0.33	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Table 2-96 • A3PE1500 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2		-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.07	1.29	1.22	1.47	1.43	1.72	ns
t _{RCKH}	Input High Delay for Global Clock	1.06	1.32	1.21	1.50	1.42	1.76	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

-1 Std. _2 Min.¹ Max.² Min.¹ Max.² Min.¹ Max.² Parameter Description Units Input Low Delay for Global Clock 1.41 1.62 1.60 1.85 1.88 2.17 ns t_{RCKL} Input High Delay for Global Clock 1.40 1.66 1.59 1.89 1.87 2.22 ns t_{RCKH} Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns t_{RCKMPWH} 0.85 1.13 Minimum Pulse Width Low for Global Clock 0.96 ns t_{RCKMPWL} 0.26 Maximum Skew for Global Clock 0.29 0.35 ns t_{RCKSW} Notes:

Table 2-97 • A3PE3000 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

10100.

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Wicrosemi. ProASIC3E DC and Switching Characteristics

Figure 2-44 • RAM Write, Output as Write Data. Applicable to RAM4K9 Only.

	PQ208	PQ208		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
118	IO134NDB3V2	157	VMV1	
119	IO134PDB3V2	158	GNDQ	
120	IO132NDB3V2	159	GBA1/IO81PDB1V4	
121	IO132PDB3V2	160	GBA0/IO81NDB1V4	
122	GND	161	GBB1/IO80PDB1V4	
123	VCCIB3	162	GND	
124	GCC2/IO117PSB3V0	163	GBB0/IO80NDB1V4	
125	GCB2/IO116PSB3V0	164	GBC1/IO79PDB1V4	
126	NC	165	GBC0/IO79NDB1V4	
127	IO115NDB3V0	166	IO74PDB1V4	
128	GCA2/IO115PDB3V0	167	IO74NDB1V4	
129	GCA1/IO114PPB3V0	168	IO70PDB1V3	
130	GND	169	IO70NDB1V3	
131	VCCPLC	170	VCCIB1	
132	GCA0/IO114NPB3V0	171	VCC	
133	VCOMPLC	172	IO56PSB1V1	
134	GCB0/IO113NDB2V3	173	IO55PDB1V1	
135	GCB1/IO113PDB2V3	174	IO55NDB1V1	
136	GCC1/IO112PSB2V3	175	IO54PDB1V1	
137	IO110NDB2V3	176	IO54NDB1V1	
138	IO110PDB2V3	177	IO40PDB0V4	
139	IO106PSB2V3	178	GND	
140	VCCIB2	179	IO40NDB0V4	
141	GND	180	IO37PDB0V4	
142	VCC	181	IO37NDB0V4	
143	IO99NDB2V2	182	IO35PDB0V4	
144	IO99PDB2V2	183	IO35NDB0V4	
145	IO96NDB2V1	184	IO32PDB0V3	
146	IO96PDB2V1	185	IO32NDB0V3	
147	IO91NDB2V1	186	VCCIB0	
148	IO91PDB2V1	187	VCC	
149	IO88NDB2V0	188	IO28PDB0V3	
150	IO88PDB2V0	189	IO28NDB0V3	
151	GBC2/IO84PSB2V0	190	IO24PDB0V2	
152	GBA2/IO82PSB2V0	191	IO24NDB0V2	
153	GBB2/IO83PSB2V0	192	IO21PSB0V2	
154	VMV2	193	IO16PDB0V1	
155	GNDQ	194	IO16NDB0V1	
156	GND	195	GND	

PQ208					
Pin Number	A3PE3000 Function				
196	IO11PDB0V1				
197	IO11NDB0V1				
198	IO08PDB0V0				
199	IO08NDB0V0				
200	VCCIB0				
201	GAC1/IO02PDB0V0				
202	GAC0/IO02NDB0V0				
203	GAB1/IO01PDB0V0				
204	GAB0/IO01NDB0V0				
205	GAA1/IO00PDB0V0				
206	GAA0/IO00NDB0V0				
207	GNDQ				
208	VMV0				

FG256

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

🌜 Microsemi.

