

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	165
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe600-2fg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Advanced Architecture

The proprietary ProASIC3E architecture provides granularity comparable to standard-cell ASICs. The ProASIC3E device consists of five distinct and programmable architectural features (Figure 1-1 on page 3):

- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory
- Extensive CCCs and PLLs
- Pro I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the ProASIC3E core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC family of third-generation architecture Flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

Figure 1-1 • ProASIC3E Device Architecture Overview

ProASIC3E Device Family Overview

Pro I/Os with Advanced I/O Standards

The ProASIC3E family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3E FPGAs support 19 different I/O standards, including single-ended, differential, and voltage-referenced. The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
- Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II)

ProASIC3E banks support M-LVDS with 20 multi-drop points.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-3 on page 1-7).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 - I/O is set to drive out logic Low

Last Known State - I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

VCCI and VMV	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every ProASIC[®]3E device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

ProASIC3E I/Os are activated only if ALL of the following three conditions are met:

1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4).

- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V

VCC Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

Thermal Characteristics

Introduction

The temperature variable in Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ 1 can be used to calculate junction temperature.

 T_J = Junction Temperature = $\Delta T + T_A$

where:

T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ja} = Junction-to-ambient of the package. θ_{ja} numbers are located in Table 2-5.

P = Power dissipation

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The absolute maximum junction temperature is 110°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{110°C - 70°C}{13.6°C/W} = 5.88 \text{ W}$$

			θ _{ja}			
Package Type	Pin Count	θ_{jc}	Still Air	200 ft./min.	500 ft./min.	Units
Plastic Quad Flat Package (PQFP)	208	8.0	26.1	22.5	20.8	C/W
Plastic Quad Flat Package (PQFP) with embedded heat spreader in A3PE3000	208	3.8	16.2	13.3	11.9	C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.8	26.9	22.8	21.5	C/W
	484	3.2	20.5	17.0	15.9	C/W
	676	3.2	16.4	13.0	12.0	C/W
	896	2.4	13.6	10.4	9.4	C/W

Table 2-5 • Package Thermal Resistivities

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 70^{\circ}$ C, VCC = 1.425 V)

Array Voltage		Junction Temperature (°C)									
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C					
1.425	0.87	0.92	0.95	1.00	1.02	1.04					
1.500	0.83	0.88	0.90	0.95	0.97	0.98					
1.575	0.80	0.85	0.87	0.92	0.93	0.95					

EQ 1

EQ 2

Figure 2-5 • Tristate Output Buffer Timing Model and Delays (example)

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

	Equivalent		VIL		VIH		VOL	VOH	IOL ³	IOH ³	
I/O Standard	Drive Strength	Software Default Drive Strength Option ¹	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI					Per PC	CI Specificatio	n				
3.3 V PCI-X					Per PCI	-X Specificati	on				
3.3 V GTL	20 mA ²	20 mA ²	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20
2.5 V GTL	20 mA ²	20 mA ²	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20
3.3 V GTL+	35 mA	35 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35
2.5 V GTL+	33 mA	33 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	33	33
HSTL (I)	8 mA	8 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	8	8
HSTL (II)	15 mA ²	15 mA ²	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	15	15
SSTL2 (I)	15 mA	15 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	15	15
SSTL2 (II)	18 mA	18 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI – 0.43	18	18
SSTL3 (I)	14 mA	14 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14
SSTL3 (II)	21 mA	21 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI - 0.9	21	21

 Table 2-13 • Summary of Maximum and Minimum DC Input and Output Levels

 Applicable to Commercial and Industrial Conditions

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. Output drive strength is below JEDEC specification.

3. Currents are measured at 85°C junction temperature.

4. Output Slew Rates can be extracted from IBIS Models, located at http://www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Output Register

Timing Characteristics

Table 2-87 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.59	0.67	0.79	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.31	0.36	0.42	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.44	0.50	0.59	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OCKMPWH}	Clock Minimum Pulse Width High for the Output Data Register	0.36	0.41	0.48	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The ProASIC3E library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *Fusion*, *IGLOO®/e*, *and ProASIC3/E Macro Library Guide*.

