

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	620
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000-fgg896i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3E Device Family Overview

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3E FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based ProASIC3E devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based ProASIC3E devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3E device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3E devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3E flash-based FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3E FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power

Flash-based ProASIC3E devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3E devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

ProASIC3E devices also have low dynamic power consumption to further maximize power savings.

Advanced Flash Technology

The ProASIC3E family offers many benefits, including nonvolatility and reprogrammability through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

VCCI and VMV	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every ProASIC[®]3E device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

ProASIC3E I/Os are activated only if ALL of the following three conditions are met:

1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4).

- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V

VCC Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

ProASIC3E DC and Switching Characteristics

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLXL exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 on page 2-4 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels ($0.75 V \pm 0.25 V$), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *ProASIC3E FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

Figure 2-1 • I/O State as a Function of VCCI and VCC Voltage Levels

Thermal Characteristics

Introduction

The temperature variable in Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ 1 can be used to calculate junction temperature.

 T_J = Junction Temperature = $\Delta T + T_A$

where:

T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ja} = Junction-to-ambient of the package. θ_{ja} numbers are located in Table 2-5.

P = Power dissipation

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The absolute maximum junction temperature is 110°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{110°C - 70°C}{13.6°C/W} = 5.88 \text{ W}$$

Package Type	Pin Count	θ_{jc}	Still Air	200 ft./min.	500 ft./min.	Units
Plastic Quad Flat Package (PQFP)	208	8.0	26.1	22.5	20.8	C/W
Plastic Quad Flat Package (PQFP) with embedded heat spreader in A3PE3000	208	3.8	16.2	13.3	11.9	C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.8	26.9	22.8	21.5	C/W
	484	3.2	20.5	17.0	15.9	C/W
	676	3.2	16.4	13.0	12.0	C/W
	896	2.4	13.6	10.4	9.4	C/W

Table 2-5 • Package Thermal Resistivities

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 70^{\circ}$ C, VCC = 1.425 V)

Array Voltage		Junction Temperature (°C)											
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C							
1.425	0.87	0.92	0.95	1.00	1.02	1.04							
1.500	0.83	0.88	0.90	0.95	0.97	0.98							
1.575	0.80	0.85	0.87	0.92	0.93	0.95							

EQ 1

EQ 2

ProASIC3E DC and Switching Characteristics

Calculating Power Dissipation

Quiescent Supply Current

Table 2-7 • Quiescent Supply Current Characteristics

	A3PE600	A3PE1500	A3PE3000
Typical (25°C)	5 mA	12 mA	25 mA
Maximum (Commercial)	30 mA	70 mA	150 mA
Maximum (Industrial)	45 mA	105 mA	225 mA

Notes:

1. IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-8 and Table 2-9 on page 2-7.

2. -F speed grade devices may experience higher standby IDD of up to five times the standard IDD and higher I/O leakage.

Power per I/O Pin

Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3	_	17.39
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	-	25.51
3.3 V LVTTL/LVCMOS Wide Range ³	3.3	-	16.34
3.3 V LVTTL/LVCMOS Wide Range – Schmitt trigger ³	3.3	-	24.49
2.5 V LVCMOS	2.5	-	5.76
2.5 V LVCMOS – Schmitt trigger	2.5	-	7.16
1.8 V LVCMOS	1.8	-	2.72
1.8 V LVCMOS – Schmitt trigger	1.8	-	2.80
1.5 V LVCMOS (JESD8-11)	1.5	-	2.08
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	-	2.00
3.3 V PCI	3.3	-	18.82
3.3 V PCI – Schmitt trigger	3.3	-	20.12
3.3 V PCI-X	3.3	-	18.82
3.3 V PCI-X – Schmitt trigger	3.3	-	20.12
Voltage-Referenced			
3.3 V GTL	3.3	2.90	8.23
2.5 V GTL	2.5	2.13	4.78
3.3 V GTL+	3.3	2.81	4.14
2.5 V GTL+	2.5	2.57	3.71

