

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	280
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3pe1500-1fgg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Package	A3PE600	A3PE1500	A3PE3000
Cortex-M1 Devices		M1A3PE1500	M1A3PE3000
PQ208	C, I	C, I	C, I
FG256	C, I	-	-
FG324	-	_	C, I
FG484	C, I	C, I	C, I
FG676	-	C, I	_
FG896	-	-	C, I

Note: C = Commercial temperature range: 0°C to 70°C ambient temperature<math>I = Industrial temperature range: -40°C to 85°C ambient temperature

Speed Grade and Temperature Grade Matrix

Temperature Grade	Std.	-1	-2
C ¹	\checkmark	\checkmark	\checkmark
2	\checkmark	\checkmark	\checkmark

Notes:

1. C = Commercial temperature range: 0°C to 70°C ambient temperature

2. I = Industrial temperature range: -40°C to 85°C ambient temperature

References made to ProASIC3E devices also apply to ARM-enabled ProASIC3E devices. The ARM-enabled part numbers start with M1 (Cortex-M1).

Contact your local Microsemi SoC Products Group representative for device availability: www.microsemi.com/index.php?option=com_content&id=135&lang=en&view=article.

Microsemi.

ProASIC3E DC and Switching Characteristics

Symbol	Paran	neter	Commercial	Industrial	Units
T _A	Ambient temperature		0 to +70	-40 to +85	°C
TJ	Junction temperature		0 to +85	-40 to +100	°C
VCC	1.5 V DC core supply volta	ge	1.425 to 1.575	1.425 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage	Programming Mode ²	3.15 to 3.45	3.15 to 3.45	V
		Operation ³	0 to 3.6	0 to 3.6	V
VCCPLL	Analog power supply (PLL))	1.425 to 1.575	1.425 to 1.575	V
VCCI and VMV ⁴	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	3.0 V DC supply voltage ⁵		2.7 to 3.6	2.7 to 3.6	V
	LVDS/B-LVDS/M-LVDS diff	ferential I/O	2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Table 2-2 • Recommended Operating Conditions¹

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

2. The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to $85^{\circ}C$.

3. VPUMP can be left floating during normal operation (not programming mode).

- 4. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-13 on page 2-16. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.
- 5. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools.
- 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature ¹

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
HSTL (I)	1.5	0.17	2.03
HSTL (II)	1.5	0.17	2.03
SSTL2 (I)	2.5	1.38	4.48
SSTL2 (II)	2.5	1.38	4.48
SSTL3 (I)	3.3	3.21	9.26
SSTL3 (II)	3.3	3.21	9.26
Differential			-
LVDS/B-LVDS/M-LVDS	2.5	2.26	1.50
LVPECL	3.3	5.71	2.17

Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings (continued)

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended			•	•
3.3 V LVTTL/LVCMOS	35	3.3	-	474.70
3.3 V LVTTL/LVCMOS Wide Range ⁴	35	3.3	-	474.70
2.5 V LVCMOS	35	2.5	-	270.73
1.8 V LVCMOS	35	1.8	-	151.78
1.5 V LVCMOS (JESD8-11)	35	1.5	-	104.55
3.3 V PCI	10	3.3	-	204.61
3.3 V PCI-X	10	3.3	-	204.61
Voltage-Referenced				
3.3 V GTL	10	3.3	-	24.08
2.5 V GTL	10	2.5	-	13.52
3.3 V GTL+	10	3.3	-	24.10
2.5 V GTL+	10	2.5	-	13.54
HSTL (I)	20	1.5	7.08	26.22
HSTL (II)	20	1.5	13.88	27.22
SSTL2 (I)	30	2.5	16.69	105.56
SSTL2 (II)	30	2.5	25.91	116.60