Figure 2-34 • Sample of Combinatorial Cells

Global Resource Characteristics

A3PE600 Clock Tree Topology

Clock delays are device-specific. Figure 2-38 is an example of a global tree used for clock routing. The global tree presented in Figure 2-38 is driven by a CCC located on the west side of the A3PE600 device. It is used to drive all D-flip-flops in the device.

Figure 2-38 • Example of Global Tree Use in an A3PE600 Device for Clock Routing

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-70. Table 2-95 on page 2-69, Table 2-96 on page 2-69, and Table 2-97 on page 2-69 present minimum and maximum global clock delays within the device. Minimum and maximum delays are measured with minimum and maximum loading.

Table 2-100 • RAM512X18

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.18	0.20	0.24	ns
t _{ENH}	REN, WEN hold time	0.06	0.07	0.08	ns
t _{DS}	Input data (WD) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (WD) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	2.16	2.46	2.89	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	0.90	1.02	1.20	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.50	0.43	0.38	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.59	0.50	0.44	ns
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to data out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

🌜 Microsemi.

Package Pin Assignments

PQ208			PQ208	PQ208		
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	
1	GND	37	IO184PDB6V2	73	IO145NDB5V1	
2	GNDQ	38	IO184NDB6V2	74	IO145PDB5V1	
3	VMV7	39	IO180PSB6V1	75	IO143NDB5V1	
4	GAB2/IO220PSB7V3	40	VCCIB6	76	IO143PDB5V1	
5	GAA2/IO221PDB7V3	41	GND	77	IO137NDB5V0	
6	IO221NDB7V3	42	IO176PDB6V1	78	IO137PDB5V0	
7	GAC2/IO219PDB7V3	43	IO176NDB6V1	79	IO135NDB5V0	
8	IO219NDB7V3	44	GEC1/IO169PDB6V0	80	IO135PDB5V0	
9	IO215PDB7V3	45	GEC0/IO169NDB6V0	81	GND	
10	IO215NDB7V3	46	GEB1/IO168PPB6V0	82	IO131NDB4V2	
11	IO212PDB7V2	47	GEA1/IO167PPB6V0	83	IO131PDB4V2	
12	IO212NDB7V2	48	GEB0/IO168NPB6V0	84	IO129NDB4V2	
13	IO208PDB7V2	49	GEA0/IO167NPB6V0	85	IO129PDB4V2	
14	IO208NDB7V2	50	VMV6	86	IO127NDB4V2	
15	IO204PSB7V1	51	GNDQ	87	IO127PDB4V2	
16	VCC	52	GND	88	VCC	
17	GND	53	VMV5	89	VCCIB4	
18	VCCIB7	54	GNDQ	90	IO121NDB4V1	
19	IO200PDB7V1	55	IO166NDB5V3	91	IO121PDB4V1	
20	IO200NDB7V1	56	GEA2/IO166PDB5V3	92	IO119NDB4V1	
21	IO196PSB7V0	57	IO165NDB5V3	93	IO119PDB4V1	
22	GFC1/IO192PSB7V0	58	GEB2/IO165PDB5V3	94	IO113NDB4V0	
23	GFB1/IO191PDB7V0	59	IO164NDB5V3	95	GDC2/IO113PDB4V0	
24	GFB0/IO191NDB7V0	60	GEC2/IO164PDB5V3	96	IO112NDB4V0	
25	VCOMPLF	61	IO163PSB5V3	97	GND	
26	GFA0/IO190NPB6V2	62	VCCIB5	98	GDB2/IO112PDB4V0	
27	VCCPLF	63	IO161PSB5V3	99	GDA2/IO111PSB4V0	
28	GFA1/IO190PPB6V2	64	IO157NDB5V2	100	GNDQ	
29	GND	65	GND	101	TCK	
30	GFA2/IO189PDB6V2	66	IO157PDB5V2	102	TDI	
31	IO189NDB6V2	67	IO153NDB5V2	103	TMS	
32	GFB2/IO188PPB6V2	68	IO153PDB5V2	104	VMV4	
33	GFC2/IO187PPB6V2	69	IO149NDB5V1	105	GND	
34	IO188NPB6V2	70	IO149PDB5V1	106	VPUMP	
35	IO187NPB6V2	71	VCC	107	GNDQ	
36	VCC	72	VCCIB5	108	TDO	

