

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	270
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe600-2fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Microsemi.

ProASIC3E Flash Family FPGAs

I/Os Per Package¹

ProASIC3E Devices	A3P	E600	A3PE	1500 ³	A3PE3000 ³		
Cortex-M1 Devices ²			M1A3F	PE1500	M1A3F	PE3000	
			I/O T	ypes			
Package	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs	
PQ208	147	65	147	65	147	65	
FG256	165	79	-	_	-	-	
FG324	-	-	-	-	221	110	
FG484	270	135	280	139	341	168	
FG676	_	_	444	222	_	_	
FG896	-	-	-	-	620	310	

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3E FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.

- 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 3. For A3PE1500 and A3PE3000 devices, the usage of certain I/O standards is limited as follows:
 - SSTL3(I) and (II): up to 40 I/Os per north or south bank
 - LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
 - SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
- 4. FG256 and FG484 are footprint-compatible packages.
- 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os).
- 6. "G" indicates RoHS-compliant packages. Refer to the "ProASIC3E Ordering Information" on page III for the location of the "G" in the part number.

Package	PQ208	FG256	FG324	FG484	FG676	FG896
Length × Width (mm\mm)	28 × 28	17 × 17	19 × 19	23 × 23	27 × 27	31 × 31
Nominal Area (mm ²)	784	289	361	529	729	961
Pitch (mm)	0.5	1.0	1.0	1.0	1.0	1.0
Height (mm)	3.40	1.60	1.63	2.23	2.23	2.23

Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions

ProASIC3E Device Status

ProASIC3E Devices	Status	M1 ProASIC3E Devices	Status
A3PE600	Production		
A3PE1500	Production	M1A3PE1500	Production
A3PE3000	Production	M1A3PE3000	Production

1 – ProASIC3E Device Family Overview

General Description

ProASIC3E, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3E devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3E is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3E devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on six integrated phase-locked loops (PLLs). ProASIC3E devices have up to three million system gates, supported with up to 504 kbits of true dual-port SRAM and up to 620 user I/Os.

Several ProASIC3E devices support the Cortex-M1 soft IP cores, and the ARM-Enabled devices have Microsemi ordering numbers that begin with M1A3PE.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3E devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3E family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3E family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3E devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3E devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3E devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in ProASIC3E devices can be encrypted prior to loading, using the industryleading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3E devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3E devices with AES-based security provide a high level of protection for secure, remote field updates over public networks such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3E family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3E family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3E device provides the best available security for programmable logic designs.

ProASIC3E DC and Switching Characteristics

Calculating Power Dissipation

Quiescent Supply Current

Table 2-7 • Quiescent Supply Current Characteristics

	A3PE600	A3PE1500	A3PE3000
Typical (25°C)	5 mA	12 mA	25 mA
Maximum (Commercial)	30 mA	70 mA	150 mA
Maximum (Industrial)	45 mA	105 mA	225 mA

Notes:

1. IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-8 and Table 2-9 on page 2-7.

2. -F speed grade devices may experience higher standby IDD of up to five times the standard IDD and higher I/O leakage.

Power per I/O Pin

Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3	_	17.39
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	-	25.51
3.3 V LVTTL/LVCMOS Wide Range ³	3.3	-	16.34
3.3 V LVTTL/LVCMOS Wide Range – Schmitt trigger ³	3.3	-	24.49
2.5 V LVCMOS	2.5	-	5.76
2.5 V LVCMOS – Schmitt trigger	2.5	-	7.16
1.8 V LVCMOS	1.8	-	2.72
1.8 V LVCMOS – Schmitt trigger	1.8	-	2.80
1.5 V LVCMOS (JESD8-11)	1.5	-	2.08
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	-	2.00
3.3 V PCI	3.3	-	18.82
3.3 V PCI – Schmitt trigger	3.3	-	20.12
3.3 V PCI-X	3.3	-	18.82
3.3 V PCI-X – Schmitt trigger	3.3	-	20.12
Voltage-Referenced			
3.3 V GTL	3.3	2.90	8.23
2.5 V GTL	2.5	2.13	4.78
3.3 V GTL+	3.3	2.81	4.14
2.5 V GTL+	2.5	2.57	3.71

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Table 2-11 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 2-12 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β ₃	RAM enable rate for write operations	12.5%

Figure 2-5 • Tristate Output Buffer Timing Model and Delays (example)

1.8 V LVCMOS

Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS	VIL		VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	16	16	74	91	10	10