Package Pin Assignments

	FG324		FG324	FG324	
Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA
G1	GND	J1	IO267NDB6V4	L1	IO263NDB6V3
G2	IO287PDB7V1	J2	GFA0/IO273NDB6V4	L2	VCCIB6
G3	IO287NDB7V1	J3	VCOMPLF	L3	IO259PDB6V3
G4	IO283PPB7V1	J4	GFA2/IO272PDB6V4	L4	IO259NDB6V3
G5	VCCIB7	J5	GFB0/IO274NPB7V0	L5	GND
G6	IO279PDB7V0	J6	GFC0/IO275NDB7V0	L6	IO270NPB6V4
G7	IO291NPB7V2	J7	GFC1/IO275PDB7V0	L7	VCC
G8	VCC	J8	GND	L8	VCC
G9	IO26NDB0V3	J9	GND	L9	GND
G10	IO34NDB0V4	J10	GND	L10	GND
G11	VCC	J11	GND	L11	VCC
G12	IO94NPB2V1	J12	GCA2/IO115PDB3V0	L12	VCC
G13	IO98PDB2V2	J13	GCA1/IO114PDB3V0	L13	IO132PDB3V2
G14	VCCIB2	J14	GCA0/IO114NDB3V0	L14	GND
G15	GCC0/IO112NPB2V3	J15	GCB0/IO113NDB2V3	L15	IO117NDB3V0
G16	IO104PDB2V2	J16	VCOMPLC	L16	IO128NPB3V1
G17	IO104NDB2V2	J17	IO120NPB3V0	L17	VCCIB3
G18	GND	J18	IO108NDB2V3	L18	IO124PPB3V1
H1	IO267PDB6V4	K1	IO263PDB6V3	M1	GND
H2	VCCIB7	K2	GFA1/IO273PDB6V4	M2	IO255PDB6V2
H3	IO283NPB7V1	K3	VCCPLF	M3	IO255NDB6V2
H4	GFB1/IO274PPB7V0	K4	IO272NDB6V4	M4	IO251PPB6V2
H5	GND	K5	GFC2/IO270PPB6V4	M5	VCCIB6
H6	IO279NDB7V0	K6	GFB2/IO271PDB6V4	M6	GEB0/IO235NDB6V0
H7	VCC	K7	IO271NDB6V4	M7	GEB1/IO235PDB6V0
H8	VCC	K8	GND	M8	VCC
H9	GND	K9	GND	M9	IO192PPB4V4
H10	GND	K10	GND	M10	IO154NPB4V0
H11	VCC	K11	GND	M11	VCC
H12	VCC	K12	IO115NDB3V0	M12	GDA0/IO153NPB3V4
H13	IO98NDB2V2	K13	GCB2/IO116PDB3V0	M13	IO132NDB3V2
H14	GND	K14	IO116NDB3V0	M14	VCCIB3
H15	GCB1/IO113PDB2V3	K15	GCC2/IO117PDB3V0	M15	IO134NDB3V2
H16	GCC1/IO112PPB2V3	K16	VCCPLC	M16	IO134PDB3V2
H17	VCCIB2	K17	IO124NPB3V1	M17	IO128PPB3V1
H18	IO108PDB2V3	K18	IO120PPB3V0	M18	GND

