

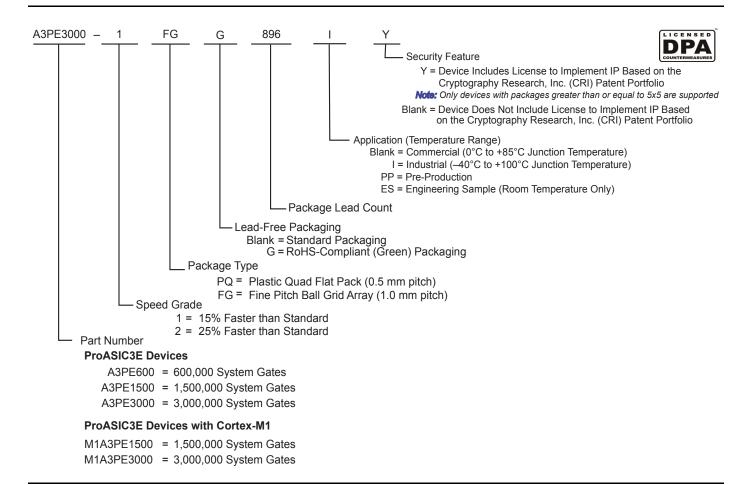
Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	270
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pe600-2fgg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3E Ordering Information

Advanced Architecture

The proprietary ProASIC3E architecture provides granularity comparable to standard-cell ASICs. The ProASIC3E device consists of five distinct and programmable architectural features (Figure 1-1 on page 3):

- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory
- Extensive CCCs and PLLs
- Pro I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the ProASIC3E core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC family of third-generation architecture Flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

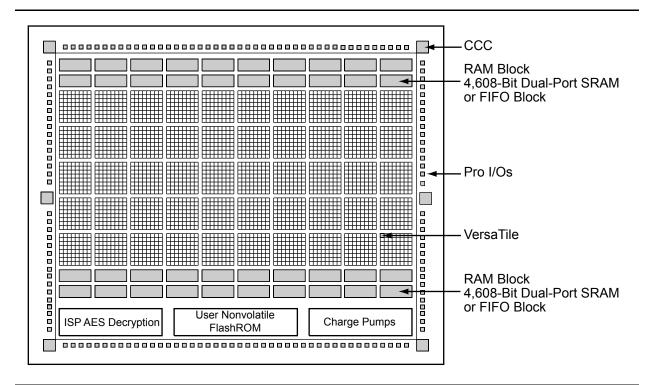


Figure 1-1 • ProASIC3E Device Architecture Overview

VCCI and VMV	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
ľ	5%	1.49 V
3 V	10%	1.1 V
) V	5%	1.19 V
3.3 V	10%	0.79 V
-	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every ProASIC[®]3E device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

ProASIC3E I/Os are activated only if ALL of the following three conditions are met:

1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4).

- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V

VCC Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
HSTL (I)	1.5	0.17	2.03
HSTL (II)	1.5	0.17	2.03
SSTL2 (I)	2.5	1.38	4.48
SSTL2 (II)	2.5	1.38	4.48
SSTL3 (I)	3.3	3.21	9.26
SSTL3 (II)	3.3	3.21	9.26
Differential		•	-
LVDS/B-LVDS/M-LVDS	2.5	2.26	1.50
LVPECL	3.3	5.71	2.17

Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings (continued)

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended	•			
3.3 V LVTTL/LVCMOS	35	3.3	-	474.70
3.3 V LVTTL/LVCMOS Wide Range ⁴	35	3.3	-	474.70
2.5 V LVCMOS	35	2.5	-	270.73
1.8 V LVCMOS	35	1.8	-	151.78
1.5 V LVCMOS (JESD8-11)	35	1.5	-	104.55
3.3 V PCI	10	3.3	-	204.61
3.3 V PCI-X	10	3.3	-	204.61
Voltage-Referenced				
3.3 V GTL	10	3.3	-	24.08
2.5 V GTL	10	2.5	-	13.52
3.3 V GTL+	10	3.3	-	24.10
2.5 V GTL+	10	2.5	-	13.54
HSTL (I)	20	1.5	7.08	26.22
HSTL (II)	20	1.5	13.88	27.22
SSTL2 (I)	30	2.5	16.69	105.56
SSTL2 (II)	30	2.5	25.91	116.60