FG484

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

FG484			FG484	FG484		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
A1	GND	AA15	IO170PDB4V2	B7	IO14PDB0V1	
A2	GND	AA16	IO166NDB4V1	B8	IO18NDB0V2	
A3	VCCIB0	AA17	IO166PDB4V1	B9	IO24NDB0V2	
A4	IO10NDB0V1	AA18	IO160NDB4V0	B10	IO34PDB0V4	
A5	IO10PDB0V1	AA19	IO160PDB4V0	B11	IO40PDB0V4	
A6	IO16NDB0V1	AA20	IO158NPB4V0	B12	IO46NDB1V0	
A7	IO16PDB0V1	AA21	VCCIB3	B13	IO54NDB1V1	
A8	IO18PDB0V2	AA22	GND	B14	IO62NDB1V2	
A9	IO24PDB0V2	AB1	GND	B15	IO62PDB1V2	
A10	IO28NDB0V3	AB2	GND	B16	IO68NDB1V3	
A11	IO28PDB0V3	AB3	VCCIB5	B17	IO68PDB1V3	
A12	IO46PDB1V0	AB4	IO216NDB5V2	B18	IO72PDB1V3	
A13	IO54PDB1V1	AB5	IO216PDB5V2	B19	IO74PDB1V4	
A14	IO56NDB1V1	AB6	IO210NDB5V2	B20	IO76NPB1V4	
A15	IO56PDB1V1	AB7	IO210PDB5V2	B21	VCCIB2	
A16	IO64NDB1V2	AB8	IO208NDB5V1	B22	GND	
A17	IO64PDB1V2	AB9	IO208PDB5V1	C1	VCCIB7	
A18	IO72NDB1V3	AB10	IO197NDB5V0	C2	IO303PDB7V3	
A19	IO74NDB1V4	AB11	IO197PDB5V0	C3	IO305PDB7V3	
A20	VCCIB1	AB12	IO174NDB4V2	C4	IO06NPB0V0	
A21	GND	AB13	IO174PDB4V2	C5	GND	
A22	GND	AB14	IO172NDB4V2	C6	IO12NDB0V1	
AA1	GND	AB15	IO172PDB4V2	C7	IO12PDB0V1	
AA2	VCCIB6	AB16	IO168NDB4V1	C8	VCC	
AA3	IO228PDB5V4	AB17	IO168PDB4V1	C9	VCC	
AA4	IO224PDB5V3	AB18	IO162NDB4V1	C10	IO34NDB0V4	
AA5	IO218NDB5V3	AB19	IO162PDB4V1	C11	IO40NDB0V4	
AA6	IO218PDB5V3	AB20	VCCIB4	C12	IO48NDB1V0	
AA7	IO212NDB5V2	AB21	GND	C13	IO48PDB1V0	
AA8	IO212PDB5V2	AB22	GND	C14	VCC	
AA9	IO198PDB5V0	B1	GND	C15	VCC	
AA10	IO198NDB5V0	B2	VCCIB7	C16	IO70NDB1V3	
AA11	IO188PPB4V4	B3	IO06PPB0V0	C17	IO70PDB1V3	
AA12	IO180NDB4V3	B4	IO08NDB0V0	C18	GND	
AA13	IO180PDB4V3	B5	IO08PDB0V0	C19	IO76PPB1V4	
AA14	IO170NDB4V2	B6	IO14NDB0V1	C20	IO88NDB2V0	

