

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E-XF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	444
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3pe1500-1fgg676

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ProASIC3E Device Family Overview

General Description

ProASIC3E, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3E devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3E is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3E devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on six integrated phase-locked loops (PLLs). ProASIC3E devices have up to three million system gates, supported with up to 504 kbits of true dual-port SRAM and up to 620 user I/Os.

Several ProASIC3E devices support the Cortex-M1 soft IP cores, and the ARM-Enabled devices have Microsemi ordering numbers that begin with M1A3PE.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3E devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3E family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3E family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3E devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3E devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3E devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in ProASIC3E devices can be encrypted prior to loading, using the industryleading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3E devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3E devices with AES-based security provide a high level of protection for secure, remote field updates over public networks such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3E family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3E family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3E device provides the best available security for programmable logic designs.

ProASIC3E Device Family Overview

Pro I/Os with Advanced I/O Standards

The ProASIC3E family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3E FPGAs support 19 different I/O standards, including single-ended, differential, and voltage-referenced. The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
- Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II)

ProASIC3E banks support M-LVDS with 20 multi-drop points.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-3 on page 1-7).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 - I/O is set to drive out logic Low

Last Known State - I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

Thermal Characteristics

Introduction

The temperature variable in Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ 1 can be used to calculate junction temperature.

 T_J = Junction Temperature = $\Delta T + T_A$

where:

T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ja} = Junction-to-ambient of the package. θ_{ja} numbers are located in Table 2-5.

P = Power dissipation

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The absolute maximum junction temperature is 110°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{110°C - 70°C}{13.6°C/W} = 5.88 \text{ W}$$

Package Type	Pin Count	θ_{jc}	Still Air	200 ft./min.	500 ft./min.	Units
Plastic Quad Flat Package (PQFP)	208	8.0	26.1	22.5	20.8	C/W
Plastic Quad Flat Package (PQFP) with embedded heat spreader in A3PE3000	208	3.8	16.2	13.3	11.9	C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.8	26.9	22.8	21.5	C/W
	484	3.2	20.5	17.0	15.9	C/W
	676	3.2	16.4	13.0	12.0	C/W
	896	2.4	13.6	10.4	9.4	C/W

Table 2-5 • Package Thermal Resistivities

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 70^{\circ}$ C, VCC = 1.425 V)

Array Voltage	Junction Temperature (°C)									
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C				
1.425	0.87	0.92	0.95	1.00	1.02	1.04				
1.500	0.83	0.88	0.90	0.95	0.97	0.98				
1.575	0.80	0.85	0.87	0.92	0.93	0.95				

EQ 1

EQ 2

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-11 on page 2-11.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-12 on page 2-11.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-12 on page 2-11. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

P_{STAT} = PDC1 + N_{INPUTS} * PDC2 + N_{OUTPUTS} * PDC3

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL} * PAC4) * F_{CLK}

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3E FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3E FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 P_{S-CELL} = N_{S-CELL} * (PAC5 + α_1 / 2 * PAC6) * F_{CLK}

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on page 2-11.

F_{CLK} is the global clock signal frequency.

ProASIC3E DC and Switching Characteristics

Table 2-21 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSH (mA)*	IOSL (mA)*	
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27	
	4 mA	25	27	
	6 mA	51	54	
	8 mA	51	54	
	12 mA	103	109	
	16 mA	132	127	
	24 mA	268	181	
3.3 V LVCMOS Wide Range	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS	
2.5 V LVCMOS	4 mA	16	18	
	8 mA	32	37	
	12 mA	65	74	
	16 mA	83	87	
	24 mA	169	124	
1.8 V LVCMOS	2 mA	2 mA 25 4 mA 25 6 mA 51 8 mA 51 12 mA 103 16 mA 132 24 mA 268 00 µA Same as regular 3.3 V LVCMOS 3.3 V LVCMOS 4 mA 16 8 mA 32 12 mA 65 16 mA 83 24 mA 169 2 mA 9 4 mA 169 2 mA 9 4 mA 17 6 mA 35 8 mA 45 12 mA 91 16 mA 35 8 mA 45 12 mA 91 16 mA 32 8 mA 45 12 mA 91 16 mA 32 8 mA 32 8 mA 66 12 mA 66	11	
	4 mA	17	22	
	6 mA	35	44	
	8 mA	45	51	
	12 mA	91	74	
	16 mA	91	74	
1.5 V LVCMOS	2 mA	13	16	
	4 mA	25	33	
	6 mA	32	39	
	8 mA	66	55	
	12 mA	66	55	