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings (continued) (continued)¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
SSTL3 (I)	30	3.3	26.02	114.87
SSTL3 (II)	30	3.3	42.21	131.76
Differential				
LVDS/B-LVDS/M-LVDS	-	2.5	7.70	89.62
LVPECL	-	3.3	19.42	168.02
Notes:	· · ·		•	

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Power Consumption of Various Internal Resources

Table 2-10 • Different Components Contributing to the Dynamic Power Consumption in ProASIC3E Devices

		Device-Specific Dynamic Contributions (µW/MHz)		
Parameter	Definition	A3PE600	A3PE1500	A3PE3000
PAC1	Clock contribution of a Global Rib	12.77	16.21	19.7
PAC2	Clock contribution of a Global Spine	1.85	3.06	4.16
PAC3	Clock contribution of a VersaTile row		0.88	
PAC4	Clock contribution of a VersaTile used as a sequential module		0.12	
PAC5	First contribution of a VersaTile used as a sequential module	0.07		
PAC6	Second contribution of a VersaTile used as a sequential module	0.29		
PAC7	Contribution of a VersaTile used as a combinatorial module	0.29		
PAC8	Average contribution of a routing net	0.70		
PAC9	Contribution of an I/O input pin (standard-dependent)	See Table 2-8 on page 2-6.		
PAC10	Contribution of an I/O output pin (standard-dependent)	See	Table 2-9 on pag	ge 2-7
PAC11	Average contribution of a RAM block during a read operation	25.00		
PAC12	Average contribution of a RAM block during a write operation	30.00		
PAC13	Static PLL contribution	2.55 mW		
PAC14	Dynamic contribution for PLL	2.60		

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power calculator or SmartPower in Libero SoC.

Table 2-22	 Duration o 	f Short Ci	cuit Event	Before	Failure	(continued)
------------	--------------------------------	------------	------------	--------	---------	-------------

Temperature	Time before Failure
85°C	2 years
100°C	6 months

Table 2-23 • Schmitt Trigger Input Hysteresis

Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV

Table 2-24 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS (Schmitt trigger disabled)	No requirement	10 ns *	20 years (110°C)
LVTTL/LVCMOS (Schmitt trigger enabled)	No requirement	No requirement, but input noise voltage cannot exceed Schmitt hysteresis.	20 years (110°C)
HSTL/SSTL/GTL	No requirement	10 ns *	10 years (100°C)
LVDS/B-LVDS/M-LVDS/ LVPECL	No requirement	10 ns *	10 years (100°C)

Note: *For clock signals and similar edge-generating signals, refer to the "ProASIC3/E SSO and Pin Placement Guidelines" chapter of the ProASIC3E FPGA Fabric User's Guide. The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

static Microsemi.

ProASIC3E DC and Switching Characteristics

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10

Table 2-41 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V< VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 35 pF
$$R = 1 k$$
Test Point
Enable Path \downarrow

$$R to VCCI for t_{LZ} / t_{ZL} / t_{ZLS}$$

$$R to GND for t_{HZ} / t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$$

$$35 pF for t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$$

Figure 2-10 • AC Loading

Table 2-42 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	_	35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-80 • LVDS

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.87	0.04	1.82	ns
-1	0.56	1.59	0.04	1.55	ns
-2	0.49	1.40	0.03	1.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in the LVDS section in Table 2-80.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-25 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-45 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-99 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	1.79	2.03	2.39	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET Low to data out Low on DO (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Microsemi