Package Pin Assignments

FG484			FG484	FG484		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
C21	IO94PPB2V1	E13	IO58NDB1V2	G5	IO297PDB7V2	
C22	VCCIB2	E14	IO58PDB1V2	G6	GAC2/IO307PDB7V4	
D1	IO293PDB7V2	E15	GBC1/IO79PDB1V4	G7	VCOMPLA	
D2	IO303NDB7V3	E16	GBB0/IO80NDB1V4	G8	GNDQ	
D3	IO305NDB7V3	E17	GNDQ	G9	IO26NDB0V3	
D4	GND	E18	GBA2/IO82PDB2V0	G10	IO26PDB0V3	
D5	GAA0/IO00NDB0V0	E19	IO86NDB2V0	G11	IO36PDB0V4	
D6	GAA1/IO00PDB0V0	E20	GND	G12	IO42PDB1V0	
D7	GAB0/IO01NDB0V0	E21	IO90NDB2V1	G13	IO50PDB1V1	
D8	IO20PDB0V2	E22	IO98PDB2V2	G14	IO60NDB1V2	
D9	IO22PDB0V2	F1	IO299NPB7V3	G15	GNDQ	
D10	IO30PDB0V3	F2	IO301NDB7V3	G16	VCOMPLB	
D11	IO38NDB0V4	F3	IO301PDB7V3	G17	GBB2/IO83PDB2V0	
D12	IO52NDB1V1	F4	IO308NDB7V4	G18	IO92PDB2V1	
D13	IO52PDB1V1	F5	IO309NDB7V4	G19	IO92NDB2V1	
D14	IO66NDB1V3	F6	VMV7	G20	IO102PDB2V2	
D15	IO66PDB1V3	F7	VCCPLA	G21	IO102NDB2V2	
D16	GBB1/IO80PDB1V4	F8	GAC0/IO02NDB0V0	G22	IO105NDB2V2	
D17	GBA0/IO81NDB1V4	F9	GAC1/IO02PDB0V0	H1	IO286PSB7V1	
D18	GBA1/IO81PDB1V4	F10	IO32NDB0V3	H2	IO291NPB7V2	
D19	GND	F11	IO32PDB0V3	H3	VCC	
D20	IO88PDB2V0	F12	IO44PDB1V0	H4	IO295NDB7V2	
D21	IO90PDB2V1	F13	IO50NDB1V1	H5	IO297NDB7V2	
D22	IO94NPB2V1	F14	IO60PDB1V2	H6	IO307NDB7V4	
E1	IO293NDB7V2	F15	GBC0/IO79NDB1V4	H7	IO287PDB7V1	
E2	IO299PPB7V3	F16	VCCPLB	H8	VMV0	
E3	GND	F17	VMV2	H9	VCCIB0	
E4	GAB2/IO308PDB7V4	F18	IO82NDB2V0	H10	VCCIB0	
E5	GAA2/IO309PDB7V4	F19	IO86PDB2V0	H11	IO36NDB0V4	
E6	GNDQ	F20	IO96PDB2V1	H12	IO42NDB1V0	
E7	GAB1/IO01PDB0V0	F21	IO96NDB2V1	H13	VCCIB1	
E8	IO20NDB0V2	F22	IO98NDB2V2	H14	VCCIB1	
E9	IO22NDB0V2	G1	IO289NDB7V1	H15	VMV1	
E10	IO30NDB0V3	G2	IO289PDB7V1	H16	GBC2/IO84PDB2V0	
E11	IO38PDB0V4	G3	IO291PPB7V2	H17	IO83NDB2V0	
E12	IO44NDB1V0	G4	IO295PDB7V2	H18	IO100NDB2V2	