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

	Comm	ercial ¹	Indus	trial ²	
	IIL ³	IIH ⁴	IIL ³	IIH ⁴	
DC I/O Standards	μA	μA	μA	μA	
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15	
3.3 V LVCMOS Wide Range	10	10	15	15	
2.5 V LVCMOS	10	10	15	15	
1.8 V LVCMOS	10	10	15	15	
1.5 V LVCMOS	10	10	15	15	
3.3 V PCI	10	10	15	15	
3.3 V PCI-X	10	10	15	15	
3.3 V GTL	10	10	15	15	
2.5 V GTL	10	10	15	15	
3.3 V GTL+	10	10	15	15	
2.5 V GTL+	10	10	15	15	
HSTL (I)	10	10	15	15	
HSTL (II)	10	10	15	15	
SSTL2 (I)	10	10	15	15	
SSTL2 (II)	10	10	15	15	
SSTL3 (I)	10	10	15	15	
SSTL3 (II)	10	10	15	15	

Table 2-14	Summary of Maximum and Minimum DC Inp	out Levels
	Applicable to Commercial and Industrial Co	nditions

Notes:

1. Commercial range (0°C < T_A < 70°C) 2. Industrial range (-40°C < T_A < 85°C)

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

Table 2-17 • Summary of I/O Timing Characteristics—Software Default Settings -2 Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

I/O Standard	Drive Strength (mA)	Equivalent Software Default Drive Strength Option) ¹	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{bour} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	t _{PYS} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)
3.3 V LVTTL / 3.3 V LVCMOS	12	12	High	35	-	0.49	2.74	0.03	0.90	1.17	0.32	2.79	2.14	2.45	2.70	4.46	3.81
3.3 V LVCMOS Wide Range ²	100 µA	12	High	35	-	0.49	4.24	0.03	1.36	1.78	0.32	4.24	3.25	3.78	4.17	6.77	5.79
2.5 V LVCMOS	12	12	High	35	_	0.49	2.80	0.03	1.13	1.24	0.32	2.85	2.61	2.51	2.61	4.52	4.28
1.8 V LVCMOS	12	12	High	35	_	0.49	2.83	0.03	1.08	1.42	0.32	2.89	2.31	2.79	3.16	4.56	3.98
1.5 V LVCMOS	12	12	High	35	_	0.49	3.30	0.03	1.27	1.60	0.32	3.36	2.70	2.96	3.27	5.03	4.37
3.3 V PCI	Per PCI spec	-	High	10	25 ³	0.49	2.09	0.03	0.78	1.17	0.32	2.13	1.49	2.45	2.70	3.80	3.16
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ³	0.49	2.09	0.03	0.78	1.17	0.32	2.13	1.49	2.45	2.70	3.80	3.16
3.3 V GTL	20 ⁴	-	High	10	25	0.45	1.55	0.03	2.19	-	0.32	1.52	1.55	-	-	3.19	3.22
2.5 V GTL	20 ⁴	-	High	10	25	0.45	1.59	0.03	1.83	-	0.32	1.61	1.59	-	-	3.28	3.26
3.3 V GTL+	35	-	High	10	25	0.45	1.53	0.03	1.19	-	0.32	1.56	1.53	-	-	3.23	3.20
2.5 V GTL+	33	-	High	10	25	0.45	1.65	0.03	1.13	-	0.32	1.68	1.57	-	-	3.35	3.24
HSTL (I)	8	-	High	20	50	0.49	2.37	0.03	1.59	-	0.32	2.42	2.35	-	-	4.09	4.02
HSTL (II)	15 ⁴	-	High	20	25	0.49	2.26	0.03	1.59	-	0.32	2.30	2.03	-	-	3.97	3.70
SSTL2 (I)	15	-	High	30	50	0.49	1.59	0.03	1.00	-	0.32	1.62	1.38	-	-	3.29	3.05
SSTL2 (II)	18	-	High	30	25	0.49	1.62	0.03	1.00	-	0.32	1.65	1.32	-	-	3.32	2.99
SSTL3 (I)	14	_	High	30	50	0.49	1.72	0.03	0.93	-	0.32	1.75	1.37	-	-	3.42	3.04
SSTL3 (II)	21	-	High	30	25	0.49	1.54	0.03	0.93	-	0.32	1.57	1.25	-	-	3.24	2.92
LVDS/B-LVDS/ M-LVDS	24	-	High	-	-	0.49	1.40	0.03	1.36	-	_	-	_	_	_	—	_
LVPECL	24	_	High	_	_	0.49	1.36	0.03	1.22	-	-	-	-	-	-	—	-