Notes:

- 1. $T_J = 100^{\circ}C$
- 2. Applicable to 3.3 V LVCMOS Wide Range. IOSL/IOSH dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-22 • Duration of Short Circuit Event Before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years

static Microsemi.

ProASIC3E DC and Switching Characteristics

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is supported as part of the 3.3 V LVTTL support.

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	н	VOL	VОН	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min., V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10

Table 2-25 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V< VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-6 • AC Loading

Table 2-26 • 3.3 V LVTTL / 3.3 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	-	35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	VIL		VIL VIH		VOL	VOH IOL I		юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max., V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	3.6	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	3.6	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	3.6	0.7	1.7	24	24	124	169	10	10

Table 2-33 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
Datapath
$$\xrightarrow{1}{1}$$
 35 pF
 $R = 1 k$
Test Point
Enable Path $\xrightarrow{1}{1}$ R to VCCI for $t_{LZ} / t_{ZL} / t_{ZLS}$
R to GND for $t_{HZ} / t_{ZH} / t_{ZHS}$
 $35 pF$ for $t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$
 $35 pF$ for $t_{HZ} / t_{ZH} / t_{ZLS}$

Figure 2-8 • AC Loading

Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	nput Low (V) Input High (V)		VREF (typ.) (V)	C _{LOAD} (pF)		
0	2.5	1.2	_	35		

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

static Microsemi.

ProASIC3E DC and Switching Characteristics

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

1.5 V LVCMOS	VIL		VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10

Table 2-41 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V< VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-10 • AC Loading

Table 2-42 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	_	35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-51 • Minimum and Maximum DC Input and Output Levels

2.5 GTL	VIL		VIL VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min., V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20	124	169	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.

Figure 2-13 • AC Loading

Table 2-52 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-53 • 2.5 V GTL

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.60	2.13	0.04	2.46	0.43	2.16	2.13			4.40	4.36	ns
-1	0.51	1.81	0.04	2.09	0.36	1.84	1.81			3.74	3.71	ns
-2	0.45	1.59	0.03	1.83	0.32	1.61	1.59			3.28	3.26	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by the Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-22. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, ProASIC3E also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

Figure 2-22 • LVDS Circuit Diagram and Board-Level Implementation

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The ProASIC3E library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *Fusion*, *IGLOO®/e*, *and ProASIC3/E Macro Library Guide*.

Figure 2-34 • Sample of Combinatorial Cells

Global Resource Characteristics

A3PE600 Clock Tree Topology

Clock delays are device-specific. Figure 2-38 is an example of a global tree used for clock routing. The global tree presented in Figure 2-38 is driven by a CCC located on the west side of the A3PE600 device. It is used to drive all D-flip-flops in the device.

Figure 2-38 • Example of Global Tree Use in an A3PE600 Device for Clock Routing

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-70. Table 2-95 on page 2-69, Table 2-96 on page 2-69, and Table 2-97 on page 2-69 present minimum and maximum global clock delays within the device. Minimum and maximum delays are measured with minimum and maximum loading.