FG676						
Pin Number	A3PE1500 Function					
W25	IO96PDB3V1					
W26	IO94NDB3V0					
Y1	IO175NDB6V1					
Y2	IO175PDB6V1					
Y3	IO173NDB6V0					
Y4	IO173PDB6V0					
Y5	GEC1/IO169PPB6V0					
Y6	GNDQ					
Y7	VMV6					
Y8	VCCIB5					
Y9	IO163NDB5V3					
Y10	IO159PDB5V3					
Y11	IO153PDB5V2					
Y12	IO147PDB5V1					
Y13	IO139PDB5V0					
Y14	IO137PDB5V0					
Y15	IO125NDB4V1					
Y16	IO125PDB4V1					
Y17	IO115NDB4V0					
Y18	IO115PDB4V0					
Y19	VCC					
Y20	VPUMP					
Y21	VCOMPLD					
Y22	VCCPLD					
Y23	IO100NDB3V1					
Y24	IO100PDB3V1					
Y25	IO96NDB3V1					
Y26	IO98PDB3V1					

FG896

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

FG896			FG896	FG896		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
A2	GND	AA9	GEB1/IO235PPB6V0	AB15	IO198PDB5V0	
A3	GND	AA10	VCC	AB16	IO192NDB4V4	
A4	IO14NPB0V1	AA11	IO226PPB5V4	AB17	IO192PDB4V4	
A5	GND	AA12	VCCIB5	AB18	IO178NDB4V3	
A6	IO07NPB0V0	AA13	VCCIB5	AB19	IO178PDB4V3	
A7	GND	AA14	VCCIB5	AB20	IO174NDB4V2	
A8	IO09NDB0V1	AA15	VCCIB5	AB21	IO162NPB4V1	
A9	IO17NDB0V2	AA16	VCCIB4	AB22	VCC	
A10	IO17PDB0V2	AA17	VCCIB4	AB23	VCCPLD	
A11	IO21NDB0V2	AA18	VCCIB4	AB24	VCCIB3	
A12	IO21PDB0V2	AA19	VCCIB4	AB25	IO150PDB3V4	
A13	IO33NDB0V4	AA20	IO174PDB4V2	AB26	IO148PDB3V4	
A14	IO33PDB0V4	AA21	VCC	AB27	IO147NDB3V4	
A15	IO35NDB0V4	AA22	IO142NPB3V3	AB28	IO145PDB3V3	
A16	IO35PDB0V4	AA23	IO144NDB3V3	AB29	IO143PDB3V3	
A17	IO41NDB1V0	AA24	IO144PDB3V3	AB30	IO137PDB3V2	
A18	IO43NDB1V0	AA25	IO146NDB3V4	AC1	IO254PDB6V2	
A19	IO43PDB1V0	AA26	IO146PDB3V4	AC2	IO254NDB6V2	
A20	IO45NDB1V0	AA27	IO147PDB3V4	AC3	IO240PDB6V0	
A21	IO45PDB1V0	AA28	IO139NDB3V3	AC4	GEC1/IO236PDB6V0	
A22	IO57NDB1V2	AA29	IO139PDB3V3	AC5	IO237PDB6V0	
A23	IO57PDB1V2	AA30	IO133NDB3V2	AC6	IO237NDB6V0	
A24	GND	AB1	IO256NDB6V2	AC7	VCOMPLE	
A25	IO69PPB1V3	AB2	IO244PDB6V1	AC8	GND	
A26	GND	AB3	IO244NDB6V1	AC9	IO226NPB5V4	
A27	GBC1/IO79PPB1V4	AB4	IO241PDB6V0	AC10	IO222NDB5V3	
A28	GND	AB5	IO241NDB6V0	AC11	IO216NPB5V2	
A29	GND	AB6	IO243NPB6V1	AC12	IO210NPB5V2	
AA1	IO256PDB6V2	AB7	VCCIB6	AC13	IO204NDB5V1	
AA2	IO248PDB6V1	AB8	VCCPLE	AC14	IO204PDB5V1	
AA3	IO248NDB6V1	AB9	VCC	AC15	IO194NDB5V0	
AA4	IO246NDB6V1	AB10	IO222PDB5V3	AC16	IO188NDB4V4	
AA5	GEA1/IO234PDB6V0	AB11	IO218PPB5V3	AC17	IO188PDB4V4	
AA6	GEA0/IO234NDB6V0	AB12	IO206NDB5V1	AC18	IO182PPB4V3	
AA7	IO243PPB6V1	AB13	IO206PDB5V1	AC19	IO170NPB4V2	
AA8	IO245NDB6V1	AB14	IO198NDB5V0	AC20	IO164NDB4V1	

