E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	147
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3pe1500-1pq208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

static Microsemi.

ProASIC3E Flash Family FPGAs

I/Os Per Package¹

ProASIC3E Devices	Devices A3PE600 A3PE1500 ³		1500 ³	A3PE3000 ³		
Cortex-M1 Devices ²		M1A3PE1500 M1A3PE300				PE3000
		I/O Types				
Package	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs
PQ208	147	65	147	65	147	65
FG256	165	79	-	-	-	-
FG324	-	-	-	-	221	110
FG484	270	135	280	139	341	168
FG676	-	-	444	222	_	-
FG896	-	-	-	-	620	310

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3E FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.

- 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 3. For A3PE1500 and A3PE3000 devices, the usage of certain I/O standards is limited as follows:
 - SSTL3(I) and (II): up to 40 I/Os per north or south bank
 - LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
 - SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
- 4. FG256 and FG484 are footprint-compatible packages.
- 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os).
- 6. "G" indicates RoHS-compliant packages. Refer to the "ProASIC3E Ordering Information" on page III for the location of the "G" in the part number.

Package	PQ208	FG256	FG324	FG484	FG676	FG896
Length × Width (mm\mm)	28 × 28	17 × 17	19 × 19	23 × 23	27 × 27	31 × 31
Nominal Area (mm ²)	784	289	361	529	729	961
Pitch (mm)	0.5	1.0	1.0	1.0	1.0	1.0
Height (mm)	3.40	1.60	1.63	2.23	2.23	2.23

Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions

ProASIC3E Device Status

ProASIC3E Devices	Status	M1 ProASIC3E Devices	Status
A3PE600	Production		
A3PE1500	Production	M1A3PE1500	Production
A3PE3000	Production	M1A3PE3000	Production

om file Save to file.			🗍 Show BSR D
Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
BYPASS_IO	ADLIB:INBUF	K1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
LED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
OEa	ADLIB:INBUF	E4	Z
ОЕЬ	ADLIB:INBUF	F1	Z
OSC_EN	ADLIB:INBUF	K3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	R7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF_LVCMOS33U	R6	Z

Figure 1-3 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
 - I/O States during programming are saved to the ADB and resulting programming files after completing programming file generation.

VCCI and VMV	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
ľ	5%	1.49 V
3 V	10%	1.1 V
F	5%	1.19 V
3.3 V	10%	0.79 V
-	5%	0.88 V
3.6 V	10%	0.45 V
F	5%	0.54 V

Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every ProASIC[®]3E device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

ProASIC3E I/Os are activated only if ALL of the following three conditions are met:

1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4).

- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V

VCC Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

ProASIC3E DC and Switching Characteristics

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings (continued) (continued)¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
SSTL3 (I)	30	3.3	26.02	114.87
SSTL3 (II)	30	3.3	42.21	131.76
Differential	•			
LVDS/B-LVDS/M-LVDS	-	2.5	7.70	89.62
LVPECL	-	3.3	19.42	168.02
Notes:	•		1	1

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Power Consumption of Various Internal Resources

Table 2-10 • Different Components Contributing to the Dynamic Power Consumption in ProASIC3E Devices

		Device-Specific Dynamic Contributions (µW/MHz)			
Parameter	Definition	A3PE600	A3PE1500	A3PE3000	
PAC1	Clock contribution of a Global Rib	12.77 16.21 19.			
PAC2	Clock contribution of a Global Spine	1.85 3.06 4.10			
PAC3	Clock contribution of a VersaTile row		0.88		
PAC4	Clock contribution of a VersaTile used as a sequential module		0.12		
PAC5	First contribution of a VersaTile used as a sequential module	0.07			
PAC6	Second contribution of a VersaTile used as a sequential module	0.29			
PAC7	Contribution of a VersaTile used as a combinatorial module	0.29			
PAC8	Average contribution of a routing net	0.70			
PAC9	Contribution of an I/O input pin (standard-dependent)	See Table 2-8 on page 2-6.			
PAC10	Contribution of an I/O output pin (standard-dependent)	See Table 2-9 on page 2-7			
PAC11	Average contribution of a RAM block during a read operation	25.00			
PAC12	Average contribution of a RAM block during a write operation	30.00			
PAC13	Static PLL contribution	2.55 mW			
PAC14	Dynamic contribution for PLL	2.60			

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power calculator or SmartPower in Libero SoC.