Pin Descriptions and Packaging

VJTAG

JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User-Defined Supply Pins

VREF

I/O Voltage Reference

Reference voltage for I/O minibanks. VREF pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *ProASIC3E FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Microsemi

PQ208			PQ208	PQ208		
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	
1	GND	37	IO112PDB6V1	72	VCCIB5	
2	GNDQ	38	IO112NDB6V1	73	IO85NPB5V0	
3	VMV7	39	IO108PSB6V0	74	IO84NPB5V0	
4	GAB2/IO133PSB7V1	40	VCCIB6	75	IO85PPB5V0	
5	GAA2/IO134PDB7V1	41	GND	76	IO84PPB5V0	
6	IO134NDB7V1	42	IO106PDB6V0	77	IO83NPB5V0	
7	GAC2/IO132PDB7V1	43	IO106NDB6V0	78	IO82NPB5V0	
8	IO132NDB7V1	44	GEC1/IO104PDB6V0	79	IO83PPB5V0	
9	IO130PDB7V1	45	GEC0/IO104NDB6V	80	IO82PPB5V0	
10	IO130NDB7V1	- 10	0	81	GND	
11	IO127PDB7V1	46	GEB1/IO103PPB6V0	82	IO80NDB4V1	
12	IO127NDB7V1	47	GEA1/IO102PPB6V0	83	IO80PDB4V1	
13	IO126PDB7V0	48	GEB0/IO103NPB6V0	84	IO79NPB4V1	
14	IO126NDB7V0	49	GEA0/IO102NPB6V0	85	IO78NPB4V1	
15	IO124PSB7V0	50	VMV6	86	IO79PPB4V1	
16	VCC	51	GNDQ	87	IO78PPB4V1	
17	GND	52	GND	88	VCC	
18	VCCIB7	53	VMV5	89	VCCIB4	
19	IO122PPB7V0	54	GNDQ	90	IO76NDB4V1	
20	IO121PSB7V0	55	IO101NDB5V2	91	IO76PDB4V1	
21	IO122NPB7V0	56	GEA2/IO101PDB5V2	92	IO72NDB4V0	
22	GFC1/IO120PSB7V0	57	IO100NDB5V2	93	IO72PDB4V0	
23	GFB1/IO119PDB7V0	58	GEB2/IO100PDB5V2	94	IO70NDB4V0	
24	GFB0/IO119NDB7V0	59	IO99NDB5V2	95	GDC2/IO70PDB4V0	
25	VCOMPLF	60	GEC2/IO99PDB5V2	96	IO68NDB4V0	
26	GFA0/IO118NPB6V1	61	IO98PSB5V2	97	GND	
27	VCCPLF	62	VCCIB5	98	GDA2/IO68PDB4V0	
28	GFA1/IO118PPB6V1	63	IO96PSB5V2	99	GDB2/IO69PSB4V0	
29	GND	64	IO94NDB5V1	100	GNDQ	
30	GFA2/IO117PDB6V1	65	GND	101	ТСК	
31	IO117NDB6V1	66	IO94PDB5V1	102	TDI	
32	GFB2/IO116PPB6V1	67	IO92NDB5V1	103	TMS	
33	GFC2/IO115PPB6V1	68	IO92PDB5V1	104	VMV4	
34	IO116NPB6V1	69	IO88NDB5V0	105	GND	
35	IO115NPB6V1	70	IO88PDB5V0	106	VPUMP	
36	VCC	71	VCC	107	GNDQ	