FG896		FG896		FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
E17	IO49PDB1V1	F23	IO72PDB1V3	G29	IO100PPB2V2
E18	IO50PDB1V1	F24	GNDQ	G30	GND
E19	IO58PDB1V2	F25	GND	H1	IO294PDB7V2
E20	IO60NDB1V2	F26	VMV2	H2	IO294NDB7V2
E21	IO77PDB1V4	F27	IO86PDB2V0	H3	IO300NDB7V3
E22	IO68NDB1V3	F28	IO92PDB2V1	H4	IO300PDB7V3
E23	IO68PDB1V3	F29	VCC	H5	IO295PDB7V2
E24	VCCIB1	F30	IO100NPB2V2	H6	IO299PDB7V3
E25	IO74PDB1V4	G1	GND	H7	VCOMPLA
E26	VCC	G2	IO296NPB7V2	H8	GND
E27	GBB1/IO80PPB1V4	G3	IO306NDB7V4	H9	IO08NDB0V0
E28	VCCIB2	G4	IO297NDB7V2	H10	IO08PDB0V0
E29	IO82NPB2V0	G5	VCCIB7	H11	IO18PDB0V2
E30	GND	G6	GNDQ	H12	IO26NPB0V3
F1	IO296PPB7V2	G7	VCC	H13	IO28NDB0V3
F2	VCC	G8	VMV0	H14	IO28PDB0V3
F3	IO306PDB7V4	G9	VCCIB0	H15	IO38PPB0V4
F4	IO297PDB7V2	G10	IO10NDB0V1	H16	IO42NDB1V0
F5	VMV7	G11	IO16NDB0V1	H17	IO52NDB1V1
F6	GND	G12	IO22PDB0V2	H18	IO52PDB1V1
F7	GNDQ	G13	IO26PPB0V3	H19	IO62NDB1V2
F8	IO12NDB0V1	G14	IO38NPB0V4	H20	IO62PDB1V2
F9	IO12PDB0V1	G15	IO36NDB0V4	H21	IO70NDB1V3
F10	IO10PDB0V1	G16	IO46NDB1V0	H22	IO70PDB1V3
F11	IO16PDB0V1	G17	IO46PDB1V0	H23	GND
F12	IO22NDB0V2	G18	IO56NDB1V1	H24	VCOMPLB
F13	IO30NDB0V3	G19	IO56PDB1V1	H25	GBC2/IO84PDB2V0
F14	IO30PDB0V3	G20	IO66NDB1V3	H26	IO84NDB2V0
F15	IO36PDB0V4	G21	IO66PDB1V3	H27	IO96PDB2V1
F16	IO48NDB1V0	G22	VCCIB1	H28	IO96NDB2V1
F17	IO48PDB1V0	G23	VMV1	H29	IO89PDB2V0
F18	IO50NDB1V1	G24	VCC	H30	IO89NDB2V0
F19	IO58NDB1V2	G25	GNDQ	J1	IO290NDB7V2
F20	IO60PDB1V2	G26	VCCIB2	J2	IO290PDB7V2
F21	IO77NDB1V4	G27	IO86NDB2V0	J3	IO302NDB7V3
F22	IO72NDB1V3	G28	IO92NDB2V1	J4	IO302PDB7V3