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3V wide range as specified in the JESD8b specification.

3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-38 for connectivity. This resistor is not required during normal operation.

4. Output drive strength is below JEDEC specification.

5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5.

1.8 V LVCMOS

Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	16	16	74	91	10	10

Table 2-37 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-9 • AC Loading

Table 2-38 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.8	0.9	_	35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

HSTL Class II

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

HSTL Class II		VIL	IL VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max., V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
15 mA ³	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	15	15	55	66	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.

Figure 2-17 • AC Loading

Table 2-64 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-65 • HSTL Class II

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	3.02	0.04	2.12	0.43	3.08	2.71			5.32	4.95	ns
–1	0.56	2.57	0.04	1.81	0.36	2.62	2.31			4.52	4.21	ns
-2	0.49	2.26	0.03	1.59	0.32	2.30	2.03			3.97	3.70	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Microsemi

ProASIC3E DC and Switching Characteristics

Table 2-85 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
tosud	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
tosue	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OESUE}	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Note: *See Figure 2-26 on page 2-55 for more information.

ProASIC3E DC and Switching Characteristics

Output DDR Module

Figure 2-32 • Output DDR Timing Model

Table 2-91 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1} Data Hold Data_F		А, В
t _{DDROHD2}	Data Hold Data_R	D, B

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The ProASIC3E library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *Fusion*, *IGLOO®/e*, *and ProASIC3/E Macro Library Guide*.

Figure 2-34 • Sample of Combinatorial Cells

Figure 2-39 • Peak-to-Peak Jitter Definition

	PQ208	PQ208			
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function		
118	IO134NDB3V2	157	VMV1		
119	IO134PDB3V2	158	GNDQ		
120	IO132NDB3V2	159	GBA1/IO81PDB1V4		
121	IO132PDB3V2	160	GBA0/IO81NDB1V4		
122	GND	161	GBB1/IO80PDB1V4		
123	VCCIB3	162	GND		
124	GCC2/IO117PSB3V0	163	GBB0/IO80NDB1V4		
125	GCB2/IO116PSB3V0	164	GBC1/IO79PDB1V4		
126	NC	165	GBC0/IO79NDB1V4		
127	IO115NDB3V0	166	IO74PDB1V4		
128	GCA2/IO115PDB3V0	167	IO74NDB1V4		
129	GCA1/IO114PPB3V0	168	IO70PDB1V3		
130	GND	169	IO70NDB1V3		
131	VCCPLC	170	VCCIB1		
132	GCA0/IO114NPB3V0	171	VCC		
133	VCOMPLC	172	IO56PSB1V1		
134	GCB0/IO113NDB2V3	173	IO55PDB1V1		
135	GCB1/IO113PDB2V3	174	IO55NDB1V1		
136	GCC1/IO112PSB2V3	175	IO54PDB1V1		
137	IO110NDB2V3	176	IO54NDB1V1		
138	IO110PDB2V3	177	IO40PDB0V4		
139	IO106PSB2V3	178	GND		
140	VCCIB2	179	IO40NDB0V4		
141	GND	180	IO37PDB0V4		
142	VCC	181	IO37NDB0V4		
143	IO99NDB2V2	182	IO35PDB0V4		
144	IO99PDB2V2	183	IO35NDB0V4		
145	IO96NDB2V1	184	IO32PDB0V3		
146	IO96PDB2V1	185	IO32NDB0V3		
147	IO91NDB2V1	186	VCCIB0		
148	IO91PDB2V1	187	VCC		
149	IO88NDB2V0	188	IO28PDB0V3		
150	IO88PDB2V0	189	IO28NDB0V3		
151	GBC2/IO84PSB2V0	190	IO24PDB0V2		
152	GBA2/IO82PSB2V0	191	IO24NDB0V2		
153	GBB2/IO83PSB2V0	192	IO21PSB0V2		
154	VMV2	193	IO16PDB0V1		
155	GNDQ	194	IO16NDB0V1		
156	GND	195	GND		

