

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XF

Details	
Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	
Total RAM Bits	276480
Number of I/O	444
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3pe1500-2fgg676

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Package	A3PE600	A3PE1500	A3PE3000		
Cortex-M1 Devices		M1A3PE1500	M1A3PE3000		
PQ208	C, I	C, I	C, I		
FG256	C, I	_	_		
FG324	-	_	C, I		
FG484	C, I	C, I	C, I		
FG676	-	C, I	_		
FG896	_	-	C, I		

Note: C = Commercial temperature range: 0°C to 70°C ambient temperature<math>I = Industrial temperature range: -40°C to 85°C ambient temperature

Speed Grade and Temperature Grade Matrix

Temperature Grade	Std.	-1	-2
C ¹	\checkmark	\checkmark	\checkmark
²	\checkmark	\checkmark	\checkmark

Notes:

1. C = Commercial temperature range: 0°C to 70°C ambient temperature

2. I = Industrial temperature range: -40°C to 85°C ambient temperature

References made to ProASIC3E devices also apply to ARM-enabled ProASIC3E devices. The ARM-enabled part numbers start with M1 (Cortex-M1).

Contact your local Microsemi SoC Products Group representative for device availability: www.microsemi.com/index.php?option=com_content&id=135&lang=en&view=article.

ProASIC3E Device Family Overview

Pro I/Os with Advanced I/O Standards

The ProASIC3E family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3E FPGAs support 19 different I/O standards, including single-ended, differential, and voltage-referenced. The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
- Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II)

ProASIC3E banks support M-LVDS with 20 multi-drop points.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-3 on page 1-7).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 - I/O is set to drive out logic Low

Last Known State - I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

ProASIC3E DC and Switching Characteristics

Calculating Power Dissipation

Quiescent Supply Current

Table 2-7 • Quiescent Supply Current Characteristics

	A3PE600	A3PE1500	A3PE3000
Typical (25°C)	5 mA	12 mA	25 mA
Maximum (Commercial)	30 mA	70 mA	150 mA
Maximum (Industrial)	45 mA	105 mA	225 mA

Notes:

1. IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-8 and Table 2-9 on page 2-7.

2. -F speed grade devices may experience higher standby IDD of up to five times the standard IDD and higher I/O leakage.

Power per I/O Pin

Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3	-	17.39
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	-	25.51
3.3 V LVTTL/LVCMOS Wide Range ³	3.3	-	16.34
3.3 V LVTTL/LVCMOS Wide Range – Schmitt trigger ³	3.3	-	24.49
2.5 V LVCMOS	2.5	-	5.76
2.5 V LVCMOS – Schmitt trigger	2.5	_	7.16
1.8 V LVCMOS	1.8	-	2.72
1.8 V LVCMOS – Schmitt trigger	1.8	_	2.80
1.5 V LVCMOS (JESD8-11)	1.5	-	2.08
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	_	2.00
3.3 V PCI	3.3	-	18.82
3.3 V PCI – Schmitt trigger	3.3	_	20.12
3.3 V PCI-X	3.3	-	18.82
3.3 V PCI-X – Schmitt trigger	3.3	-	20.12
Voltage-Referenced		•	
3.3 V GTL	3.3	2.90	8.23
2.5 V GTL	2.5	2.13	4.78
3.3 V GTL+	3.3	2.81	4.14
2.5 V GTL+	2.5	2.57	3.71

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings (continued) (continued)¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
SSTL3 (I)	30	3.3	26.02	114.87
SSTL3 (II)	30	3.3	42.21	131.76
Differential	•			
LVDS/B-LVDS/M-LVDS	-	2.5	7.70	89.62
LVPECL	-	3.3	19.42	168.02
Notes:	•		1	1

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Power Consumption of Various Internal Resources

Table 2-10 • Different Components Contributing to the Dynamic Power Consumption in ProASIC3E Devices

		Device-Specific Dynamic Contributions (µW/MHz)					
Parameter	Definition	A3PE600	A3PE1500	A3PE3000			
PAC1	Clock contribution of a Global Rib	12.77	16.21	19.7			
PAC2	Clock contribution of a Global Spine	1.85	3.06	4.16			
PAC3	Clock contribution of a VersaTile row		0.88				
PAC4	Clock contribution of a VersaTile used as a sequential module	0.12					
PAC5	First contribution of a VersaTile used as a sequential module	0.07					
PAC6	Second contribution of a VersaTile used as a sequential module		0.29				
PAC7	Contribution of a VersaTile used as a combinatorial module		0.29				
PAC8	Average contribution of a routing net		0.70				
PAC9	Contribution of an I/O input pin (standard-dependent)	See 7	Table 2-8 on pag	ge 2-6.			
PAC10	Contribution of an I/O output pin (standard-dependent)	See	Table 2-9 on pag	ge 2-7			
PAC11	Average contribution of a RAM block during a read operation	25.00					
PAC12	Average contribution of a RAM block during a write operation	30.00					
PAC13	Static PLL contribution		2.55 mW				
PAC14	Dynamic contribution for PLL		2.60				

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power calculator or SmartPower in Libero SoC.