PQ208		PQ208		PQ208		
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	
1	GND	37	IO112PDB6V1	72	VCCIB5	
2	GNDQ	38	IO112NDB6V1	73	IO85NPB5V0	
3	VMV7	39	IO108PSB6V0	74	IO84NPB5V0	
4	GAB2/IO133PSB7V1	40	VCCIB6	75	IO85PPB5V0	
5	GAA2/IO134PDB7V1	41	GND	76	IO84PPB5V0	
6	IO134NDB7V1	42	IO106PDB6V0	77	IO83NPB5V0	
7	GAC2/IO132PDB7V1	43	IO106NDB6V0	78	IO82NPB5V0	
8	IO132NDB7V1	44	GEC1/IO104PDB6V0	79	IO83PPB5V0	
9	IO130PDB7V1	45	GEC0/IO104NDB6V	80	IO82PPB5V0	
10	IO130NDB7V1	10		81	GND	
11	IO127PDB7V1	46	GEB1/IO103PPB6V0	82	IO80NDB4V1	
12	IO127NDB7V1	47	GEA1/IO102PPB6V0	83	IO80PDB4V1	
13	IO126PDB7V0	48	GEB0/IO103NPB6V0	84	IO79NPB4V1	
14	IO126NDB7V0	49	GEA0/IO102NPB6V0	85	IO78NPB4V1	
15	IO124PSB7V0	50	VMV6	86	IO79PPB4V1	
16	VCC	51	GNDQ	87	IO78PPB4V1	
17	GND	52	GND	88	VCC	
18	VCCIB7	53	VMV5	89	VCCIB4	
19	IO122PPB7V0	54	GNDQ	90	IO76NDB4V1	
20	IO121PSB7V0	55	IO101NDB5V2	91	IO76PDB4V1	
21	IO122NPB7V0	56	GEA2/IO101PDB5V2	92	IO72NDB4V0	
22	GFC1/IO120PSB7V0	57	IO100NDB5V2	93	IO72PDB4V0	
23	GFB1/IO119PDB7V0	58	GEB2/IO100PDB5V2	94	IO70NDB4V0	
24	GFB0/IO119NDB7V0	59	IO99NDB5V2	95	GDC2/IO70PDB4V0	
25	VCOMPLF	60	GEC2/IO99PDB5V2	96	IO68NDB4V0	
26	GFA0/IO118NPB6V1	61	IO98PSB5V2	97	GND	
27	VCCPLF	62	VCCIB5	98	GDA2/IO68PDB4V0	
28	GFA1/IO118PPB6V1	63	IO96PSB5V2	99	GDB2/IO69PSB4V0	
29	GND	64	IO94NDB5V1	100	GNDQ	
30	GFA2/IO117PDB6V1	65	GND	101	TCK	
31	IO117NDB6V1	66	IO94PDB5V1	102	TDI	
32	GFB2/IO116PPB6V1	67	IO92NDB5V1	103	TMS	
33	GFC2/IO115PPB6V1	68	IO92PDB5V1	104	VMV4	
34	IO116NPB6V1	69	IO88NDB5V0	105	GND	
35	IO115NPB6V1	70	IO88PDB5V0	106	VPUMP	
36	VCC	71	VCC	107	GNDQ	

FG256

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

FG324

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

	FG484	FG484		
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	
A1	GND	AA15	NC	
A2	GND	AA16	IO71NDB4V0	
A3	VCCIB0	AA17	IO71PDB4V0	
A4	IO06NDB0V1	AA18	NC	
A5	IO06PDB0V1	AA19	NC	
A6	IO08NDB0V1	AA20	NC	
A7	IO08PDB0V1	AA21	VCCIB3	
A8	IO11PDB0V1	AA22	GND	
A9	IO17PDB0V2	AB1	GND	
A10	IO18NDB0V2	AB2	GND	
A11	IO18PDB0V2	AB3	VCCIB5	
A12	IO22PDB1V0	AB4	IO97NDB5V2	
A13	IO26PDB1V0	AB5	IO97PDB5V2	
A14	IO29NDB1V1	AB6	IO93NDB5V1	
A15	IO29PDB1V1	AB7	IO93PDB5V1	
A16	IO31NDB1V1	AB8	IO87NDB5V0	
A17	IO31PDB1V1	AB9	IO87PDB5V0	
A18	IO32NDB1V1	AB10	NC	
A19	NC	AB11	NC	
A20	VCCIB1	AB12	IO75NDB4V1	
A21	GND	AB13	IO75PDB4V1	
A22	GND	AB14	IO72NDB4V0	
AA1	GND	AB15	IO72PDB4V0	
AA2	VCCIB6	AB16	IO73NDB4V0	
AA3	NC	AB17	IO73PDB4V0	
AA4	IO98PDB5V2	AB18	NC	
AA5	IO96NDB5V2	AB19	NC	
AA6	IO96PDB5V2	AB20	VCCIB4	
AA7	IO86NDB5V0	AB21	GND	
AA8	IO86PDB5V0	AB22	GND	
AA9	IO85PDB5V0	B1	GND	
AA10	IO85NDB5V0	B2	VCCIB7	
AA11	IO78PPB4V1	B3	NC	
AA12	IO79NDB4V1	B4	IO03NDB0V0	
AA13	IO79PDB4V1	B5	IO03PDB0V0	
AA14	NC	B6	IO07NDB0V1	