				50070			
FG676			FG676	FG676			
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function		
C9	IO10PDB0V1	D19	IO45PDB1V1	F3	IO213NDB7V2		
C10	IO16PDB0V2	D20	IO46PPB1V1	F4	IO213PDB7V2		
C11	IO20PDB0V2	D21	IO48PPB1V2	F5	GND		
C12	IO24PDB0V3	D22	GBA0/IO57NPB1V3	F6	VCCPLA		
C13	IO23PDB0V2	D23	GNDQ	F7	GAB0/IO01NDB0V0		
C14	IO28PDB0V3	D24	GBB1/IO56PPB1V3	F8	GNDQ		
C15	IO31PDB0V3	D25	GBB2/IO59PDB2V0	F9	IO03PDB0V0		
C16	IO32NDB1V0	D26	IO59NDB2V0	F10	IO13PDB0V1		
C17	IO36NDB1V0	E1	IO212PDB7V2	F11	IO15PDB0V1		
C18	IO37NDB1V0	E2	IO211NDB7V2	F12	IO19PDB0V2		
C19	IO45NDB1V1	E3	IO211PDB7V2	F13	IO21PDB0V2		
C20	IO42PPB1V1	E4	IO220NPB7V3	F14	IO27NDB0V3		
C21	IO46NPB1V1	E5	GNDQ	F15	IO35PDB1V0		
C22	IO48NPB1V2	E6	GAB2/IO220PPB7V3	F16	IO39NDB1V0		
C23	GBB0/IO56NPB1V3	E7	GAB1/IO01PDB0V0	F17	IO51PDB1V2		
C24	VMV1	E8	IO05PDB0V0	F18	IO53PDB1V2		
C25	GBC2/IO60PDB2V0	E9	IO08NDB0V1	F19	IO54PDB1V3		
C26	IO60NDB2V0	E10	IO12PDB0V1	F20	VMV2		
D1	IO218NDB7V3	E11	IO18PDB0V2	F21	VCOMPLB		
D2	IO218PDB7V3	E12	IO17PDB0V2	F22	IO61PDB2V0		
D3	GND	E13	IO25PDB0V3	F23	IO61NDB2V0		
D4	VMV7	E14	IO29PDB0V3	F24	IO66PDB2V1		
D5	IO221NDB7V3	E15	IO33PDB1V0	F25	IO66NDB2V1		
D6	GAC0/IO02NDB0V0	E16	IO40NDB1V1	F26	IO68NDB2V1		
D7	GAC1/IO02PDB0V0	E17	IO43PDB1V1	G1	IO203NPB7V1		
D8	IO05NDB0V0	E18	IO47NDB1V1	G2	IO207NDB7V2		
D9	IO08PDB0V1	E19	IO54NDB1V3	G3	IO207PDB7V2		
D10	IO12NDB0V1	E20	IO52NDB1V2	G4	IO216NDB7V3		
D11	IO18NDB0V2	E21	IO52PDB1V2	G5	IO216PDB7V3		
D12	IO17NDB0V2	E22	VCCPLB	G6	VCOMPLA		
D13	IO25NDB0V3	E23	GBA1/IO57PPB1V3	G7	VMV0		
D14	IO29NDB0V3	E24	IO63PDB2V0	G8	VCC		
D15	IO33NDB1V0	E25	IO63NDB2V0	G9	IO03NDB0V0		
D16	IO40PDB1V1	E26	IO68PDB2V1	G10	IO13NDB0V1		
D17	IO43NDB1V1	F1	IO212NDB7V2	G11	IO15NDB0V1		
D18	IO47PDB1V1	F2	IO203PPB7V1	G12	IO19NDB0V2		