Table 2-37 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-9 • AC Loading

Table 2-38 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.8	0.9	_	35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Drive	Speed													
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	15.84	0.04	1.45	1.91	0.43	15.65	15.84	2.78	1.58	17.89	18.07	ns
	-1	0.56	13.47	0.04	1.23	1.62	0.36	13.31	13.47	2.37	1.35	15.22	15.37	ns
	-2	0.49	11.83	0.03	1.08	1.42	0.32	11.69	11.83	2.08	1.18	13.36	13.50	ns
4 mA	Std.	0.66	11.39	0.04	1.45	1.91	0.43	11.60	10.76	3.26	2.77	13.84	12.99	ns
	-1	0.56	9.69	0.04	1.23	1.62	0.36	9.87	9.15	2.77	2.36	11.77	11.05	ns
	-2	0.49	8.51	0.03	1.08	1.42	0.32	8.66	8.03	2.43	2.07	10.33	9.70	ns
6 mA	Std.	0.66	8.97	0.04	1.45	1.91	0.43	9.14	8.10	3.57	3.36	11.37	10.33	ns
	-1	0.56	7.63	0.04	1.23	1.62	0.36	7.77	6.89	3.04	2.86	9.67	8.79	ns
	-2	0.49	6.70	0.03	1.08	1.42	0.32	6.82	6.05	2.66	2.51	8.49	7.72	ns
8 mA	Std.	0.66	8.35	0.04	1.45	1.91	0.43	8.50	7.59	3.64	3.52	10.74	9.82	ns
	-1	0.56	7.10	0.04	1.23	1.62	0.36	7.23	6.45	3.10	3.00	9.14	8.35	ns
	-2	0.49	6.24	0.03	1.08	1.42	0.32	6.35	5.66	2.72	2.63	8.02	7.33	ns
12 mA	Std.	0.66	7.94	0.04	1.45	1.91	0.43	8.09	7.56	3.74	4.11	10.32	9.80	ns
	-1	0.56	6.75	0.04	1.23	1.62	0.36	6.88	6.43	3.18	3.49	8.78	8.33	ns
	-2	0.49	5.93	0.03	1.08	1.42	0.32	6.04	5.65	2.79	3.07	7.71	7.32	ns
16 mA	Std.	0.66	7.94	0.04	1.45	1.91	0.43	8.09	7.56	3.74	4.11	10.32	9.80	ns
	-1	0.56	6.75	0.04	1.23	1.62	0.36	6.88	6.43	3.18	3.49	8.78	8.33	ns
	-2	0.49	5.93	0.03	1.08	1.42	0.32	6.04	5.65	2.79	3.07	7.71	7.32	ns

Table 2-40 • 1.8 V LVCMOS Low SlewCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by the Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-22. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, ProASIC3E also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

Figure 2-22 • LVDS Circuit Diagram and Board-Level Implementation

Microsemi

ProASIC3E DC and Switching Characteristics

Table 2-84 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OESUE}	Enable Setup Time for the Output Enable Register	К, Н
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Note: *See Figure 2-25 on page 2-53 for more information.

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-26 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

ProASIC3E DC and Switching Characteristics

Output DDR Module

Figure 2-32 • Output DDR Timing Model

Table 2-91 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	А, В
t _{DDROHD2}	Data Hold Data_R	D, B

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The ProASIC3E library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *Fusion*, *IGLOO®/e*, *and ProASIC3/E Macro Library Guide*.

Figure 2-34 • Sample of Combinatorial Cells

Figure 2-35 • Timing Model and Waveforms

Wicrosemi. ProASIC3E DC and Switching Characteristics

Figure 2-44 • RAM Write, Output as Write Data. Applicable to RAM4K9 Only.

Pin Descriptions and Packaging

VJTAG

JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User-Defined Supply Pins

VREF

I/O Voltage Reference

Reference voltage for I/O minibanks. VREF pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *ProASIC3E FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Microsemi

Package Pin Assignments

FG484		
Pin Number	A3PE1500 Function	
V15	IO112NDB4V0	
V16	GDB2/IO112PDB4V0	
V17	TDI	
V18	GNDQ	
V19	TDO	
V20	GND	
V21	NC	
V22	IO105NDB3V2	
W1	NC	
W2	NC	
W3	NC	
W4	GND	
W5	IO165NDB5V3	
W6	GEB2/IO165PDB5V3	
W7	IO164NDB5V3	
W8	IO153NDB5V2	
W9	IO153PDB5V2	
W10	IO147NDB5V1	
W11	IO133NDB4V2	
W12	IO130NDB4V2	
W13	IO130PDB4V2	
W14	IO113NDB4V0	
W15	GDC2/IO113PDB4V0	
W16	IO111NDB4V0	
W17	GDA2/IO111PDB4V0	
W18	TMS	
W19	GND	
W20	NC	
W21	NC	
W22	NC	
Y1	VCCIB6	
Y2	NC	
Y3	NC	
Y4	IO161NDB5V3	
Y5	GND	
Y6	IO163NDB5V3	