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Detailed I/O DC Characteristics

Table 2-18 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
CINCLK	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-19 • I/O Output Buffer Maximum Resistances¹

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	4 mA	100	300
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
3.3 V LVCMOS Wide Range	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	FL / 3.3 V LVCMOS 4 mA 100 8 mA 50 12 mA 25 16 mA 17 24 mA 11 MOS Wide Range 100 μA Same as regular 3.3 V LVCMOS MOS 4 mA 100 MOS 4 mA 100 8 mA 50 12 MOS 4 mA 100 8 mA 50 12 MOS 2 mA 20 16 mA 20 24 mA MOS 2 mA 200 4 mA 100 6 mA 50 12 mA 20 16 mA 20 MOS 2 mA 200 16 mA 67 8 mA 33 33 33 33	200	
Ī	8 mA	50	100
T	12 mA	25	50
	16 mA	20	40
Ī	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	CMOS Wide Range 100 μ A Same as regular 3.3 V LVCMOS S 3 CMOS 4 mA 100 3 CMOS 8 mA 50 3 12 mA 20 3 3 CMOS 2 mA 200 3 CMOS 2 mA 33 3 12 mA 33 3 3 12 mA 33	224	
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X		25	75
3.3 V GTL	20 mA ⁴	11	_
2.5 V GTL	20 mA ⁴	14	_

Notes:

- These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.
- 2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec
- 3. R_(PULL-UP-MAX) = (VCCImax VOHspec) / IOHspec
- 4. Output drive strength is below JEDEC specification.

ProASIC3E DC and Switching Characteristics

Table 2-21 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSH (mA)*	IOSL (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
3.3 V LVCMOS Wide Range	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	4 mA	16	18
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55

Notes:

- 1. $T_J = 100^{\circ}C$
- 2. Applicable to 3.3 V LVCMOS Wide Range. IOSL/IOSH dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-22 • Duration of Short Circuit Event Before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years

Kicrosemi.

ProASIC3E DC and Switching Characteristics

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
12 mA	Std.	0.66	6.03	0.04	1.20	1.57	0.43	6.14	5.02	3.28	3.47	8.37	7.26	ns
	-1	0.56	5.13	0.04	1.02	1.33	0.36	5.22	4.27	2.79	2.95	7.12	6.17	ns
	-2	0.49	4.50	0.03	0.90	1.17	0.32	4.58	3.75	2.45	2.59	6.25	5.42	ns
16 mA	Std.	0.66	5.62	0.04	1.20	1.57	0.43	5.72	4.72	3.32	3.58	7.96	6.96	ns
	-1	0.56	4.78	0.04	1.02	1.33	0.36	4.87	4.02	2.83	3.04	6.77	5.92	ns
	-2	0.49	4.20	0.03	0.90	1.17	0.32	4.27	3.53	2.48	2.67	5.94	5.20	ns
24 mA	Std.	0.66	5.24	0.04	1.20	1.57	0.43	5.34	4.69	3.39	3.96	7.58	6.93	ns
	-1	0.56	4.46	0.04	1.02	1.33	0.36	4.54	3.99	2.88	3.37	6.44	5.89	ns
	-2	0.49	3.92	0.03	0.90	1.17	0.32	3.99	3.50	2.53	2.96	5.66	5.17	ns

Table 2-28 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

1.8 V LVCMOS

Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μ Α ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	16	16	74	91	10	10

Table 2-37 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-9 • AC Loading

Table 2-38 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.8	0.9	_	35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-99 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	1.79	2.03	2.39	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET Low to data out Low on DO (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