Datasheet Information

Revision	Changes	Page
Revision 10 (continued)	"TBD" for 3.3 V LVCMOS Wide Range in Table 2-19 • I/O Output Buffer Maximum Resistances ¹ and Table 2-21 • I/O Short Currents IOSH/IOSL was replaced by "Same as regular 3.3 V LVCMOS" (SAR 33853).	2-20, 2-27
	3.3 V LVCMOS Wide Range information was separated from regular 3.3 V LVCMOS and placed into its own new section, "3.3 V LVCMOS Wide Range". Values of IOSH and IOSL were added in Table 2-29 • Minimum and Maximum DC Input and Output Levels (SAR 33853).	
	The formulas in the table notes for Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 34755).	2-21
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34889).	2-24
	The titles and subtitles for Table 2-31 • 3.3 V LVCMOS Wide Range High Slew and Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew were corrected (SAR 37227).	2-28, 2-29
	The following notes were removed from Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels (SAR 34812): ±5%	2-50
	Differential input voltage = ±350 mV	
	Minimum pulse width High and Low values were added to the tables in the "Global Tree Timing Characteristics" section. The maximum frequency for global clock parameter was removed from these tables because a frequency on the global is only an indication of what the global network can do. There are other limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to determine the design frequency (SAR 36957).	2-68
	A note was added to Table 2-98 • ProASIC3E CCC/PLL Specification indicating that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 34824).	2-70
	The following figures were deleted. Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 34872).	2-74, 2-75, 2-79,
	Figure 2-44 • Write Access after Write onto Same Address	2-82
	Figure 2-45 • Read Access after Write onto Same Address	
	Figure 2-46 • Write Access after Read onto Same Address	
	Characteristics" tables, Figure 2-49 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SAR 35750).	
	The "Pin Descriptions and Packaging" chapter is new (SAR 34771).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34771).	4-1
	Pin E6 for the FG256 package was corrected from VvB0 to VCCIB0 (SARs 30364, 31597, 26243).	4-9
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "ProASIC3E Device Status" table on page II indicates the status for each device in the device family.	N/A

Revision	Changes	Page
Advance v0.5 (continued)	ince v0.5 The "RESET" section was updated. tinued)	
	The "RESET" section was updated.	
	The "Introduction" of the "Introduction" section was updated.	
	PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 11 • VCCI Voltages and Compatible Standards	
	Table 2-35 • ProASIC3E I/O Features was updated.	2-54
	The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature.	
	The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information.	2-35
	Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices.	2-64
	The notes in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices were updated.	2-64
	The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new.	2-41
	A footnote was added to Table 2-37 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in ProASIC3E Devices (maximum drive strength and high slew selected).	2-55
	Table 2-48 • ProASIC3E I/O Attributes vs. I/O Standard Applications	2-81
	Table 2-55 • ProASIC3 I/O Standards—SLEW and Output Drive (OUT_DRIVE) Settings	2-85
	The "x" was updated in the "Pin Descriptions" section.	2-50
	The "VCC Core Supply Voltage" pin description was updated.	2-50
	The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected.	2-50
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24
	The CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} was updated in Table 2-13 • ProASIC3E CCC/PLL Specification.	2-30
	EXTFB was removed from Figure 2-27 • CCC/PLL Macro.	2-28
	The LVPECL specification in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64
	Table 2-15 • Levels of Hot-Swap Support was updated.	2-34
	The "Cold-Sparing Support" section was updated.	2-34
	"Electrostatic Discharge (ESD) Protection" section was updated.	2-35
	The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.	2-50
	The "VJTAG JTAG Supply Voltage" pin description was updated.	2-50
	The "VPUMP Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground.	2-50