FG484		
Pin Number	A3PE1500 Function	
Y7	IO163PDB5V3	
Y8	VCC	
Y9	VCC	
Y10	IO147PDB5V1	
Y11	IO133PDB4V2	
Y12	IO131NPB4V2	
Y13	NC	
Y14	VCC	
Y15	VCC	
Y16	NC	
Y17	NC	
Y18	GND	
Y19	NC	
Y20	NC	
Y21	NC	
Y22	VCCIB3	

Package Pin Assignments

FG484		FG484		FG484		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
N17	IO132NPB3V2	R9	VCCIB5	U1	IO240PPB6V0	
N18	IO117NPB3V0	R10	VCCIB5	U2	IO238PDB6V0	
N19	IO132PPB3V2	R11	IO196NDB5V0	U3	IO238NDB6V0	
N20	GNDQ	R12	IO196PDB5V0	U4	GEB1/IO235PDB6V0	
N21	IO126NDB3V1	R13	VCCIB4	U5	GEB0/IO235NDB6V0	
N22	IO128PDB3V1	R14	VCCIB4	U6	VMV6	
P1	IO247PDB6V1	R15	VMV3	U7	VCCPLE	
P2	IO253PDB6V2	R16	VCCPLD	U8	IO233NPB5V4	
P3	IO270NPB6V4	R17	GDB1/IO152PPB3V4	U9	IO222PPB5V3	
P4	IO261NPB6V3	R18	GDC1/IO151PDB3V4	U10	IO206PDB5V1	
P5	IO249PPB6V1	R19	IO138NDB3V3	U11	IO202PDB5V1	
P6	IO259PDB6V3	R20	VCC	U12	IO194PDB5V0	
P7	IO259NDB6V3	R21	IO130NDB3V2	U13	IO176NDB4V2	
P8	VCCIB6	R22	IO134PDB3V2	U14	IO176PDB4V2	
P9	GND	T1	IO243PPB6V1	U15	VMV4	
P10	VCC	T2	IO245NDB6V1	U16	TCK	
P11	VCC	Т3	IO243NPB6V1	U17	VPUMP	
P12	VCC	T4	IO241PDB6V0	U18	TRST	
P13	VCC	T5	IO241NDB6V0	U19	GDA0/IO153NDB3V4	
P14	GND	Т6	GEC1/IO236PPB6V0	U20	IO144NDB3V3	
P15	VCCIB3	T7	VCOMPLE	U21	IO140NDB3V3	
P16	GDB0/IO152NPB3V4	Т8	GNDQ	U22	IO142PDB3V3	
P17	IO136NDB3V2	Т9	GEA2/IO233PPB5V4	V1	IO239PDB6V0	
P18	IO136PDB3V2	T10	IO206NDB5V1	V2	IO240NPB6V0	
P19	IO138PDB3V3	T11	IO202NDB5V1	V3	GND	
P20	VMV3	T12	IO194NDB5V0	V4	GEA1/IO234PDB6V0	
P21	IO130PDB3V2	T13	IO186NDB4V4	V5	GEA0/IO234NDB6V0	
P22	IO128NDB3V1	T14	IO186PDB4V4	V6	GNDQ	
R1	IO247NDB6V1	T15	GNDQ	V7	GEC2/IO231PDB5V4	
R2	IO245PDB6V1	T16	VCOMPLD	V8	IO222NPB5V3	
R3	VCC	T17	VJTAG	V9	IO204NDB5V1	
R4	IO249NPB6V1	T18	GDC0/IO151NDB3V4	V10	IO204PDB5V1	
R5	IO251NDB6V2	T19	GDA1/IO153PDB3V4	V11	IO195NDB5V0	
R6	IO251PDB6V2	T20	IO144PDB3V3	V12	IO195PDB5V0	
R7	GEC0/IO236NPB6V0	T21	IO140PDB3V3	V13	IO178NDB4V3	
R8	VMV5	T22	IO134NDB3V2	V14	IO178PDB4V3	