Summary of I/O Timing Characteristics – Default I/O Software Settings

Standard	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_REF)	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	-	-	1.4 V
3.3 V LVCMOS Wide Range	-	-	1.4 V
2.5 V LVCMOS	-	-	1.2 V
1.8 V LVCMOS	-	-	0.90 V
1.5 V LVCMOS	-	-	0.75 V
3.3 V PCI	-	_	0.285 * VCCI (RR) 0.615 * VCCI (FF))
3.3 V PCI-X	-	-	0.285 * VCCI (RR) 0.615 * VCCI (FF)
3.3 V GTL	0.8 V	1.2 V	VREF
2.5 V GTL	0.8 V	1.2 V	VREF
3.3 V GTL+	1.0 V	1.5 V	VREF
2.5 V GTL+	1.0 V	1.5 V	VREF
HSTL (I)	0.75 V	0.75 V	VREF
HSTL (II)	0.75 V	0.75 V	VREF
SSTL2 (I)	1.25 V	1.25 V	VREF
SSTL2 (II)	1.25 V	1.25 V	VREF
SSTL3 (I)	1.5 V	1.485 V	VREF
SSTL3 (II)	1.5 V	1.485 V	VREF
LVDS	-	-	Cross point
LVPECL	-	-	Cross point

Table 2-15 • Summary of AC Measuring Points

Table 2-16 • I/O AC Parameter Definitions

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

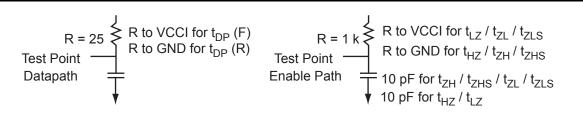
Microsemi.

ProASIC3E DC and Switching Characteristics

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-45 • Minimum and Maximum DC Input and Output Levels


3.3 V PCI/PCI-X	VIL VIH		VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Per PCI specification	Per PCI curves								10	10		

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V< VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-11.

Figure 2-11 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-46.

Table 2-46 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for $t_{DP(R)}$ 0.615 * VCCI for $t_{DP(F)}$	-	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-47 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.66	2.81	0.04	1.05	1.67	0.43	2.86	2.00	3.28	3.61	5.09	4.23	ns
–1	0.56	2.39	0.04	0.89	1.42	0.36	2.43	1.70	2.79	3.07	4.33	3.60	ns
-2	0.49	2.09	0.03	0.78	1.25	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns

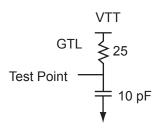
🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-51 • Minimum and Maximum DC Input and Output Levels


2.5 GTL		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min., V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20	124	169	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.

Figure 2-13 • AC Loading

Table 2-52 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

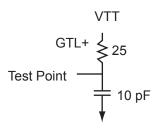
Table 2-53 • 2.5 V GTL

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.13	0.04	2.46	0.43	2.16	2.13			4.40	4.36	ns
-1	0.51	1.81	0.04	2.09	0.36	1.84	1.81			3.74	3.71	ns
-2	0.45	1.59	0.03	1.83	0.32	1.61	1.59			3.28	3.26	ns

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.


Table 2-54 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	_	35	35	181	268	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-14 • AC Loading

Table 2-55 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-56 • 3.3 V GTL+

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.06	0.04	1.59	0.43	2.09	2.06			4.33	4.29	ns
-1	0.51	1.75	0.04	1.35	0.36	1.78	1.75			3.68	3.65	ns
-2	0.45	1.53	0.03	1.19	0.32	1.56	1.53			3.23	3.20	ns

Microsemi

ProASIC3E DC and Switching Characteristics

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCI	Supply Voltage	2.375	2.5	2.625	V
VOL	Output Low Voltage	0.9	1.075	1.25	V
VOH	Output High Voltage	1.25	1.425	1.6	V
IOL ¹	Output Lower Current	0.65	0.91	1.16	mA
IOH ¹	Output High Current	0.65	0.91	1.16	mA
VI	Input Voltage	0		2.925	V
IIH ²	Input High Leakage Current			10	μA
IIL ²	Input Low Leakage Current			10	μA
VODIFF	Differential Output Voltage	250	350	450	mV
VOCM	Output Common Mode Voltage	1.125	1.25	1.375	V
VICM	Input Common Mode Voltage	0.05	1.25	2.35	V
VIDIFF	Input Differential Voltage ²	100	350		mV

Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network).

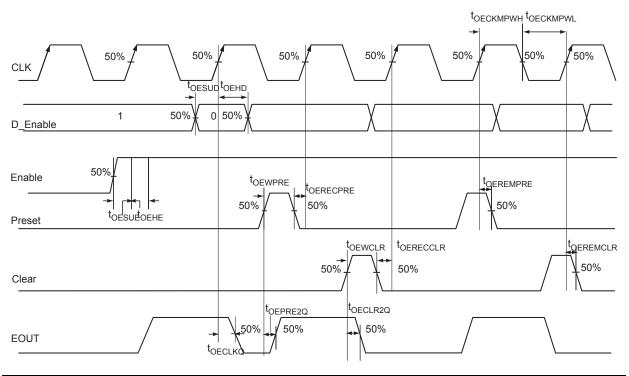

2. Currents are measured at 85°C junction temperature.

Table 2-79 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)
1.075	1.325	Cross point	-

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Figure 2-29 • Output Enable Register Timing Diagram

Timing Characteristics

Table 2-88 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.59	0.67	0.79	ns
tOESUD	Data Setup Time for the Output Enable Register	0.31	0.36	0.42	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.50	0.58	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.36	0.41	0.48	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.32	0.37	0.43	ns

🌜 Microsemi.