Package Pin Assignments

	FG484	FG484		FG484	
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
H19	IO67PDB2V1	K11	GND	M3	IO189NDB6V2
H20	VCC	K12	GND	M4	GFA2/IO189PDB6V2
H21	VMV2	K13	GND	M5	GFA1/IO190PDB6V2
H22	IO74PSB2V2	K14	VCC	M6	VCCPLF
J1	IO212NDB7V2	K15	VCCIB2	M7	IO188NDB6V2
J2	IO212PDB7V2	K16	GCC1/IO85PPB2V3	M8	GFB2/IO188PDB6V2
J3	VMV7	K17	IO73NDB2V2	M9	VCC
J4	IO206PDB7V1	K18	IO73PDB2V2	M10	GND
J5	IO204PDB7V1	K19	IO81NPB2V3	M11	GND
J6	IO210PDB7V2	K20	IO75NPB2V2	M12	GND
J7	IO215NDB7V3	K21	IO77NDB2V2	M13	GND
J8	VCCIB7	K22	IO79NDB2V3	M14	VCC
J9	GND	L1	NC	M15	GCB2/IO89PPB3V0
J10	VCC	L2	IO196PDB7V0	M16	GCA1/IO87PPB3V0
J11	VCC	L3	IO196NDB7V0	M17	GCC2/IO90PPB3V0
J12	VCC	L4	GFB0/IO191NPB7V0	M18	VCCPLC
J13	VCC	L5	GFA0/IO190NDB6V2	M19	GCA2/IO88PDB3V0
J14	GND	L6	GFB1/IO191PPB7V0	M20	IO88NDB3V0
J15	VCCIB2	L7	VCOMPLF	M21	IO93PDB3V0
J16	IO60NDB2V0	L8	GFC0/IO192NPB7V0	M22	NC
J17	IO65NDB2V1	L9	VCC	N1	IO185PPB6V2
J18	IO65PDB2V1	L10	GND	N2	IO183NDB6V2
J19	IO75PPB2V2	L11	GND	N3	VMV6
J20	GNDQ	L12	GND	N4	GFC2/IO187PPB6V2
J21	IO77PDB2V2	L13	GND	N5	IO184PPB6V2
J22	IO79PDB2V3	L14	VCC	N6	IO186PDB6V2
K1	IO200NDB7V1	L15	GCC0/IO85NPB2V3	N7	IO186NDB6V2
K2	IO200PDB7V1	L16	GCB1/IO86PPB2V3	N8	VCCIB6
K3	GNDQ	L17	GCA0/IO87NPB3V0	N9	VCC
K4	IO206NDB7V1	L18	VCOMPLC	N10	GND
K5	IO204NDB7V1	L19	GCB0/IO86NPB2V3	N11	GND
K6	IO210NDB7V2	L20	IO81PPB2V3	N12	GND
K7	GFC1/IO192PPB7V0	L21	IO83NDB2V3	N13	GND
K8	VCCIB7	L22	IO83PDB2V3	N14	VCC
K9	VCC	M1	GNDQ	N15	VCCIB3
K10	GND	M2	IO185NPB6V2	N16	IO89NPB3V0