Com	Commercial ¹		strial ²
IIL ³	IIH ⁴	IIL ³	IIH ⁴
μA	μΑ	μΑ	μA
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
10	10	15	15
	IIL ³ μA 10	IIL ³ IIH ⁴ μ A μ A 10 10	IIL ³ IIH ⁴ IIL ³ μA μA μA 10 10 15 10 10

Table 2-14 • Summary of Maximum and Minimum DC Input Levels
Applicable to Commercial and Industrial Conditions

Notes:

1. Commercial range (0°C < T_A < 70°C) 2. Industrial range (-40°C < T_A < 85°C)

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

Table 2-19 • I/O Output Buffer Maximum Resistances ¹ (c	continued)	
--	------------	--

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	$R_{PULL-UP}(\Omega)^3$
3.3 V GTL+	35 mA	12	-
2.5 V GTL+	33 mA	15	-
HSTL (I)	8 mA	50	50
HSTL (II)	15 mA ⁴	25	25
SSTL2 (I)	15 mA	27	31
SSTL2 (II)	18 mA	13	15
SSTL3 (I)	14 mA	44	69
SSTL3 (II)	21 mA	18	32

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.

- 2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec
- 3. R_(PULL-UP-MAX) = (VCCImax VOHspec) / IOHspec
- 4. Output drive strength is below JEDEC specification.

Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

		CPULL-UP) ¹ (Ω)	R _(WEAK PULL-DOWN) ² (Ω)				
VCCI	Min.	Max.	Min.	Max.			
3.3 V	10 k	45 k	10 k	45 k			
3.3 V (Wide Range I/Os)	10 k	45 k	10 k	45 k			
2.5 V	11 k	55 k	12 k	74 k			
1.8 V	18 k	70 k	17 k	110 k			
1.5 V	19 k	90 k	19 k	140 k			

Notes:

1. R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)

2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)

static Microsemi.

ProASIC3E DC and Switching Characteristics

Single-Ended I/O Characteristics

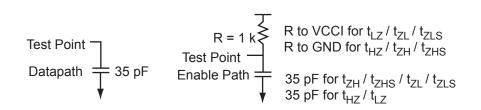
3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is supported as part of the 3.3 V LVTTL support.

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	н	VOL	vон	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min., V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10

Table 2-25 • Minimum and Maximum DC Input and Output Levels

Notes:


1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V< VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-6 • AC Loading