PQ208				
Pin Number	A3PE3000 Function			
196	IO11PDB0V1			
197	IO11NDB0V1			
198	IO08PDB0V0			
199	IO08NDB0V0			
200	VCCIB0			
201	GAC1/IO02PDB0V0			
202	GAC0/IO02NDB0V0			
203	GAB1/IO01PDB0V0			
204	GAB0/IO01NDB0V0			
205	GAA1/IO00PDB0V0			
206	GAA0/IO00NDB0V0			
207	GNDQ			
208	VMV0			

Pin Number	A3PE600 Function	Pin Numbe
H19	IO41PDB2V0	K11
H20	VCC	K12
H21	NC	K13
H22	NC	K14
J1	IO123NDB7V0	K15
J2	IO123PDB7V0	K16
J3	NC	K17
J4	IO124PDB7V0	K18
J5	IO125PDB7V0	K19
J6	IO126PDB7V0	K20
J7	IO130NDB7V1	K21
J8	VCCIB7	K22
J9	GND	L1
J10	VCC	L2
J11	VCC	L3
J12	VCC	L4
J13	VCC	L5
J14	GND	L6
J15	VCCIB2	L7
J16	IO38NDB2V0	L8
J17	IO40NDB2V0	L9
J18	IO40PDB2V0	L10
J19	IO45PPB2V1	L11
J20	NC	L12
J21	IO48PDB2V1	L13
J22	IO46PDB2V1	L14
K1	IO121NDB7V0	L15
K2	IO121PDB7V0	L16
K3	NC	L17
K4	IO124NDB7V0	L18
K5	IO125NDB7V0	L19
K6	IO126NDB7V0	L20
K7	GFC1/IO120PPB7V0	L21
K8	VCCIB7	L22
K9	VCC	M1
K10	GND	M2

	FG484	
ber	A3PE600 Function	Pin Numb
	GND	M3
	GND	M4
	GND	M5
	VCC	M6
	VCCIB2	M7
	GCC1/IO50PPB2V1	M8
	IO44NDB2V1	M9
	IO44PDB2V1	M10
	IO49NPB2V1	M11
	IO45NPB2V1	M12
	IO48NDB2V1	M13
	IO46NDB2V1	M14
	NC	M15
	IO122PDB7V0	M16
	IO122NDB7V0	M17
	GFB0/IO119NPB7V0	M18
	GFA0/IO118NDB6V1	M19
	GFB1/IO119PPB7V0	M20
	VCOMPLF	M21
	GFC0/IO120NPB7V0	M22
	VCC	N1
	GND	N2
	GND	N3
	GND	N4
	GND	N5
	VCC	N6
	GCC0/IO50NPB2V1	N7
	GCB1/IO51PPB2V1	N8
	GCA0/IO52NPB3V0	N9
	VCOMPLC	N10
	GCB0/IO51NPB2V1	N11
	IO49PPB2V1	N12
	IO47NDB2V1	N13
	IO47PDB2V1	N14
	NC	N15
	IO114NPB6V1	N16