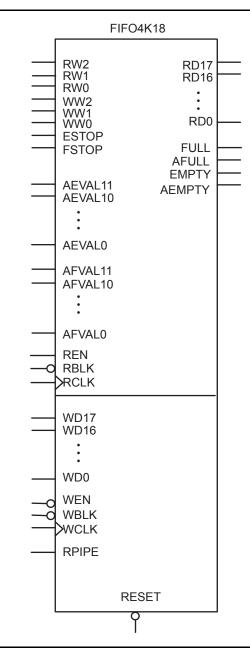
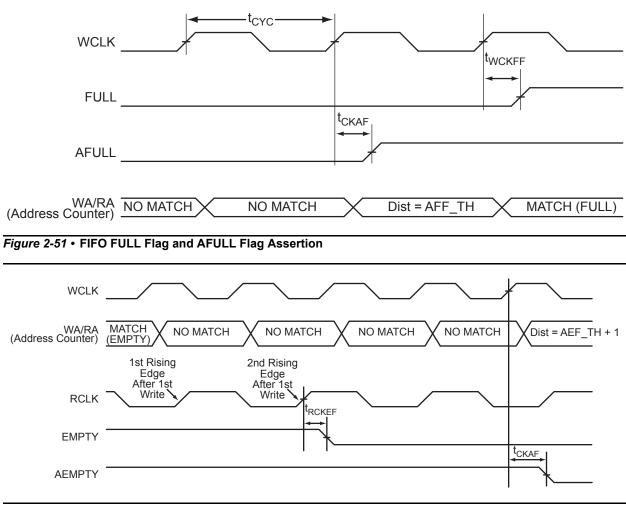
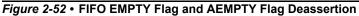
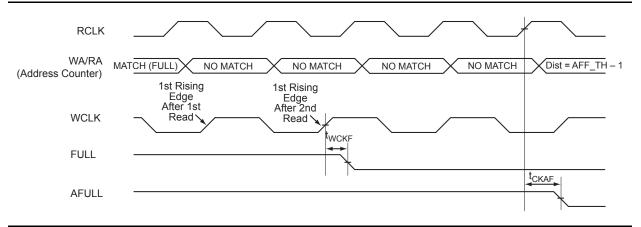
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

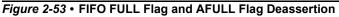
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

FIFO


Figure 2-46 • FIFO Model

Refer to the I/O Structure section of the *ProASIC3E FPGA Fabric User's Guide* for an explanation of the naming of global pins.

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 W to 1 k Ω will satisfy the requirements. Refer to Table 3-1 for more information.

VJTAG	Tie-Off Resistance
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 k Ω
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 3-1 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI

TMS

Test Data Input

Test Data Output

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO

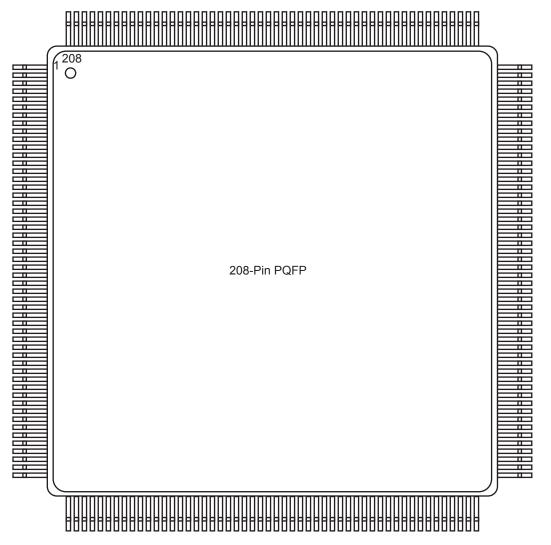
Serial output for JTAG boundary scan, ISP, and UJTAG usage.

Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-1 and must satisfy the parallel resistance value requirement. The values in Table 3-1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.