Table 2-26 • 3.3 V LVTTL / 3.3 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	-	35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew
Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade		t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{eout}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zhs}	Units
100 µA	4 mA	Std.	0.66	17.02	0.04	1.83	2.38	0.43	17.02	13.74	4.16	3.78	20.42	17.14	ns
		-1	0.56	14.48	0.04	1.55	2.02	0.36	14.48	11.69	3.54	3.21	17.37	14.58	ns
		-2	0.49	12.71	0.03	1.36	1.78	0.32	12.71	10.26	3.11	2.82	15.25	12.80	ns
100 µA	8 mA	Std.	0.66	12.16	0.04	1.83	2.38	0.43	12.16	9.78	4.70	4.74	15.55	13.17	ns
		-1	0.56	10.34	0.04	1.55	2.02	0.36	10.34	8.32	4.00	4.03	13.23	11.20	ns
		-2	0.49	9.08	0.03	1.36	1.78	0.32	9.08	7.30	3.51	3.54	11.61	9.84	ns
100µA	12 mA	Std.	0.66	9.32	0.04	1.83	2.38	0.43	9.32	7.62	5.06	5.36	12.71	11.02	ns
		-1	0.56	7.93	0.04	1.55	2.02	0.36	7.93	6.48	4.31	4.56	10.81	9.37	ns
		-2	0.49	6.96	0.03	1.36	1.78	0.32	6.96	5.69	3.78	4.00	9.49	8.23	ns
100 µA	16 mA	Std.	0.66	8.69	0.04	1.83	2.38	0.43	8.69	7.17	5.14	5.53	12.08	10.57	ns
		-1	0.56	7.39	0.04	1.55	2.02	0.36	7.39	6.10	4.37	4.71	10.28	8.99	ns
		-2	0.49	6.49	0.03	1.36	1.78	0.32	6.49	5.36	3.83	4.13	9.02	7.89	ns
100 µA	24 mA	Std.	0.66	8.11	0.04	1.83	2.38	0.43	8.11	7.13	5.23	6.13	11.50	10.52	ns
		-1	0.56	6.90	0.04	1.55	2.02	0.36	6.90	6.06	4.45	5.21	9.78	8.95	ns
		-2	0.49	6.05	0.03	1.36	1.78	0.32	6.05	5.32	3.91	4.57	8.59	7.86	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
 Software default extension birblighted in grave

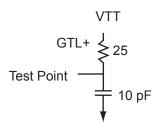
2. Software default selection highlighted in gray.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

ProASIC3E DC and Switching Characteristics

2.5 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.


Table 2-57 • Minimum and Maximum DC Input and Output Levels

2.5 V GTL+		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
33 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	33	33	124	169	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-15 • AC Loading