	FG676		FG676	FG676	
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
C9	IO10PDB0V1	D19	IO45PDB1V1	F3	IO213NDB7V2
C10	IO16PDB0V2	D20	IO46PPB1V1	F4	IO213PDB7V2
C11	IO20PDB0V2	D21	IO48PPB1V2	F5	GND
C12	IO24PDB0V3	D22	GBA0/IO57NPB1V3	F6	VCCPLA
C13	IO23PDB0V2	D23	GNDQ	F7	GAB0/IO01NDB0V0
C14	IO28PDB0V3	D24	GBB1/IO56PPB1V3	F8	GNDQ
C15	IO31PDB0V3	D25	GBB2/IO59PDB2V0	F9	IO03PDB0V0
C16	IO32NDB1V0	D26	IO59NDB2V0	F10	IO13PDB0V1
C17	IO36NDB1V0	E1	IO212PDB7V2	F11	IO15PDB0V1
C18	IO37NDB1V0	E2	IO211NDB7V2	F12	IO19PDB0V2
C19	IO45NDB1V1	E3	IO211PDB7V2	F13	IO21PDB0V2
C20	IO42PPB1V1	E4	IO220NPB7V3	F14	IO27NDB0V3
C21	IO46NPB1V1	E5	GNDQ	F15	IO35PDB1V0
C22	IO48NPB1V2	E6	GAB2/IO220PPB7V3	F16	IO39NDB1V0
C23	GBB0/IO56NPB1V3	E7	GAB1/IO01PDB0V0	F17	IO51PDB1V2
C24	VMV1	E8	IO05PDB0V0	F18	IO53PDB1V2
C25	GBC2/IO60PDB2V0	E9	IO08NDB0V1	F19	IO54PDB1V3
C26	IO60NDB2V0	E10	IO12PDB0V1	F20	VMV2
D1	IO218NDB7V3	E11	IO18PDB0V2	F21	VCOMPLB
D2	IO218PDB7V3	E12	IO17PDB0V2	F22	IO61PDB2V0
D3	GND	E13	IO25PDB0V3	F23	IO61NDB2V0
D4	VMV7	E14	IO29PDB0V3	F24	IO66PDB2V1
D5	IO221NDB7V3	E15	IO33PDB1V0	F25	IO66NDB2V1
D6	GAC0/IO02NDB0V0	E16	IO40NDB1V1	F26	IO68NDB2V1
D7	GAC1/IO02PDB0V0	E17	IO43PDB1V1	G1	IO203NPB7V1
D8	IO05NDB0V0	E18	IO47NDB1V1	G2	IO207NDB7V2
D9	IO08PDB0V1	E19	IO54NDB1V3	G3	IO207PDB7V2
D10	IO12NDB0V1	E20	IO52NDB1V2	G4	IO216NDB7V3
D11	IO18NDB0V2	E21	IO52PDB1V2	G5	IO216PDB7V3
D12	IO17NDB0V2	E22	VCCPLB	G6	VCOMPLA
D13	IO25NDB0V3	E23	GBA1/IO57PPB1V3	G7	VMV0
D14	IO29NDB0V3	E24	IO63PDB2V0	G8	VCC
D15	IO33NDB1V0	E25	IO63NDB2V0	G9	IO03NDB0V0
D16	IO40PDB1V1	E26	IO68PDB2V1	G10	IO13NDB0V1
D17	IO43NDB1V1	F1	IO212NDB7V2	G11	IO15NDB0V1
D18	IO47PDB1V1	F2	IO203PPB7V1	G12	IO19NDB0V2

Package Pin Assignments

	FG896		FG896		FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
AK28	GND	C5	VCCIB0	D11	IO11PDB0V1	
AK29	GND	C6	IO03PDB0V0	D12	IO23NDB0V2	
B1	GND	C7	IO03NDB0V0	D13	IO23PDB0V2	
B2	GND	C8	GAB1/IO01PDB0V0	D14	IO27PDB0V3	
B3	GAA2/IO309PPB7V4	C9	IO05PDB0V0	D15	IO40PDB0V4	
B4	VCC	C10	IO15NPB0V1	D16	IO47NDB1V0	
B5	IO14PPB0V1	C11	IO25NDB0V3	D17	IO47PDB1V0	
B6	VCC	C12	IO25PDB0V3	D18	IO55NPB1V1	
B7	IO07PPB0V0	C13	IO31NPB0V3	D19	IO65NDB1V3	
B8	IO09PDB0V1	C14	IO27NDB0V3	D20	IO65PDB1V3	
B9	IO15PPB0V1	C15	IO39NDB0V4	D21	IO71NDB1V3	
B10	IO19NDB0V2	C16	IO39PDB0V4	D22	IO71PDB1V3	
B11	IO19PDB0V2	C17	IO55PPB1V1	D23	IO73NDB1V4	
B12	IO29NDB0V3	C18	IO51PDB1V1	D24	IO73PDB1V4	
B13	IO29PDB0V3	C19	IO59NDB1V2	D25	IO74NDB1V4	
B14	IO31PPB0V3	C20	IO63NDB1V2	D26	GBB0/IO80NPB1V4	
B15	IO37NDB0V4	C21	IO63PDB1V2	D27	GND	
B16	IO37PDB0V4	C22	IO67NDB1V3	D28	GBA0/IO81NPB1V4	
B17	IO41PDB1V0	C23	IO67PDB1V3	D29	VCC	
B18	IO51NDB1V1	C24	IO75NDB1V4	D30	GBA2/IO82PPB2V0	
B19	IO59PDB1V2	C25	IO75PDB1V4	E1	GND	
B20	IO53PDB1V1	C26	VCCIB1	E2	IO303NPB7V3	
B21	IO53NDB1V1	C27	IO64PPB1V2	E3	VCCIB7	
B22	IO61NDB1V2	C28	VCC	E4	IO305PPB7V3	
B23	IO61PDB1V2	C29	GBA1/IO81PPB1V4	E5	VCC	
B24	IO69NPB1V3	C30	GND	E6	GAC0/IO02NDB0V0	
B25	VCC	D1	IO303PPB7V3	E7	VCCIB0	
B26	GBC0/IO79NPB1V4	D2	VCC	E8	IO06PPB0V0	
B27	VCC	D3	IO305NPB7V3	E9	IO24NDB0V2	
B28	IO64NPB1V2	D4	GND	E10	IO24PDB0V2	
B29	GND	D5	GAA1/IO00PPB0V0	E11	IO13NDB0V1	
B30	GND	D6	GAC1/IO02PDB0V0	E12	IO13PDB0V1	
C1	GND	D7	IO06NPB0V0	E13	IO34NDB0V4	
C2	IO309NPB7V4	D8	GAB0/IO01NDB0V0	E14	IO34PDB0V4	
C3	VCC	D9	IO05NDB0V0	E15	IO40NDB0V4	
C4	GAA0/IO00NPB0V0	D10	IO11NDB0V1	E16	IO49NDB1V1	