In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

4 – Package Pin Assignments

PQ208

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

	PQ208		PQ208
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
118	IO134NDB3V2	157	VMV1
119	IO134PDB3V2	158	GNDQ
120	IO132NDB3V2	159	GBA1/IO81PDB1V4
121	IO132PDB3V2	160	GBA0/IO81NDB1V4
122	GND	161	GBB1/IO80PDB1V4
123	VCCIB3	162	GND
124	GCC2/IO117PSB3V0	163	GBB0/IO80NDB1V4
125	GCB2/IO116PSB3V0	164	GBC1/IO79PDB1V4
126	NC	165	GBC0/IO79NDB1V4
127	IO115NDB3V0	166	IO74PDB1V4
128	GCA2/IO115PDB3V0	167	IO74NDB1V4
129	GCA1/IO114PPB3V0	168	IO70PDB1V3
130	GND	169	IO70NDB1V3
131	VCCPLC	170	VCCIB1
132	GCA0/IO114NPB3V0	171	VCC
133	VCOMPLC	172	IO56PSB1V1
134	GCB0/IO113NDB2V3	173	IO55PDB1V1
135	GCB1/IO113PDB2V3	174	IO55NDB1V1
136	GCC1/IO112PSB2V3	175	IO54PDB1V1
137	IO110NDB2V3	176	IO54NDB1V1
138	IO110PDB2V3	177	IO40PDB0V4
139	IO106PSB2V3	178	GND
140	VCCIB2	179	IO40NDB0V4
141	GND	180	IO37PDB0V4
142	VCC	181	IO37NDB0V4
143	IO99NDB2V2	182	IO35PDB0V4
144	IO99PDB2V2	183	IO35NDB0V4
145	IO96NDB2V1	184	IO32PDB0V3
146	IO96PDB2V1	185	IO32NDB0V3
147	IO91NDB2V1	186	VCCIB0
148	IO91PDB2V1	187	VCC
149	IO88NDB2V0	188	IO28PDB0V3
150	IO88PDB2V0	189	IO28NDB0V3
151	GBC2/IO84PSB2V0	190	IO24PDB0V2
152	GBA2/IO82PSB2V0	191	IO24NDB0V2
153	GBB2/IO83PSB2V0	192	IO21PSB0V2
154	VMV2	193	IO16PDB0V1
155	GNDQ	194	IO16NDB0V1
156	GND	195	GND
		-	

PQ208				
Pin Number	A3PE3000 Function			
196	IO11PDB0V1			
197	IO11NDB0V1			
198	IO08PDB0V0			
199	IO08NDB0V0			
200	VCCIB0			
201	GAC1/IO02PDB0V0			
202	GAC0/IO02NDB0V0			
203	GAB1/IO01PDB0V0			
204	GAB0/IO01NDB0V0			
205	GAA1/IO00PDB0V0			
206	GAA0/IO00NDB0V0			
207	GNDQ			
208	VMV0			