Table 2-58 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-59 • 2.5 V GTL+

```
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.0 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.21	0.04	1.51	0.43	2.25	2.10			4.48	4.34	ns
–1	0.51	1.88	0.04	1.29	0.36	1.91	1.79			3.81	3.69	ns
-2	0.45	1.65	0.03	1.13	0.32	1.68	1.57			3.35	3.24	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-93 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	-2	-1	Std.	Units
INV	Y = !A	t _{PD}	0.40	0.46	0.54	ns
AND2	$Y = A \cdot B$	t _{PD}	0.47	0.54	0.63	ns
NAND2	Y = !(A · B)	t _{PD}	0.47	0.54	0.63	ns
OR2	Y = A + B	t _{PD}	0.49	0.55	0.65	ns
NOR2	Y = !(A + B)	t _{PD}	0.49	0.55	0.65	ns
XOR2	Y = A ⊕ B	t _{PD}	0.74	0.84	0.99	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	0.70	0.79	0.93	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	0.87	1.00	1.17	ns
MUX2	Y = A !S + B S	t _{PD}	0.51	0.58	0.68	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	0.56	0.64	0.75	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

VersaTile Specifications as a Sequential Module

The ProASIC3E library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide*.

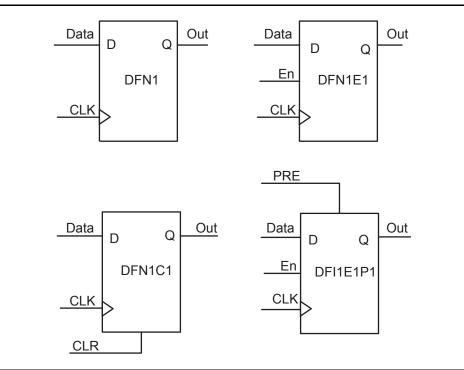


Figure 2-36 • Sample of Sequential Cells

Table 2-100 • RAM512X18

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.18	0.20	0.24	ns
t _{ENH}	REN, WEN hold time		0.07	0.08	ns
t _{DS}	Input data (WD) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (WD) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	2.16	2.46	2.89	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	0.90	1.02	1.20	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.50	0.43	0.38	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.59	0.50	0.44	ns
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to data out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

3 – Pin Descriptions and Packaging

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ

Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx

I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx

I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F

PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *ProASIC3E FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There are six VCCPLX pins on ProASIC3E devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There are six VCOMPL pins (PLL ground) on ProASIC3E devices.

Refer to the I/O Structure section of the *ProASIC3E FPGA Fabric User's Guide* for an explanation of the naming of global pins.

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 W to 1 k Ω will satisfy the requirements. Refer to Table 3-1 for more information.

VJTAG	Tie-Off Resistance
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 k Ω
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 3-1 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI

TMS

Test Data Input