FG484						
Pin Number A3PE600 Functio						
B7	IO07PDB0V1					
B8	IO11NDB0V1					
B9	IO17NDB0V2					
B10	IO14PDB0V2					
B11	IO19PDB0V2					
B12	IO22NDB1V0					
B13	IO26NDB1V0					
B14	NC					
B15	NC					
B16	IO30NDB1V1					
B17	IO30PDB1V1					
B18	IO32PDB1V1					
B19	NC					
B20	NC					
B21	VCCIB2					
B22	GND					
C1	VCCIB7					
C2	NC					
C3	NC					
C4	NC					
C5	GND					
C6	IO04NDB0V0					
C7	IO04PDB0V0					
C8	VCC					
C9	VCC					
C10	IO14NDB0V2					
C11	IO19NDB0V2					
C12	NC					
C13	NC					
C14	VCC					
C15	VCC					
C16	NC					
C17	NC					
C18	GND					
C19	NC					
C20	NC					

🌜 Microsemi.

	FG484		FG484		FG484
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function
C21	NC	E13	IO24NDB1V0	G5	IO129PDB7V1
C22	VCCIB2	E14	IO24PDB1V0	G6	GAC2/IO132PDB7V1
D1	NC	E15	GBC1/IO33PDB1V1	G7	VCOMPLA
D2	NC	E16	GBB0/IO34NDB1V1	G8	GNDQ
D3	NC	E17	GNDQ	G9	IO09NDB0V1
D4	GND	E18	GBA2/IO36PDB2V0	G10	IO09PDB0V1
D5	GAA0/IO00NDB0V0	E19	IO42NDB2V0	G11	IO13PDB0V2
D6	GAA1/IO00PDB0V0	E20	GND	G12	IO21PDB1V0
D7	GAB0/IO01NDB0V0	E21	NC	G13	IO25PDB1V0
D8	IO05PDB0V0	E22	NC	G14	IO27NDB1V0
D9	IO10PDB0V1	F1	NC	G15	GNDQ
D10	IO12PDB0V2	F2	IO131NDB7V1	G16	VCOMPLB
D11	IO16NDB0V2	F3	IO131PDB7V1	G17	GBB2/IO37PDB2V0
D12	IO23NDB1V0	F4	IO133NDB7V1	G18	IO39PDB2V0
D13	IO23PDB1V0	F5	IO134NDB7V1	G19	IO39NDB2V0
D14	IO28NDB1V1	F6	VMV7	G20	IO43PDB2V0
D15	IO28PDB1V1	F7	VCCPLA	G21	IO43NDB2V0
D16	GBB1/IO34PDB1V1	F8	GAC0/IO02NDB0V0	G22	NC
D17	GBA0/IO35NDB1V1	F9	GAC1/IO02PDB0V0	H1	NC
D18	GBA1/IO35PDB1V1	F10	IO15NDB0V2	H2	NC
D19	GND	F11	IO15PDB0V2	H3	VCC
D20	NC	F12	IO20PDB1V0	H4	IO128NDB7V1
D21	NC	F13	IO25NDB1V0	H5	IO129NDB7V1
D22	NC	F14	IO27PDB1V0	H6	IO132NDB7V1
E1	NC	F15	GBC0/IO33NDB1V1	H7	IO130PDB7V1
E2	NC	F16	VCCPLB	H8	VMV0
E3	GND	F17	VMV2	H9	VCCIB0
E4	GAB2/IO133PDB7V1	F18	IO36NDB2V0	H10	VCCIB0
E5	GAA2/IO134PDB7V1	F19	IO42PDB2V0	H11	IO13NDB0V2
E6	GNDQ	F20	NC	H12	IO21NDB1V0
E7	GAB1/IO01PDB0V0	F21	NC	H13	VCCIB1
E8	IO05NDB0V0	F22	NC	H14	VCCIB1
E9	IO10NDB0V1	G1	IO127NDB7V1	H15	VMV1
E10	IO12NDB0V2	G2	IO127PDB7V1	H16	GBC2/IO38PDB2V0
E11	IO16PDB0V2	G3	NC	H17	IO37NDB2V0
E12	IO20NDB1V0	G4	IO128PDB7V1	H18	IO41NDB2V0