	FG896		FG896	FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
M23	IO104PPB2V2	N29	IO107PDB2V3	R5	GFB0/IO274NPB7V0
M24	IO102PDB2V2	N30	IO107NDB2V3	R6	IO271NDB6V4
M25	IO102NDB2V2	P1	IO276NDB7V0	R7	GFB2/IO271PDB6V4
M26	IO95PDB2V1	P2	IO278NDB7V0	R8	IO269PDB6V4
M27	IO97NDB2V1	P3	IO280NDB7V0	R9	IO269NDB6V4
M28	IO101NDB2V2	P4	IO284NDB7V1	R10	VCCIB7
M29	IO103NDB2V2	P5	IO279NDB7V0	R11	VCC
M30	IO119PDB3V0	P6	GFC1/IO275PDB7V0	R12	GND
N1	IO276PDB7V0	P7	GFC0/IO275NDB7V0	R13	GND
N2	IO278PDB7V0	P8	IO277PDB7V0	R14	GND
N3	IO280PDB7V0	P9	IO277NDB7V0	R15	GND
N4	IO284PDB7V1	P10	VCCIB7	R16	GND
N5	IO279PDB7V0	P11	VCC	R17	GND
N6	IO285NDB7V1	P12	GND	R18	GND
N7	IO287NDB7V1	P13	GND	R19	GND
N8	IO281NDB7V0	P14	GND	R20	VCC
N9	IO281PDB7V0	P15	GND	R21	VCCIB2
N10	VCCIB7	P16	GND	R22	GCC0/IO112NDB2V3
N11	VCC	P17	GND	R23	GCB2/IO116PDB3V0
N12	GND	P18	GND	R24	IO118PDB3V0
N13	GND	P19	GND	R25	IO111PPB2V3
N14	GND	P20	VCC	R26	IO122PPB3V1
N15	GND	P21	VCCIB2	R27	GCA0/IO114NPB3V0
N16	GND	P22	GCC1/IO112PDB2V3	R28	VCOMPLC
N17	GND	P23	IO110PDB2V3	R29	GCB1/IO113PPB2V3
N18	GND	P24	IO110NDB2V3	R30	IO115NPB3V0
N19	GND	P25	IO109PPB2V3	T1	IO270NDB6V4
N20	VCC	P26	IO111NPB2V3	T2	VCCPLF
N21	VCCIB2	P27	IO105PDB2V2	Т3	GFA2/IO272PPB6V4
N22	IO106NDB2V3	P28	IO105NDB2V2	T4	GFA1/IO273PDB6V4
N23	IO106PDB2V3	P29	GCC2/IO117PDB3V0	T5	IO272NPB6V4
N24	IO108PDB2V3	P30	IO117NDB3V0	Т6	IO267NDB6V4
N25	IO108NDB2V3	R1	GFC2/IO270PDB6V4	T7	IO267PDB6V4
N26	IO95NDB2V1	R2	GFB1/IO274PPB7V0	Т8	IO265PDB6V3
N27	IO99NDB2V2	R3	VCOMPLF	Т9	IO263PDB6V3
N28	IO99PDB2V2	R4	GFA0/IO273NDB6V4	T10	VCCIB6