	FG324		FG324	FG324	
Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA
N1	IO247NDB6V1	R1	IO245NDB6V1	U1	IO241NDB6V0
N2	IO247PDB6V1	R2	VCCIB6	U2	GEA2/IO233PPB5V4
N3	IO251NPB6V2	R3	GEA1/IO234PPB6V0	U3	GEC2/IO231PPB5V4
N4	GEC0/IO236NDB6V0	R4	IO232NDB5V4	U4	VCCIB5
N5	VCOMPLE	R5	GEB2/IO232PDB5V4	U5	GNDQ
N6	IO212NDB5V2	R6	IO214NDB5V2	U6	IO208PDB5V1
N7	IO212PDB5V2	R7	IO202PDB5V1	U7	IO198PPB5V0
N8	IO192NPB4V4	R8	IO194PDB5V0	U8	VCCIB5
N9	IO174PDB4V2	R9	IO186PDB4V4	U9	IO182NPB4V3
N10	IO170PDB4V2	R10	IO178PDB4V3	U10	IO180NPB4V3
N11	GDA2/IO154PPB4V0	R11	IO168NSB4V1	U11	VCCIB4
N12	GDB2/IO155PPB4V0	R12	IO164PDB4V1	U12	IO166PPB4V1
N13	GDA1/IO153PPB3V4	R13	GDC2/IO156PDB4V0	U13	IO162PDB4V1
N14	VCOMPLD	R14	ТСК	U14	GNDQ
N15	GDB0/IO152NDB3V4	R15	VPUMP	U15	VCCIB4
N16	GDB1/IO152PDB3V4	R16	TRST	U16	TMS
N17	IO138NDB3V3	R17	VCCIB3	U17	VMV3
N18	IO138PDB3V3	R18	IO142NDB3V3	U18	IO146NDB3V4
P1	IO245PDB6V1	T1	IO241PDB6V0	V1	GND
P2	GNDQ	T2	GEA0/IO234NPB6V0	V2	IO218NDB5V3
P3	VMV6	Т3	IO233NPB5V4	V3	IO218PDB5V3
P4	GEC1/IO236PDB6V0	T4	IO231NPB5V4	V4	IO206NDB5V1
P5	VCCPLE	T5	VMV5	V5	IO206PDB5V1
P6	IO214PDB5V2	Т6	IO208NDB5V1	V6	IO198NPB5V0
P7	VCCIB5	T7	IO202NDB5V1	V7	GND
P8	GND	Т8	IO194NDB5V0	V8	IO190NDB4V4
P9	IO174NDB4V2	Т9	IO186NDB4V4	V9	IO190PDB4V4
P10	IO170NDB4V2	T10	IO178NDB4V3	V10	IO182PPB4V3
P11	GND	T11	IO166NPB4V1	V11	IO180PPB4V3
P12	VCCIB4	T12	IO164NDB4V1	V12	GND
P13	IO155NPB4V0	T13	IO156NDB4V0	V13	IO162NDB4V1
P14	VCCPLD	T14	VMV4	V14	IO160NDB4V0
P15	VJTAG	T15	TDI	V15	IO160PDB4V0
P16	GDC0/IO151NDB3V4	T16	GNDQ	V16	IO158NDB4V0
P17	GDC1/IO151PDB3V4	T17	TDO	V17	IO158PDB4V0
P18	IO142PDB3V3	T18	IO146PDB3V4	V18	GND

🌜 Microsemi.

Package Pin Assignments

	FG484		FG484	FG484	
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function
C21	NC	E13	IO24NDB1V0	G5	IO129PDB7V1
C22	VCCIB2	E14	IO24PDB1V0	G6	GAC2/IO132PDB7V1
D1	NC	E15	GBC1/IO33PDB1V1	G7	VCOMPLA
D2	NC	E16	GBB0/IO34NDB1V1	G8	GNDQ
D3	NC	E17	GNDQ	G9	IO09NDB0V1
D4	GND	E18	GBA2/IO36PDB2V0	G10	IO09PDB0V1
D5	GAA0/IO00NDB0V0	E19	IO42NDB2V0	G11	IO13PDB0V2
D6	GAA1/IO00PDB0V0	E20	GND	G12	IO21PDB1V0
D7	GAB0/IO01NDB0V0	E21	NC	G13	IO25PDB1V0
D8	IO05PDB0V0	E22	NC	G14	IO27NDB1V0
D9	IO10PDB0V1	F1	NC	G15	GNDQ
D10	IO12PDB0V2	F2	IO131NDB7V1	G16	VCOMPLB
D11	IO16NDB0V2	F3	IO131PDB7V1	G17	GBB2/IO37PDB2V0
D12	IO23NDB1V0	F4	IO133NDB7V1	G18	IO39PDB2V0
D13	IO23PDB1V0	F5	IO134NDB7V1	G19	IO39NDB2V0
D14	IO28NDB1V1	F6	VMV7	G20	IO43PDB2V0
D15	IO28PDB1V1	F7	VCCPLA	G21	IO43NDB2V0
D16	GBB1/IO34PDB1V1	F8	GAC0/IO02NDB0V0	G22	NC
D17	GBA0/IO35NDB1V1	F9	GAC1/IO02PDB0V0	H1	NC
D18	GBA1/IO35PDB1V1	F10	IO15NDB0V2	H2	NC
D19	GND	F11	IO15PDB0V2	H3	VCC
D20	NC	F12	IO20PDB1V0	H4	IO128NDB7V1
D21	NC	F13	IO25NDB1V0	H5	IO129NDB7V1
D22	NC	F14	IO27PDB1V0	H6	IO132NDB7V1
E1	NC	F15	GBC0/IO33NDB1V1	H7	IO130PDB7V1
E2	NC	F16	VCCPLB	H8	VMV0
E3	GND	F17	VMV2	H9	VCCIB0
E4	GAB2/IO133PDB7V1	F18	IO36NDB2V0	H10	VCCIB0
E5	GAA2/IO134PDB7V1	F19	IO42PDB2V0	H11	IO13NDB0V2
E6	GNDQ	F20	NC	H12	IO21NDB1V0
E7	GAB1/IO01PDB0V0	F21	NC	H13	VCCIB1
E8	IO05NDB0V0	F22	NC	H14	VCCIB1
E9	IO10NDB0V1	G1	IO127NDB7V1	H15	VMV1
E10	IO12NDB0V2	G2	IO127PDB7V1	H16	GBC2/IO38PDB2V0
E11	IO16PDB0V2	G3	NC	H17	IO37NDB2V0
E12	IO20NDB1V0	G4	IO128PDB7V1	H18	IO41NDB2V0