	FG484		FG484		FG484
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
C21	IO94PPB2V1	E13	IO58NDB1V2	G5	IO297PDB7V2
C22	VCCIB2	E14	IO58PDB1V2	G6	GAC2/IO307PDB7V4
D1	IO293PDB7V2	E15	GBC1/IO79PDB1V4	G7	VCOMPLA
D2	IO303NDB7V3	E16	GBB0/IO80NDB1V4	G8	GNDQ
D3	IO305NDB7V3	E17	GNDQ	G9	IO26NDB0V3
D4	GND	E18	GBA2/IO82PDB2V0	G10	IO26PDB0V3
D5	GAA0/IO00NDB0V0	E19	IO86NDB2V0	G11	IO36PDB0V4
D6	GAA1/IO00PDB0V0	E20	GND	G12	IO42PDB1V0
D7	GAB0/IO01NDB0V0	E21	IO90NDB2V1	G13	IO50PDB1V1
D8	IO20PDB0V2	E22	IO98PDB2V2	G14	IO60NDB1V2
D9	IO22PDB0V2	F1	IO299NPB7V3	G15	GNDQ
D10	IO30PDB0V3	F2	IO301NDB7V3	G16	VCOMPLB
D11	IO38NDB0V4	F3	IO301PDB7V3	G17	GBB2/IO83PDB2V0
D12	IO52NDB1V1	F4	IO308NDB7V4	G18	IO92PDB2V1
D13	IO52PDB1V1	F5	IO309NDB7V4	G19	IO92NDB2V1
D14	IO66NDB1V3	F6	VMV7	G20	IO102PDB2V2
D15	IO66PDB1V3	F7	VCCPLA	G21	IO102NDB2V2
D16	GBB1/IO80PDB1V4	F8	GAC0/IO02NDB0V0	G22	IO105NDB2V2
D17	GBA0/IO81NDB1V4	F9	GAC1/IO02PDB0V0	H1	IO286PSB7V1
D18	GBA1/IO81PDB1V4	F10	IO32NDB0V3	H2	IO291NPB7V2
D19	GND	F11	IO32PDB0V3	H3	VCC
D20	IO88PDB2V0	F12	IO44PDB1V0	H4	IO295NDB7V2
D21	IO90PDB2V1	F13	IO50NDB1V1	H5	IO297NDB7V2
D22	IO94NPB2V1	F14	IO60PDB1V2	H6	IO307NDB7V4
E1	IO293NDB7V2	F15	GBC0/IO79NDB1V4	H7	IO287PDB7V1
E2	IO299PPB7V3	F16	VCCPLB	H8	VMV0
E3	GND	F17	VMV2	H9	VCCIB0
E4	GAB2/IO308PDB7V4	F18	IO82NDB2V0	H10	VCCIB0
E5	GAA2/IO309PDB7V4	F19	IO86PDB2V0	H11	IO36NDB0V4
E6	GNDQ	F20	IO96PDB2V1	H12	IO42NDB1V0
E7	GAB1/IO01PDB0V0	F21	IO96NDB2V1	H13	VCCIB1
E8	IO20NDB0V2	F22	IO98NDB2V2	H14	VCCIB1
E9	IO22NDB0V2	G1	IO289NDB7V1	H15	VMV1
E10	IO30NDB0V3	G2	IO289PDB7V1	H16	GBC2/IO84PDB2V0
E11	IO38PDB0V4	G3	IO291PPB7V2	H17	IO83NDB2V0
E12	IO44NDB1V0	G4	IO295PDB7V2	H18	IO100NDB2V2