Test Data Output

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-1 and must satisfy the parallel resistance value requirement. The values in Table 3-1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

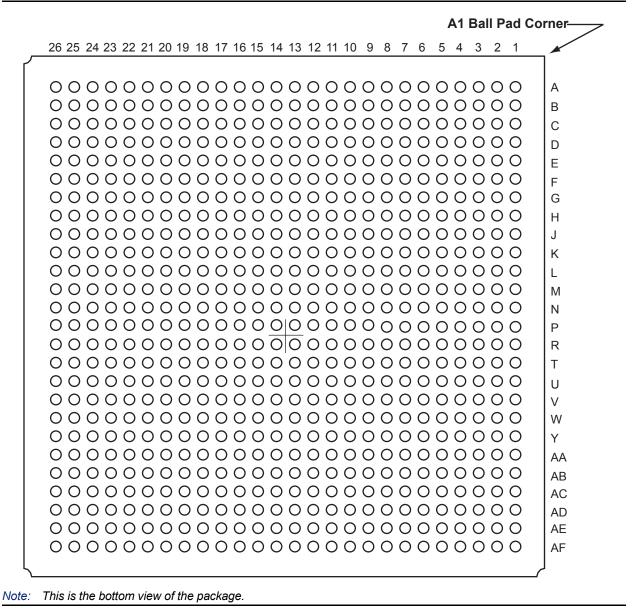
	FG484
Pin Number	A3PE600 Function
V15	IO69NDB4V0
V16	GDB2/IO69PDB4V0
V17	TDI
V18	GNDQ
V19	TDO
V20	GND
V21	NC
V22	IO63NDB3V1
W1	NC
W2	NC
W3	NC
W4	GND
W5	IO100NDB5V2
W6	GEB2/IO100PDB5V2
W7	IO99NDB5V2
W8	IO88NDB5V0
W9	IO88PDB5V0
W10	IO89NDB5V0
W11	IO80NDB4V1
W12	IO81NDB4V1
W13	IO81PDB4V1
W14	IO70NDB4V0
W15	GDC2/IO70PDB4V0
W16	IO68NDB4V0
W17	GDA2/IO68PDB4V0
W18	TMS
W19	GND
W20	NC
W21	NC
W22	NC
Y1	VCCIB6
Y2	NC
Y3	NC
Y4	IO98NDB5V2
Y5	GND
Y6	IO94NDB5V1

FG484				
Pin Number	A3PE600 Function			
Y7	IO94PDB5V1			
Y8	VCC			
Y9	VCC			
Y10	IO89PDB5V0			
Y11	IO80PDB4V1			
Y12	IO78NPB4V1			
Y13	NC			
Y14	VCC			
Y15	VCC			
Y16	NC			
Y17	NC			
Y18	GND			
Y19	NC			
Y20	NC			
Y21	NC			
Y22	VCCIB3			

Package Pin Assignments

FG484		FG484			FG484	
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	
A1	GND	AA15	NC	B7	IO10PDB0V1	
A2	GND	AA16	IO117NDB4V0	B8	IO15NDB0V1	
A3	VCCIB0	AA17	IO117PDB4V0	B9	IO17NDB0V2	
A4	IO05NDB0V0	AA18	IO115NDB4V0	B10	IO20PDB0V2	
A5	IO05PDB0V0	AA19	IO115PDB4V0	B11	IO29PDB0V3	
A6	IO11NDB0V1	AA20	NC	B12	IO32NDB1V0	
A7	IO11PDB0V1	AA21	VCCIB3	B13	IO43NDB1V1	
A8	IO15PDB0V1	AA22	GND	B14	NC	
A9	IO17PDB0V2	AB1	GND	B15	NC	
A10	IO27NDB0V3	AB2	GND	B16	IO53NDB1V2	
A11	IO27PDB0V3	AB3	VCCIB5	B17	IO53PDB1V2	
A12	IO32PDB1V0	AB4	IO159NDB5V3	B18	IO54PDB1V3	
A13	IO43PDB1V1	AB5	IO159PDB5V3	B19	NC	
A14	IO47NDB1V1	AB6	IO149NDB5V1	B20	NC	
A15	IO47PDB1V1	AB7	IO149PDB5V1	B21	VCCIB2	
A16	IO51NDB1V2	AB8	IO138NDB5V0	B22	GND	
A17	IO51PDB1V2	AB9	IO138PDB5V0	C1	VCCIB7	
A18	IO54NDB1V3	AB10	NC	C2	NC	
A19	NC	AB11	NC	C3	NC	
A20	VCCIB1	AB12	IO127NDB4V2	C4	NC	
A21	GND	AB13	IO127PDB4V2	C5	GND	
A22	GND	AB14	IO125NDB4V1	C6	IO07NDB0V0	
AA1	GND	AB15	IO125PDB4V1	C7	IO07PDB0V0	
AA2	VCCIB6	AB16	IO122NDB4V1	C8	VCC	
AA3	NC	AB17	IO122PDB4V1	C9	VCC	
AA4	IO161PDB5V3	AB18	NC	C10	IO20NDB0V2	
AA5	IO155NDB5V2	AB19	NC	C11	IO29NDB0V3	
AA6	IO155PDB5V2	AB20	VCCIB4	C12	NC	
AA7	IO154NDB5V2	AB21	GND	C13	NC	
AA8	IO154PDB5V2	AB22	GND	C14	VCC	
AA9	IO143PDB5V1	B1	GND	C15	VCC	
AA10	IO143NDB5V1	B2	VCCIB7	C16	NC	
AA11	IO131PPB4V2	B3	NC	C17	NC	
AA12	IO129NDB4V2	B4	IO03NDB0V0	C18	GND	
AA13	IO129PDB4V2	B5	IO03PDB0V0	C19	NC	
AA14	NC	B6	IO10NDB0V1	C20	NC	

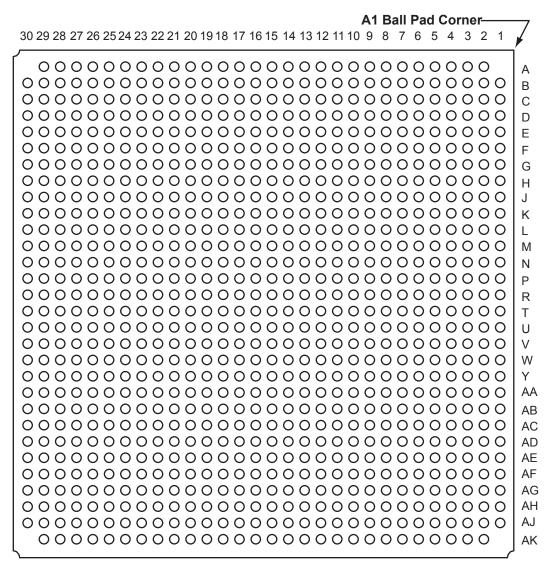
Microsemi


Package Pin Assignments

FG484				
Pin Number	A3PE1500 Function			
V15	IO112NDB4V0			
V16	GDB2/IO112PDB4V0			
V17	TDI			
V18	GNDQ			
V19	TDO			
V20	GND			
V21	NC			
V22	IO105NDB3V2			
W1	NC			
W2	NC			
W3	NC			
W4	GND			
W5	IO165NDB5V3			
W6	GEB2/IO165PDB5V3			
W7	IO164NDB5V3			
W8	IO153NDB5V2			
W9	IO153PDB5V2			
W10	IO147NDB5V1			
W11	IO133NDB4V2			
W12	IO130NDB4V2			
W13	IO130PDB4V2			
W14	IO113NDB4V0			
W15	GDC2/IO113PDB4V0			