FG676			FG676	FG676		
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	
L17	GND	N1	GFB0/IO191NPB7V0	P11	GND	
L18	VCC	N2	VCOMPLF	P12	GND	
L19	VCCIB2	N3	GFB1/IO191PPB7V0	P13	GND	
L20	IO67PDB2V1	N4	IO196PDB7V0	P14	GND	
L21	IO67NDB2V1	N5	GFA0/IO190NDB6V2	P15	GND	
L22	IO71PDB2V2	N6	IO200PDB7V1	P16	GND	
L23	IO71NDB2V2	N7	IO200NDB7V1	P17	GND	
L24	GNDQ	N8	VCCIB7	P18	VCC	
L25	IO82PDB2V3	N9	VCC	P19	VCCIB3	
L26	IO84NDB2V3	N10	GND	P20	GCC0/IO85NDB2V3	
M1	IO198NPB7V0	N11	GND	P21	GCC1/IO85PDB2V3	
M2	IO202PDB7V1	N12	GND	P22	GCB1/IO86PPB2V3	
M3	IO202NDB7V1	N13	GND	P23	IO88NPB3V0	
M4	IO206NDB7V1	N14	GND	P24	GCA1/IO87PDB3V0	
M5	IO206PDB7V1	N15	GND	P25	VCCPLC	
M6	IO204NDB7V1	N16	GND	P26	VCOMPLC	
M7	IO204PDB7V1	N17	GND	R1	IO189NDB6V2	
M8	VCCIB7	N18	VCC	R2	IO185PDB6V2	
M9	VCC	N19	VCCIB2	R3	IO187NPB6V2	
M10	GND	N20	IO79PDB2V3	R4	IO193NPB7V0	
M11	GND	N21	IO79NDB2V3	R5	GFC2/IO187PPB6V2	
M12	GND	N22	GCA2/IO88PPB3V0	R6	GFC1/IO192PDB7V0	
M13	GND	N23	IO81NPB2V3	R7	GFC0/IO192NDB7V0	
M14	GND	N24	GCA0/IO87NDB3V0	R8	VCCIB6	
M15	GND	N25	GCB0/IO86NPB2V3	R9	VCC	
M16	GND	N26	IO83NDB2V3	R10	GND	
M17	GND	P1	GFA2/IO189PDB6V2	R11	GND	
M18	VCC	P2	VCCPLF	R12	GND	
M19	VCCIB2	P3	IO193PPB7V0	R13	GND	
M20	IO73NDB2V2	P4	IO196NDB7V0	R14	GND	
M21	IO73PDB2V2	P5	GFA1/IO190PDB6V2	R15	GND	
M22	IO81PPB2V3	P6	IO194PDB7V0	R16	GND	
M23	IO77PDB2V2	P7	IO194NDB7V0	R17	GND	
M24	IO77NDB2V2	P8	VCCIB6	R18	VCC	
M25	IO82NDB2V3	P9	VCC	R19	VCCIB3	
M26	IO83PDB2V3	P10	GND	R20	NC	

FG896			FG896	FG896		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
AC21	IO164PDB4V1	AD27	GDA0/IO153NDB3V4	AF3	VCCIB6	
AC22	IO162PPB4V1	AD28	GDC0/IO151NDB3V4	AF4	IO220NPB5V3	
AC23	GND	AD29	GDC1/IO151PDB3V4	AF5	VCC	
AC24	VCOMPLD	AD30	GND	AF6	IO228NDB5V4	
AC25	IO150NDB3V4	AE1	IO242PPB6V1	AF7	VCCIB5	
AC26	IO148NDB3V4	AE2	VCC	AF8	IO230PDB5V4	
AC27	GDA1/IO153PDB3V4	AE3	IO239PDB6V0	AF9	IO229NDB5V4	
AC28	IO145NDB3V3	AE4	IO239NDB6V0	AF10	IO229PDB5V4	
AC29	IO143NDB3V3	AE5	VMV6	AF11	IO214PPB5V2	
AC30	IO137NDB3V2	AE6	GND	AF12	IO208NDB5V1	
AD1	GND	AE7	GNDQ	AF13	IO208PDB5V1	
AD2	IO242NPB6V1	AE8	IO230NDB5V4	AF14	IO200PDB5V0	
AD3	IO240NDB6V0	AE9	IO224NPB5V3	AF15	IO196NDB5V0	
AD4	GEC0/IO236NDB6V0	AE10	IO214NPB5V2	AF16	IO186NDB4V4	
AD5	VCCIB6	AE11	IO212NDB5V2	AF17	IO186PDB4V4	
AD6	GNDQ	AE12	IO212PDB5V2	AF18	IO180NDB4V3	
AD7	VCC	AE13	IO202NPB5V1	AF19	IO180PDB4V3	
AD8	VMV5	AE14	IO200NDB5V0	AF20	IO168NDB4V1	
AD9	VCCIB5	AE15	IO196PDB5V0	AF21	IO168PDB4V1	
AD10	IO224PPB5V3	AE16	IO190NDB4V4	AF22	IO160NDB4V0	
AD11	IO218NPB5V3	AE17	IO184PDB4V3	AF23	IO158NPB4V0	
AD12	IO216PPB5V2	AE18	IO184NDB4V3	AF24	VCCIB4	
AD13	IO210PPB5V2	AE19	IO172PDB4V2	AF25	IO154NPB4V0	
AD14	IO202PPB5V1	AE20	IO172NDB4V2	AF26	VCC	
AD15	IO194PDB5V0	AE21	IO166NDB4V1	AF27	TDO	
AD16	IO190PDB4V4	AE22	IO160PDB4V0	AF28	VCCIB3	
AD17	IO182NPB4V3	AE23	GNDQ	AF29	GNDQ	
AD18	IO176NDB4V2	AE24	VMV4	AF30	GND	
AD19	IO176PDB4V2	AE25	GND	AG1	IO238NPB6V0	
AD20	IO170PPB4V2	AE26	GDB0/IO152NDB3V4	AG2	VCC	
AD21	IO166PDB4V1	AE27	GDB1/IO152PDB3V4	AG3	IO232NPB5V4	
AD22	VCCIB4	AE28	VMV3	AG4	GND	
AD23	TCK	AE29	VCC	AG5	IO220PPB5V3	
AD24	VCC	AE30	IO149PDB3V4	AG6	IO228PDB5V4	
AD25	TRST	AF1	GND	AG7	IO231NDB5V4	
AD26	VCCIB3	AF2	IO238PPB6V0	AG8	GEC2/IO231PDB5V4	