	FG896		FG896	FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
AG9	IO225NPB5V3	AH15	IO195NDB5V0	AJ21	IO173PDB4V2
AG10	IO223NPB5V3	AH16	IO185NDB4V3	AJ22	IO163NDB4V1
AG11	IO221PDB5V3	AH17	IO185PDB4V3	AJ23	IO163PDB4V1
AG12	IO221NDB5V3	AH18	IO181PDB4V3	AJ24	IO167NPB4V1
AG13	IO205NPB5V1	AH19	IO177NDB4V2	AJ25	VCC
AG14	IO199NDB5V0	AH20	IO171NPB4V2	AJ26	IO156NPB4V0
AG15	IO199PDB5V0	AH21	IO165PPB4V1	AJ27	VCC
AG16	IO187NDB4V4	AH22	IO161PPB4V0	AJ28	TMS
AG17	IO187PDB4V4	AH23	IO157NDB4V0	AJ29	GND
AG18	IO181NDB4V3	AH24	IO157PDB4V0	AJ30	GND
AG19	IO171PPB4V2	AH25	IO155NDB4V0	AK2	GND
AG20	IO165NPB4V1	AH26	VCCIB4	AK3	GND
AG21	IO161NPB4V0	AH27	TDI	AK4	IO217PPB5V2
AG22	IO159NDB4V0	AH28	VCC	AK5	GND
AG23	IO159PDB4V0	AH29	VPUMP	AK6	IO215PPB5V2
AG24	IO158PPB4V0	AH30	GND	AK7	GND
AG25	GDB2/IO155PDB4V0	AJ1	GND	AK8	IO207NDB5V1
AG26	GDA2/IO154PPB4V0	AJ2	GND	AK9	IO207PDB5V1
AG27	GND	AJ3	GEA2/IO233PPB5V4	AK10	IO201NDB5V0
AG28	VJTAG	AJ4	VCC	AK11	IO201PDB5V0
AG29	VCC	AJ5	IO217NPB5V2	AK12	IO193NDB4V4
AG30	IO149NDB3V4	AJ6	VCC	AK13	IO193PDB4V4
AH1	GND	AJ7	IO215NPB5V2	AK14	IO197PDB5V0
AH2	IO233NPB5V4	AJ8	IO213NDB5V2	AK15	IO191NDB4V4
AH3	VCC	AJ9	IO213PDB5V2	AK16	IO191PDB4V4
AH4	GEB2/IO232PPB5V4	AJ10	IO209NDB5V1	AK17	IO189NDB4V4
AH5	VCCIB5	AJ11	IO209PDB5V1	AK18	IO189PDB4V4
AH6	IO219NDB5V3	AJ12	IO203NDB5V1	AK19	IO179PPB4V3
AH7	IO219PDB5V3	AJ13	IO203PDB5V1	AK20	IO175NDB4V2
AH8	IO227NDB5V4	AJ14	IO197NDB5V0	AK21	IO175PDB4V2
AH9	IO227PDB5V4	AJ15	IO195PDB5V0	AK22	IO169NDB4V1
AH10	IO225PPB5V3	AJ16	IO183NDB4V3	AK23	IO169PDB4V1
AH11	IO223PPB5V3	AJ17	IO183PDB4V3	AK24	GND
AH12	IO211NDB5V2	AJ18	IO179NPB4V3	AK25	IO167PPB4V1
AH13	IO211PDB5V2	AJ19	IO177PDB4V2	AK26	GND
AH14	IO205PPB5V1	AJ20	IO173NDB4V2	AK27	GDC2/IO156PPB4V0