Microsemi

Package Pin Assignments

FG676			FG676		FG676		
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number A3PE1500 Fund			
G13	IO21NDB0V2	H23	IO69PDB2V1	K7	IO217NDB7V3		
G14	IO27PDB0V3	H24	IO76PDB2V2	K8	VCCIB7		
G15	IO35NDB1V0	H25	IO76NDB2V2	K9	VCC		
G16	IO39PDB1V0	H26	IO78NDB2V2	K10	GND		
G17	IO51NDB1V2	J1	IO197NDB7V0	K11	GND		
G18	IO53NDB1V2	J2	IO197PDB7V0	K12	GND		
G19	VCCIB1	J3	VMV7	K13	GND		
G20	GBA2/IO58PPB2V0	J4	IO215NDB7V3	K14	GND		
G21	GNDQ	J5	IO215PDB7V3	K15	GND		
G22	IO64NDB2V1	J6	IO214PDB7V3	K16	GND		
G23	IO64PDB2V1	J7	IO214NDB7V3	K17	GND		
G24	IO72PDB2V2	J8	VCCIB7	K18	VCC		
G25	IO72NDB2V2	J9	VCC	K19	VCCIB2		
G26	IO78PDB2V2	J10	VCC	K20	IO65PDB2V1		
H1	IO208NDB7V2	J11	VCC	K21	IO65NDB2V1		
H2	IO208PDB7V2	J12	VCC	K22	IO74PDB2V2		
H3	IO209NDB7V2	J13	VCC	K23	IO74NDB2V2		
H4	IO209PDB7V2	J14	VCC	K24	IO75PDB2V2		
H5	IO219NDB7V3	J15	VCC	K25	IO75NDB2V2		
H6	GAC2/IO219PDB7V3	J16	VCC	K26	IO84PDB2V3		
H7	VCCIB7	J17	VCC	L1	IO195NDB7V0		
H8	VCC	J18	VCC	L2	IO198PPB7V0		
H9	VCCIB0	J19	VCCIB2	L3	GNDQ		
H10	VCCIB0	J20	IO62PDB2V0	L4	IO201PDB7V1		
H11	VCCIB0	J21	IO62NDB2V0	L5	IO201NDB7V1		
H12	VCCIB0	J22	IO70NDB2V1	L6	IO210NDB7V2		
H13	VCCIB0	J23	IO69NDB2V1	L7	IO210PDB7V2		
H14	VCCIB1	J24	VMV2	L8	VCCIB7		
H15	VCCIB1	J25	IO80PDB2V3	L9	VCC		
H16	VCCIB1	J26	IO80NDB2V3	L10	GND		
H17	VCCIB1	K1	IO195PDB7V0	L11	GND		
H18	VCCIB1	K2	IO199NDB7V1	L12	GND		
H19	VCC	K3	IO199PDB7V1	L13	GND		
H20	VCC	K4	IO205NDB7V1	L14	GND		
H21	IO58NPB2V0	K5	IO205PDB7V1	L15	GND		
H22	IO70PDB2V1	K6	IO217PDB7V3	L16	GND		