FG896			FG896	FG896		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
AK28	GND	C5	VCCIB0	D11	IO11PDB0V1	
AK29	GND	C6	IO03PDB0V0	D12	IO23NDB0V2	
B1	GND	C7	IO03NDB0V0	D13	IO23PDB0V2	
B2	GND	C8	GAB1/IO01PDB0V0	D14	IO27PDB0V3	
B3	GAA2/IO309PPB7V4	C9	IO05PDB0V0	D15	IO40PDB0V4	
B4	VCC	C10	IO15NPB0V1	D16	IO47NDB1V0	
B5	IO14PPB0V1	C11	IO25NDB0V3	D17	IO47PDB1V0	
B6	VCC	C12	IO25PDB0V3	D18	IO55NPB1V1	
B7	IO07PPB0V0	C13	IO31NPB0V3	D19	IO65NDB1V3	
B8	IO09PDB0V1	C14	IO27NDB0V3	D20	IO65PDB1V3	
B9	IO15PPB0V1	C15	IO39NDB0V4	D21	IO71NDB1V3	
B10	IO19NDB0V2	C16	IO39PDB0V4	D22	IO71PDB1V3	
B11	IO19PDB0V2	C17	IO55PPB1V1	D23	IO73NDB1V4	
B12	IO29NDB0V3	C18	IO51PDB1V1	D24	IO73PDB1V4	
B13	IO29PDB0V3	C19	IO59NDB1V2	D25	IO74NDB1V4	
B14	IO31PPB0V3	C20	IO63NDB1V2	D26	GBB0/IO80NPB1V4	
B15	IO37NDB0V4	C21	IO63PDB1V2	D27	GND	
B16	IO37PDB0V4	C22	IO67NDB1V3	D28	GBA0/IO81NPB1V4	
B17	IO41PDB1V0	C23	IO67PDB1V3	D29	VCC	
B18	IO51NDB1V1	C24	IO75NDB1V4	D30	GBA2/IO82PPB2V0	
B19	IO59PDB1V2	C25	IO75PDB1V4	E1	GND	
B20	IO53PDB1V1	C26	VCCIB1	E2	IO303NPB7V3	
B21	IO53NDB1V1	C27	IO64PPB1V2	E3	VCCIB7	
B22	IO61NDB1V2	C28	VCC	E4	IO305PPB7V3	
B23	IO61PDB1V2	C29	GBA1/IO81PPB1V4	E5	VCC	
B24	IO69NPB1V3	C30	GND	E6	GAC0/IO02NDB0V0	
B25	VCC	D1	IO303PPB7V3	E7	VCCIB0	
B26	GBC0/IO79NPB1V4	D2	VCC	E8	IO06PPB0V0	
B27	VCC	D3	IO305NPB7V3	E9	IO24NDB0V2	
B28	IO64NPB1V2	D4	GND	E10	IO24PDB0V2	
B29	GND	D5	GAA1/IO00PPB0V0	E11	IO13NDB0V1	
B30	GND	D6	GAC1/IO02PDB0V0	E12	IO13PDB0V1	
C1	GND	D7	IO06NPB0V0	E13	IO34NDB0V4	
C2	IO309NPB7V4	D8	GAB0/IO01NDB0V0	E14	IO34PDB0V4	
C3	VCC	D9	IO05NDB0V0	E15	IO40NDB0V4	
C4	GAA0/IO00NPB0V0	D10	IO11NDB0V1	E16	IO49NDB1V1	