	FG896		FG896	FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
J5	IO295NDB7V2	K11	IO04PPB0V0	L17	VCC
J6	IO299NDB7V3	K12	VCCIB0	L18	VCC
J7	VCCIB7	K13	VCCIB0	L19	VCC
J8	VCCPLA	K14	VCCIB0	L20	VCC
J9	VCC	K15	VCCIB0	L21	IO78NPB1V4
J10	IO04NPB0V0	K16	VCCIB1	L22	IO104NPB2V2
J11	IO18NDB0V2	K17	VCCIB1	L23	IO98NDB2V2
J12	IO20NDB0V2	K18	VCCIB1	L24	IO98PDB2V2
J13	IO20PDB0V2	K19	VCCIB1	L25	IO87PDB2V0
J14	IO32NDB0V3	K20	IO76PPB1V4	L26	IO87NDB2V0
J15	IO32PDB0V3	K21	VCC	L27	IO97PDB2V1
J16	IO42PDB1V0	K22	IO78PPB1V4	L28	IO101PDB2V2
J17	IO44NDB1V0	K23	IO88NDB2V0	L29	IO103PDB2V2
J18	IO44PDB1V0	K24	IO88PDB2V0	L30	IO119NDB3V0
J19	IO54NDB1V1	K25	IO94PDB2V1	M1	IO282NDB7V1
J20	IO54PDB1V1	K26	IO94NDB2V1	M2	IO282PDB7V1
J21	IO76NPB1V4	K27	IO85PDB2V0	M3	IO292NDB7V2
J22	VCC	K28	IO85NDB2V0	M4	IO292PDB7V2
J23	VCCPLB	K29	IO93PDB2V1	M5	IO283NDB7V1
J24	VCCIB2	K30	IO93NDB2V1	M6	IO285PDB7V1
J25	IO90PDB2V1	L1	IO286NDB7V1	M7	IO287PDB7V1
J26	IO90NDB2V1	L2	IO286PDB7V1	M8	IO289PDB7V1
J27	GBB2/IO83PDB2V0	L3	IO298NDB7V3	M9	IO289NDB7V1
J28	IO83NDB2V0	L4	IO298PDB7V3	M10	VCCIB7
J29	IO91PDB2V1	L5	IO283PDB7V1	M11	VCC
J30	IO91NDB2V1	L6	IO291NDB7V2	M12	GND
K1	IO288NDB7V1	L7	IO291PDB7V2	M13	GND
K2	IO288PDB7V1	L8	IO293PDB7V2	M14	GND
K3	IO304NDB7V3	L9	IO293NDB7V2	M15	GND
K4	IO304PDB7V3	L10	IO307NPB7V4	M16	GND
K5	GAB2/IO308PDB7V4	L11	VCC	M17	GND
K6	IO308NDB7V4	L12	VCC	M18	GND
K7	IO301PDB7V3	L13	VCC	M19	GND
K8	IO301NDB7V3	L14	VCC	M20	VCC
K9	GAC2/IO307PPB7V4	L15	VCC	M21	VCCIB2
K10	VCC	L16	VCC	M22	NC