	FG896		FG896	FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
A2	GND	AA9	GEB1/IO235PPB6V0	AB15	IO198PDB5V0
A3	GND	AA10	VCC	AB16	IO192NDB4V4
A4	IO14NPB0V1	AA11	IO226PPB5V4	AB17	IO192PDB4V4
A5	GND	AA12	VCCIB5	AB18	IO178NDB4V3
A6	IO07NPB0V0	AA13	VCCIB5	AB19	IO178PDB4V3
A7	GND	AA14	VCCIB5	AB20	IO174NDB4V2
A8	IO09NDB0V1	AA15	VCCIB5	AB21	IO162NPB4V1
A9	IO17NDB0V2	AA16	VCCIB4	AB22	VCC
A10	IO17PDB0V2	AA17	VCCIB4	AB23	VCCPLD
A11	IO21NDB0V2	AA18	VCCIB4	AB24	VCCIB3
A12	IO21PDB0V2	AA19	VCCIB4	AB25	IO150PDB3V4
A13	IO33NDB0V4	AA20	IO174PDB4V2	AB26	IO148PDB3V4
A14	IO33PDB0V4	AA21	VCC	AB27	IO147NDB3V4
A15	IO35NDB0V4	AA22	IO142NPB3V3	AB28	IO145PDB3V3
A16	IO35PDB0V4	AA23	IO144NDB3V3	AB29	IO143PDB3V3
A17	IO41NDB1V0	AA24	IO144PDB3V3	AB30	IO137PDB3V2
A18	IO43NDB1V0	AA25	IO146NDB3V4	AC1	IO254PDB6V2
A19	IO43PDB1V0	AA26	IO146PDB3V4	AC2	IO254NDB6V2
A20	IO45NDB1V0	AA27	IO147PDB3V4	AC3	IO240PDB6V0
A21	IO45PDB1V0	AA28	IO139NDB3V3	AC4	GEC1/IO236PDB6V0
A22	IO57NDB1V2	AA29	IO139PDB3V3	AC5	IO237PDB6V0
A23	IO57PDB1V2	AA30	IO133NDB3V2	AC6	IO237NDB6V0
A24	GND	AB1	IO256NDB6V2	AC7	VCOMPLE
A25	IO69PPB1V3	AB2	IO244PDB6V1	AC8	GND
A26	GND	AB3	IO244NDB6V1	AC9	IO226NPB5V4
A27	GBC1/IO79PPB1V4	AB4	IO241PDB6V0	AC10	IO222NDB5V3
A28	GND	AB5	IO241NDB6V0	AC11	IO216NPB5V2
A29	GND	AB6	IO243NPB6V1	AC12	IO210NPB5V2
AA1	IO256PDB6V2	AB7	VCCIB6	AC13	IO204NDB5V1
AA2	IO248PDB6V1	AB8	VCCPLE	AC14	IO204PDB5V1
AA3	IO248NDB6V1	AB9	VCC	AC15	IO194NDB5V0
AA4	IO246NDB6V1	AB10	IO222PDB5V3	AC16	IO188NDB4V4
AA5	GEA1/IO234PDB6V0	AB11	IO218PPB5V3	AC17	IO188PDB4V4
AA6	GEA0/IO234NDB6V0	AB12	IO206NDB5V1	AC18	IO182PPB4V3
AA7	IO243PPB6V1	AB13	IO206PDB5V1	AC19	IO170NPB4V2
AA8	IO245NDB6V1	AB14	IO198NDB5V0	AC20	IO164NDB4V1