FG896			FG896	FG896		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
E17	IO49PDB1V1	F23	IO72PDB1V3	G29	IO100PPB2V2	
E18	IO50PDB1V1	F24	GNDQ	G30	GND	
E19	IO58PDB1V2	F25	GND	H1	IO294PDB7V2	
E20	IO60NDB1V2	F26	VMV2	H2	IO294NDB7V2	
E21	IO77PDB1V4	F27	IO86PDB2V0	H3	IO300NDB7V3	
E22	IO68NDB1V3	F28	IO92PDB2V1	H4	IO300PDB7V3	
E23	IO68PDB1V3	F29	VCC	H5	IO295PDB7V2	
E24	VCCIB1	F30	IO100NPB2V2	H6	IO299PDB7V3	
E25	IO74PDB1V4	G1	GND	H7	VCOMPLA	
E26	VCC	G2	IO296NPB7V2	H8	GND	
E27	GBB1/IO80PPB1V4	G3	IO306NDB7V4	H9	IO08NDB0V0	
E28	VCCIB2	G4	IO297NDB7V2	H10	IO08PDB0V0	
E29	IO82NPB2V0	G5	VCCIB7	H11	IO18PDB0V2	
E30	GND	G6	GNDQ	H12	IO26NPB0V3	
F1	IO296PPB7V2	G7	VCC	H13	IO28NDB0V3	
F2	VCC	G8	VMV0	H14	IO28PDB0V3	
F3	IO306PDB7V4	G9	VCCIB0	H15	IO38PPB0V4	
F4	IO297PDB7V2	G10	IO10NDB0V1	H16	IO42NDB1V0	
F5	VMV7	G11	IO16NDB0V1	H17	IO52NDB1V1	
F6	GND	G12	IO22PDB0V2	H18	IO52PDB1V1	
F7	GNDQ	G13	IO26PPB0V3	H19	IO62NDB1V2	
F8	IO12NDB0V1	G14	IO38NPB0V4	H20	IO62PDB1V2	
F9	IO12PDB0V1	G15	IO36NDB0V4	H21	IO70NDB1V3	
F10	IO10PDB0V1	G16	IO46NDB1V0	H22	IO70PDB1V3	
F11	IO16PDB0V1	G17	IO46PDB1V0	H23	GND	
F12	IO22NDB0V2	G18	IO56NDB1V1	H24	VCOMPLB	
F13	IO30NDB0V3	G19	IO56PDB1V1	H25	GBC2/IO84PDB2V0	
F14	IO30PDB0V3	G20	IO66NDB1V3	H26	IO84NDB2V0	
F15	IO36PDB0V4	G21	IO66PDB1V3	H27	IO96PDB2V1	
F16	IO48NDB1V0	G22	VCCIB1	H28	IO96NDB2V1	
F17	IO48PDB1V0	G23	VMV1	H29	IO89PDB2V0	
F18	IO50NDB1V1	G24	VCC	H30	IO89NDB2V0	
F19	IO58NDB1V2	G25	GNDQ	J1	IO290NDB7V2	
F20	IO60PDB1V2	G26	VCCIB2	J2	IO290PDB7V2	
F21	IO77NDB1V4	G27	IO86NDB2V0	J3	IO302NDB7V3	
F22	IO72NDB1V3	G28	IO92NDB2V1	J4	IO302PDB7V3	