FG484					
Pin Number	A3PE600 Function				
M3	IO117NDB6V1				
M4	GFA2/IO117PDB6V1				
M5	GFA1/IO118PDB6V1				
M6	VCCPLF				
M7	IO116NDB6V1				
M8	GFB2/IO116PDB6V1				
M9	VCC				
M10	GND				
M11	GND				
M12	GND				
M13	GND				
M14	VCC				
M15	GCB2/IO54PPB3V0				
M16	GCA1/IO52PPB3V0				
M17	GCC2/IO55PPB3V0				
M18	VCCPLC				
M19	GCA2/IO53PDB3V0				
M20	IO53NDB3V0				
M21	IO56PDB3V0				
M22	NC				
N1	IO114PPB6V1				
N2	IO111NDB6V1				
N3	NC				
N4	GFC2/IO115PPB6V1				
N5	IO113PPB6V1				
N6	IO112PDB6V1				
N7	IO112NDB6V1				
N8	VCCIB6				
N9	VCC				
N10	GND				
N11	GND				
N12	GND				
N13	GND				
N14	VCC				
N15	VCCIB3				
N16	IO54NPB3V0				

	FG484	
Pin Number	A3PE3000 Function	Pin Numb
V15	IO155NDB4V0	¥7
V16	GDB2/IO155PDB4V0	Y8
V17	TDI	Y9
V18	GNDQ	Y10
V19	TDO	Y11
V20	GND	Y12
V21	IO146PDB3V4	Y13
V22	IO142NDB3V3	Y14
W1	IO239NDB6V0	Y15
W2	IO237PDB6V0	Y16
W3	IO230PSB5V4	Y17
W4	GND	Y18
W5	IO232NDB5V4	Y19
W6	GEB2/IO232PDB5V4	Y20
W7	IO231NDB5V4	Y21
W8	IO214NDB5V2	Y22
W9	IO214PDB5V2	
W10	IO200NDB5V0	
W11	IO192NDB4V4	
W12	IO184NDB4V3	
W13	IO184PDB4V3	
W14	IO156NDB4V0	
W15	GDC2/IO156PDB4V0	
W16	IO154NDB4V0	
W17	GDA2/IO154PDB4V0	
W18	TMS	
W19	GND	
W20	IO150NDB3V4	
W21	IO146NDB3V4	
W22	IO148PPB3V4	
Y1	VCCIB6	
Y2	IO237NDB6V0	
Y3	IO228NDB5V4	
Y4	IO224NDB5V3	
Y5	GND	
Y6	IO220NDB5V3	

FG484				
Pin Number	A3PE3000 Function			
Y7	IO220PDB5V3			
Y8	VCC			
Y9	VCC			
Y10	IO200PDB5V0			
Y11	IO192PDB4V4			
Y12	IO188NPB4V4			
Y13	IO187PSB4V4			
Y14	VCC			
Y15	VCC			
Y16	IO164NDB4V1			
Y17	IO164PDB4V1			
Y18	GND			
Y19	IO158PPB4V0			
Y20	IO150PDB3V4			
Y21	IO148NPB3V4			
Y22	VCCIB3			

FG676

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

🌜 Microsemi.