Datasheet Information

Revision	Changes	Page
Revision 11 (August 2012)	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information." to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions ¹ (SAR 38322).	2-1 3-1 2-1
	The drive strength, IOL, and IOH value for 3.3 V GTL and 2.5 V GTL was changed from 25 mA to 20 mA in the following tables (SAR 31924): "Summary of Maximum and Minimum DC Input and Output Levels" table "Summary of I/O Timing Characteristics—Software Default Settings" table "I/O Output Buffer Maximum Resistances ¹ " table "Minimum and Maximum DC Input and Output Levels" table)	2-16 2-19 2-20 2-39
	"Minimum and Maximum DC Input and Output Levels" table Also added note stating "Output drive strength is below JEDEC specification" for Tables 2-17 and 2-19. Additionally, the IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected from 51 to 35 (for 3.3 V GTL+) and from 40 to 33 (for 2.5 V GTL+) in table Table 2-13 (SAR 39714).	2-40
	"Duration of Short Circuit Event Before Failure" table was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37934).	2-22
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34796): "It uses a 5 V-tolerant input buffer and push-pull output buffer." This change was made in revision 10 and omitted from the change table in error.	2-30
Revision 11 (continued)	Figure 2-11 was updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34889).	2-38
	In Table 2-81 VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 37222).	2-52
	Figure 2-47 and Figure 2-48 are new (SAR 34848).	2-79
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38322). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Information

Revision	Changes	Page
Revision 3 (Apr 2008) Packaging v1.2	The following pins had duplicates and the extra pins were deleted from the "PQ208" A3PE3000 table:	4-2
	36, 62, 171	
	Note: There were no pin function changes in this update.	
	The following pins had duplicates and the extra pins were deleted from the "FG324" table:	4-12
	E2, E3, E16, E17, P2, P3, T16, U17	
	Note: There were no pin function changes in this update.	
	The "FG256" pin table was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.	4-9
	The "FG484" was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.	4-22
	The following pins had duplicates and the extra pins were deleted from the "FG896" table:	4-41
	AD6, AE5, AE28, AF29, F5, F26, G6, G25	
	Note: There were no pin function changes in this update.	
Revision 2 (Mar 2008) Product Brief rev. 1	The FG324 package was added to the "ProASIC3E Product Family" table, the "I/Os Per Package1" table, and the "Temperature Grade Offerings" table for A3PE3000.	I, II, IV
Revision 1 (Feb 2008) DC and Switching Characteristics v1.1	In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature 1, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades.	2
	The "PLL Behavior at Brownout Condition" section is new.	2-4
	In the "PLL Contribution—PPLL" section, the following was deleted: FCLKIN is the input clock frequency.	2-10
	In Table 2-14 • Summary of Maximum and Minimum DC Input Levels, the note was incorrect. It previously said T_J and it was corrected and changed to T_A .	2-17
	In Table 2-98 • ProASIC3E CCC/PLL Specification, the SCLK parameter and note 1 are new.	2-70
	Table 2-103 • JTAG 1532 was populated with the parameter data, which was not in the previous version of the document.	2-83
Revision 1 (cont'd)	The "PQ208" pin table for A3PE3000 was updated.	4-2
Packaging v1.1	The "FG324" pin table for A3PE3000 is new.	4-13
	The "FG484" pin table for A3PE3000 is new.	4-17
	The "FG896" pin table for A3PE3000 is new.	4-41
Revision 0 (Jan 2008)	This document was previously in datasheet v2.1. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is 51700098-001-0.	N/A
v2.1 (July 2007)	CoreMP7 information was removed from the "Features and Benefits" section.	1-I
	The M1 device part numbers have been updated in ProASIC3E Product Family, "Packaging Tables", "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix".	1-1