Datasheet Information

Revision	Changes	Page
Revision 3 (Apr 2008) Packaging v1.2	The following pins had duplicates and the extra pins were deleted from the "PQ208" A3PE3000 table:	4-2
	36, 62, 171	
	Note: There were no pin function changes in this update.	
	The following pins had duplicates and the extra pins were deleted from the "FG324" table:	4-12
	E2, E3, E16, E17, P2, P3, T16, U17	
	Note: There were no pin function changes in this update.	
	The "FG256" pin table was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.	4-9
	The "FG484" was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.	4-22
	The following pins had duplicates and the extra pins were deleted from the "FG896" table:	4-41
	AD6, AE5, AE28, AF29, F5, F26, G6, G25	
	Note: There were no pin function changes in this update.	
Revision 2 (Mar 2008) Product Brief rev. 1	The FG324 package was added to the "ProASIC3E Product Family" table, the "I/Os Per Package1" table, and the "Temperature Grade Offerings" table for A3PE3000.	I, II, IV
Revision 1 (Feb 2008) DC and Switching Characteristics v1.1	In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature 1, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades.	2
	The "PLL Behavior at Brownout Condition" section is new.	2-4
	In the "PLL Contribution—PPLL" section, the following was deleted: FCLKIN is the input clock frequency.	2-10
	In Table 2-14 • Summary of Maximum and Minimum DC Input Levels, the note was incorrect. It previously said T_J and it was corrected and changed to T_A .	2-17
	In Table 2-98 • ProASIC3E CCC/PLL Specification, the SCLK parameter and note 1 are new.	2-70
	Table 2-103 • JTAG 1532 was populated with the parameter data, which was not in the previous version of the document.	2-83
Revision 1 (cont'd) Packaging v1.1	The "PQ208" pin table for A3PE3000 was updated.	4-2
	The "FG324" pin table for A3PE3000 is new.	4-13
	The "FG484" pin table for A3PE3000 is new.	4-17
	The "FG896" pin table for A3PE3000 is new.	4-41
Revision 0 (Jan 2008)	This document was previously in datasheet v2.1. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is 51700098-001-0.	N/A
v2.1 (July 2007)	CoreMP7 information was removed from the "Features and Benefits" section.	1-1
	The M1 device part numbers have been updated in ProASIC3E Product Family, "Packaging Tables", "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix".	1-1

Revision	Changes	Page
Advance v0.5 (continued)	The "RESET" section was updated.	2-25
	The "RESET" section was updated.	2-27
	The "Introduction" of the "Introduction" section was updated.	2-28
	PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 11 • VCCI Voltages and Compatible Standards	2-29
	Table 2-35 • ProASIC3E I/O Features was updated.	2-54
	The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature.	2-32
	The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information.	2-35
	Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices.	2-64
	The notes in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices were updated.	2-64
	The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new.	2-41
	A footnote was added to Table 2-37 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in ProASIC3E Devices (maximum drive strength and high slew selected).	2-55
	Table 2-48 • ProASIC3E I/O Attributes vs. I/O Standard Applications	2-81
	Table 2-55 • ProASIC3 I/O Standards—SLEW and Output Drive (OUT_DRIVE) Settings	2-85
	The "x" was updated in the "Pin Descriptions" section.	2-50
	The "VCC Core Supply Voltage" pin description was updated.	2-50
	The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected.	2-50
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24
	The CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} was updated in Table 2-13 • ProASIC3E CCC/PLL Specification.	2-30
	EXTFB was removed from Figure 2-27 • CCC/PLL Macro.	2-28
	The LVPECL specification in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64
	Table 2-15 • Levels of Hot-Swap Support was updated.	2-34
	The "Cold-Sparing Support" section was updated.	2-34
	"Electrostatic Discharge (ESD) Protection" section was updated.	2-35
	The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.	2-50
	The "VJTAG JTAG Supply Voltage" pin description was updated.	2-50
	The "VPUMP Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground.	2-50