W16	IO111NDB4V0			
W17	GDA2/IO111PDB4V0			
W18	TMS			
W19	GND			
W20	NC			
W21	NC			
W22	NC			
Y1	VCCIB6			
Y2	NC			
Y3	NC			
Y4	IO161NDB5V3			
Y5	GND			
Y6	IO163NDB5V3			

FG484				
Pin Number	A3PE1500 Function			
Y7	IO163PDB5V3			
Y8	VCC			
Y9	VCC			
Y10	IO147PDB5V1			
Y11	IO133PDB4V2			
Y12	IO131NPB4V2			
Y13	NC			
Y14	VCC			
Y15	VCC			
Y16	NC			
Y17	NC			
Y18	GND			
Y19	NC			
Y20	NC			
Y21	NC			
Y22	VCCIB3			

FG676



Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

FG896

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

	FG896
Pin Number	A3PE3000 Function
W29	IO131PDB3V2
W30	IO123NDB3V1
Y1	IO266PDB6V4
Y2	IO250PDB6V2
Y3	IO250NDB6V2
Y4	IO246PDB6V1
Y5	IO247NDB6V1
Y6	IO247PDB6V1
Y7	IO249NPB6V1
Y8	IO245PDB6V1
Y9	IO253NDB6V2
Y10	GEB0/IO235NPB6V0
Y11	VCC
Y12	VCC
Y13	VCC
Y14	VCC
Y15	VCC
Y16	VCC
Y17	VCC
Y18	VCC
Y19	VCC
Y20	VCC
Y21	IO142PPB3V3
Y22	IO134NDB3V2
Y23	IO138NDB3V3
Y24	IO140NDB3V3
Y25	IO140PDB3V3
Y26	IO136PPB3V2
Y27	IO141NDB3V3
Y28	IO135NDB3V2
Y29	IO131NDB3V2
Y30	IO133PDB3V2

Revision	Changes	Page
Revision 10 (March 2012)	\mathbf{J}	
	The Y security option and Licensed DPA Logo were added to the "ProASIC3E Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34727).	III
	The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry allows for rapid, single- voltage (3.3 V) programming of IGLOOe devices via an IEEE 1532 JTAG interface" (SAR 34689).	1-3
	The "Specifying I/O States During Programming" section is new (SAR 34699).	1-6
	VCCPLL in Table 2-2 • Recommended Operating Conditions ¹ was corrected from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 33851).	2-2
removed. The second of	The T _J symbol was added to the table and notes regarding T _A and T _J were removed. The second of two parameters in the VCCI and VMV row, called "3.3 V DC supply voltage," was corrected to "3.0 V DC supply voltage" (SAR 37227).	
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—P _{CLOCK} " section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>ProASIC3E FPGA Fabric User's Guide</i> (SAR 34735).	2-9
	t_{DOUT} was corrected to t_{DIN} in Figure 2-3 \bullet Input Buffer Timing Model and Delays (example) (SAR 37109).	2-13
 Summary of I/O Timing Characteristics—Software Default Settin corrected (SAR 37227). The notes regarding drive strength in the "Summary of I/O Timing Chara – Default I/O Software Settings" section and "3.3 V LVCMOS Wide section and tables were revised for clarification. They now state that the drive strength for the default software configuration when run in wide 	The typo related to the values for 3.3 V LVCMOS Wide Range in Table 2-17 • Summary of I/O Timing Characteristics—Software Default Settings was corrected (SAR 37227).	2-19
	– Default I/O Software Settings" section and "3.3 V LVCMOS Wide Range" section and tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range	2-18, 2-27