Package Pin Assignments

FG676		FG676		FG676	
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
AD5	IO162PDB5V3	AE15	IO134NDB4V2	AF25	GND
AD6	IO160NDB5V3	AE16	IO133NDB4V2	AF26	GND
AD7	IO161NDB5V3	AE17	IO127NDB4V2	B1	GND
AD8	IO154NDB5V2	AE18	IO130NDB4V2	B2	GND
AD9	IO148PDB5V1	AE19	IO126NDB4V1	B3	GND
AD10	IO151PDB5V2	AE20	IO124NDB4V1	B4	GND
AD11	IO144PDB5V1	AE21	IO120NDB4V1	B5	IO06PDB0V0
AD12	IO140PDB5V0	AE22	IO116PDB4V0	B6	IO04NDB0V0
AD13	IO143PDB5V1	AE23	GDC2/IO113PDB4V0	B7	IO07NDB0V0
AD14	IO141PDB5V0	AE24	GDA2/IO111PDB4V0	B8	IO11NDB0V1
AD15	IO134PDB4V2	AE25	GND	B9	IO10NDB0V1
AD16	IO133PDB4V2	AE26	GND	B10	IO16NDB0V2
AD17	IO127PDB4V2	AF1	GND	B11	IO20NDB0V2
AD18	IO130PDB4V2	AF2	GND	B12	IO24NDB0V3
AD19	IO126PDB4V1	AF3	GND	B13	IO23NDB0V2
AD20	IO124PDB4V1	AF4	GND	B14	IO28NDB0V3
AD21	IO120PDB4V1	AF5	IO158NPB5V2	B15	IO31NDB0V3
AD22	IO114NPB4V0	AF6	IO157NPB5V2	B16	IO32PDB1V0
AD23	TDI	AF7	IO152NPB5V2	B17	IO36PDB1V0
AD24	GNDQ	AF8	IO146NDB5V1	B18	IO37PDB1V0
AD25	GDA0/IO110NDB3V2	AF9	IO146PDB5V1	B19	IO42NPB1V1
AD26	GDA1/IO110PDB3V2	AF10	IO149NDB5V1	B20	IO41NDB1V1
AE1	GND	AF11	IO149PDB5V1	B21	IO44NDB1V1
AE2	GND	AF12	IO145NDB5V1	B22	IO49NDB1V2
AE3	GND	AF13	IO145PDB5V1	B23	IO50NDB1V2
AE4	IO164NDB5V3	AF14	IO136NDB5V0	B24	GBC0/IO55NDB1V3
AE5	IO162NDB5V3	AF15	IO136PDB5V0	B25	GND
AE6	IO158PPB5V2	AF16	IO131NDB4V2	B26	GND
AE7	IO157PPB5V2	AF17	IO131PDB4V2	C1	GND
AE8	IO152PPB5V2	AF18	IO128NDB4V2	C2	GND
AE9	IO148NDB5V1	AF19	IO128PDB4V2	C3	GND
AE10	IO151NDB5V2	AF20	IO122NDB4V1	C4	GND
AE11	IO144NDB5V1	AF21	IO122PDB4V1	C5	GAA2/IO221PDB7V3
AE12	IO140NDB5V0	AF22	IO116NDB4V0	C6	IO04PDB0V0
AE13	IO143NDB5V1	AF23	IO113NDB4V0	C7	IO07PDB0V0
AE14	IO141NDB5V0	AF24	IO111NDB4V0	C8	IO11PDB0V1

FG676				
Pin Number	A3PE1500 Function			
W25	IO96PDB3V1			
W26	IO94NDB3V0			
Y1	IO175NDB6V1			
Y2	IO175PDB6V1			
Y3	IO173NDB6V0			
Y4	IO173PDB6V0			
Y5	GEC1/IO169PPB6V0			
Y6	GNDQ			
Y7	VMV6			
Y8	VCCIB5			
Y9	IO163NDB5V3			
Y10	IO159PDB5V3			
Y11	IO153PDB5V2			
Y12	IO147PDB5V1			
Y13	IO139PDB5V0			
Y14	IO137PDB5V0			
Y15	IO125NDB4V1			
Y16	IO125PDB4V1			
Y17	IO115NDB4V0			
Y18	IO115PDB4V0			
Y19	VCC			
Y20	VPUMP			
Y21	VCOMPLD			
Y22	VCCPLD			
Y23	IO100NDB3V1			
Y24	IO100PDB3V1			
Y25	IO96NDB3V1			
Y26	IO98PDB3V1			