FG896		FG896		FG896		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
J5	IO295NDB7V2	K11	IO04PPB0V0	L17	VCC	
J6	IO299NDB7V3	K12	VCCIB0	L18	VCC	
J7	VCCIB7	K13	VCCIB0	L19	VCC	
J8	VCCPLA	K14	VCCIB0	L20	VCC	
J9	VCC	K15	VCCIB0	L21	IO78NPB1V4	
J10	IO04NPB0V0	K16	VCCIB1	L22	IO104NPB2V2	
J11	IO18NDB0V2	K17	VCCIB1	L23	IO98NDB2V2	
J12	IO20NDB0V2	K18	VCCIB1	L24	IO98PDB2V2	
J13	IO20PDB0V2	K19	VCCIB1	L25	IO87PDB2V0	
J14	IO32NDB0V3	K20	IO76PPB1V4	L26	IO87NDB2V0	
J15	IO32PDB0V3	K21	VCC	L27	IO97PDB2V1	
J16	IO42PDB1V0	K22	IO78PPB1V4	L28	IO101PDB2V2	
J17	IO44NDB1V0	K23	IO88NDB2V0	L29	IO103PDB2V2	
J18	IO44PDB1V0	K24	IO88PDB2V0	L30	IO119NDB3V0	
J19	IO54NDB1V1	K25	IO94PDB2V1	M1	IO282NDB7V1	
J20	IO54PDB1V1	K26	IO94NDB2V1	M2	IO282PDB7V1	
J21	IO76NPB1V4	K27	IO85PDB2V0	M3	IO292NDB7V2	
J22	VCC	K28	IO85NDB2V0	M4	IO292PDB7V2	
J23	VCCPLB	K29	IO93PDB2V1	M5	IO283NDB7V1	
J24	VCCIB2	K30	IO93NDB2V1	M6	IO285PDB7V1	
J25	IO90PDB2V1	L1	IO286NDB7V1	M7	IO287PDB7V1	
J26	IO90NDB2V1	L2	IO286PDB7V1	M8	IO289PDB7V1	
J27	GBB2/IO83PDB2V0	L3	IO298NDB7V3	M9	IO289NDB7V1	
J28	IO83NDB2V0	L4	IO298PDB7V3	M10	VCCIB7	
J29	IO91PDB2V1	L5	IO283PDB7V1	M11	VCC	
J30	IO91NDB2V1	L6	IO291NDB7V2	M12	GND	
K1	IO288NDB7V1	L7	IO291PDB7V2	M13	GND	
K2	IO288PDB7V1	L8	IO293PDB7V2	M14	GND	
K3	IO304NDB7V3	L9	IO293NDB7V2	M15	GND	
K4	IO304PDB7V3	L10	IO307NPB7V4	M16	GND	
K5	GAB2/IO308PDB7V4	L11	VCC	M17	GND	
K6	IO308NDB7V4	L12	VCC	M18	GND	
K7	IO301PDB7V3	L13	VCC	M19	GND	
K8	IO301NDB7V3	L14	VCC	M20	VCC	
K9	GAC2/IO307PPB7V4	L15	VCC	M21	VCCIB2	
K10	VCC	L16	VCC	M22	NC	