FG676		
Pin Number	A3PE1500 Function	
W25	IO96PDB3V1	
W26	IO94NDB3V0	
Y1	IO175NDB6V1	
Y2	IO175PDB6V1	
Y3	IO173NDB6V0	
Y4	IO173PDB6V0	
Y5	GEC1/IO169PPB6V0	
Y6	GNDQ	
Y7	VMV6	
Y8	VCCIB5	
Y9	IO163NDB5V3	
Y10	IO159PDB5V3	
Y11	IO153PDB5V2	
Y12	IO147PDB5V1	
Y13	IO139PDB5V0	
Y14	IO137PDB5V0	
Y15	IO125NDB4V1	
Y16	IO125PDB4V1	
Y17	IO115NDB4V0	
Y18	IO115PDB4V0	
Y19	VCC	
Y20	VPUMP	
Y21	VCOMPLD	
Y22	VCCPLD	
Y23	IO100NDB3V1	
Y24	IO100PDB3V1	
Y25	IO96NDB3V1	
Y26	IO98PDB3V1	

Datasheet Information

Revision	Changes	Page
Revision 10 (continued)	"TBD" for 3.3 V LVCMOS Wide Range in Table 2-19 • I/O Output Buffer Maximum Resistances ¹ and Table 2-21 • I/O Short Currents IOSH/IOSL was replaced by "Same as regular 3.3 V LVCMOS" (SAR 33853).	2-20, 2-27
	3.3 V LVCMOS Wide Range information was separated from regular 3.3 V LVCMOS and placed into its own new section, "3.3 V LVCMOS Wide Range". Values of IOSH and IOSL were added in Table 2-29 • Minimum and Maximum DC Input and Output Levels (SAR 33853).	
	The formulas in the table notes for Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 34755).	2-21
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34889).	2-24
	The titles and subtitles for Table 2-31 • 3.3 V LVCMOS Wide Range High Slew and Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew were corrected (SAR 37227).	2-28, 2-29
	The following notes were removed from Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels (SAR 34812): ±5%	2-50
	Differential input voltage = ±350 mV	
	Minimum pulse width High and Low values were added to the tables in the "Global Tree Timing Characteristics" section. The maximum frequency for global clock parameter was removed from these tables because a frequency on the global is only an indication of what the global network can do. There are other limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to determine the design frequency (SAR 36957).	2-68
	A note was added to Table 2-98 • ProASIC3E CCC/PLL Specification indicating that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 34824).	2-70
	The following figures were deleted. Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 34872).	2-74, 2-75, 2-79,
	Figure 2-44 • Write Access after Write onto Same Address	2-82
	Figure 2-45 • Read Access after Write onto Same Address	
	Figure 2-46 • Write Access after Read onto Same Address	
	Characteristics" tables, Figure 2-49 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SAR 35750).	
	The "Pin Descriptions and Packaging" chapter is new (SAR 34771).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34771).	4-1
	Pin E6 for the FG256 package was corrected from VvB0 to VCCIB0 (SARs 30364, 31597, 26243).	4-9
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "ProASIC3E Device Status" table on page II indicates the status for each device in the device family.	N/A

Revision	Changes	Page
v2.1 (continued)	The words "ambient temperature" were added to the temperature range in the "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix" sections.	1-I
	The "Clock Conditioning Circuit (CCC) and PLL" section was updated.	1-I
	The caption "Main (chip)" in Figure 2-9 • Overview of Automotive ProASIC3 VersaNet Global Network was changed to "Chip (main)."	2-9
	The T _J parameter in Table 3-2 \bullet Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 4–6 were added.	3-2
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15
v2.0 (April 2007)	In the "Temperature Grade Offerings" section, Ambient was deleted.	iii
	Ambient was deleted from "Temperature Grade Offerings".	iii
	Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".	iv
	The "PLL Macro" section was updated to include power-up information.	2-15
	Table 2-13 • ProASIC3E CCC/PLL Specification was updated.	2-30
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21
	The "RESET" section was updated with read and write information.	2-25
	The "RESET" section was updated with read and write information.	2-25
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	2-34
	Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64
	Notes 3, 4, and 5 were added to Table 2-17 \cdot Comparison Table for 5 V–Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.	2-40
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50
	The "VPUMP Programming Supply Voltage" section was updated.	2-50
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51
	VJTAG was deleted from the "TCK Test Clock" section.	2-51
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os).	3-2
	In EQ 3-2, 150 was changed to 110 and the result changed to 5.88.	3-5