Datasheet Information

Revision	Changes	Page
Revision 10 (continued)	"TBD" for 3.3 V LVCMOS Wide Range in Table 2-19 • I/O Output Buffer Maximum Resistances ¹ and Table 2-21 • I/O Short Currents IOSH/IOSL was replaced by "Same as regular 3.3 V LVCMOS" (SAR 33853).	2-20, 2-27
	3.3 V LVCMOS Wide Range information was separated from regular 3.3 V LVCMOS and placed into its own new section, "3.3 V LVCMOS Wide Range". Values of IOSH and IOSL were added in Table 2-29 • Minimum and Maximum DC Input and Output Levels (SAR 33853).	
	The formulas in the table notes for Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 34755).	2-21
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34889).	2-24
	The titles and subtitles for Table 2-31 • 3.3 V LVCMOS Wide Range High Slew and Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew were corrected (SAR 37227).	2-28, 2-29
	The following notes were removed from Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels (SAR 34812): ±5%	2-50
	Differential input voltage = ±350 mV	
	Minimum pulse width High and Low values were added to the tables in the "Global Tree Timing Characteristics" section. The maximum frequency for global clock parameter was removed from these tables because a frequency on the global is only an indication of what the global network can do. There are other limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to determine the design frequency (SAR 36957).	2-68
	A note was added to Table 2-98 • ProASIC3E CCC/PLL Specification indicating that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 34824).	2-70
	The following figures were deleted. Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 34872).	2-74, 2-75, 2-79,
	Figure 2-44 • Write Access after Write onto Same Address	2-82
	Figure 2-45 • Read Access after Write onto Same Address	
	Figure 2-46 • Write Access after Read onto Same Address	
	Characteristics" tables, Figure 2-49 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SAR 35750).	
	The "Pin Descriptions and Packaging" chapter is new (SAR 34771).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34771).	4-1
	Pin E6 for the FG256 package was corrected from VvB0 to VCCIB0 (SARs 30364, 31597, 26243).	4-9
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "ProASIC3E Device Status" table on page II indicates the status for each device in the device family.	N/A

Revision	Changes	Page
v2.1 (continued)	The words "ambient temperature" were added to the temperature range in the "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix" sections.	1-I
	The "Clock Conditioning Circuit (CCC) and PLL" section was updated.	1-I
	The caption "Main (chip)" in Figure 2-9 • Overview of Automotive ProASIC3 VersaNet Global Network was changed to "Chip (main)."	2-9
	The T _J parameter in Table 3-2 \bullet Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 4–6 were added.	3-2
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15
v2.0 (April 2007)	In the "Temperature Grade Offerings" section, Ambient was deleted.	iii
	Ambient was deleted from "Temperature Grade Offerings".	iii
	Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".	iv
	The "PLL Macro" section was updated to include power-up information.	2-15
	Table 2-13 • ProASIC3E CCC/PLL Specification was updated.	2-30
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21
	The "RESET" section was updated with read and write information.	2-25
	The "RESET" section was updated with read and write information.	2-25
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	2-34
	Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64
	Notes 3, 4, and 5 were added to Table 2-17 \cdot Comparison Table for 5 V–Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.	2-40
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50
	The "VPUMP Programming Supply Voltage" section was updated.	2-50
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51
	VJTAG was deleted from the "TCK Test Clock" section.	2-51
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os).	3-2
	In EQ 3-2, 150 was changed to 110 and the result changed to 5.88.	3-5

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3E Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at *Microsemi SoC Reliability Report*. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.