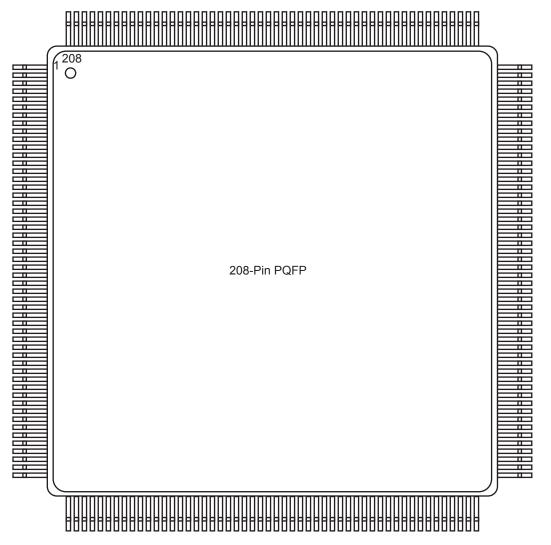
ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-99 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	1.79	2.03	2.39	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET Low to data out Low on DO (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz


Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

4 – Package Pin Assignments

PQ208

Note: This is the top view of the package.

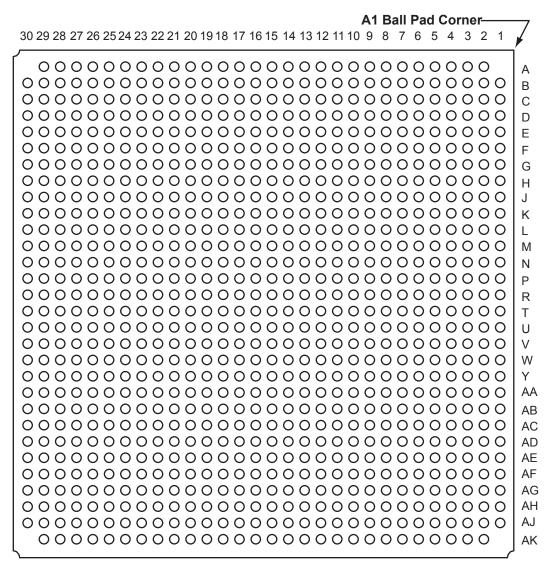
Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

Package Pin Assignments

	PQ208		PQ208		PQ208
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
1	GND	40	VCCIB6	79	IO194NDB5V0
2	GNDQ	41	GND	80	IO194PDB5V0
3	VMV7	42	IO244PDB6V1	81	GND
4	GAB2/IO308PSB7V4	43	IO244NDB6V1	82	IO184NDB4V3
5	GAA2/IO309PDB7V4	44	GEC1/IO236PDB6V0	83	IO184PDB4V3
6	IO309NDB7V4	45	GEC0/IO236NDB6V0	84	IO180NDB4V3
7	GAC2/IO307PDB7V4	46	GEB1/IO235PPB6V0	85	IO180PDB4V3
8	IO307NDB7V4	47	GEA1/IO234PPB6V0	86	IO176NDB4V2
9	IO303PDB7V3	48	GEB0/IO235NPB6V0	87	IO176PDB4V2
10	IO303NDB7V3	49	GEA0/IO234NPB6V0	88	VCC
11	IO299PDB7V3	50	VMV6	89	VCCIB4
12	IO299NDB7V3	51	GNDQ	90	IO170NDB4V2
13	IO295PDB7V2	52	GND	91	IO170PDB4V2
14	IO295NDB7V2	53	VMV5	92	IO166NDB4V1
15	IO291PSB7V2	54	GNDQ	93	IO166PDB4V1
16	VCC	55	IO233NDB5V4	94	IO156NDB4V0
17	GND	56	GEA2/IO233PDB5V4	95	GDC2/IO156PDB4V0
18	VCCIB7	57	IO232NDB5V4	96	IO154NPB4V0
19	IO285PDB7V1	58	GEB2/IO232PDB5V4	97	GND
20	IO285NDB7V1	59	IO231NDB5V4	98	GDB2/IO155PSB4V0
21	IO279PSB7V0	60	GEC2/IO231PDB5V4	99	GDA2/IO154PPB4V0
22	GFC1/IO275PSB7V0	61	IO230PSB5V4	100	GNDQ
23	GFB1/IO274PDB7V0	62	VCCIB5	101	ТСК
24	GFB0/IO274NDB7V0	63	IO218NDB5V3	102	TDI
25	VCOMPLF	64	IO218PDB5V3	103	TMS
26	GFA0/IO273NPB6V4	65	GND	104	VMV4
27	VCCPLF	66	IO214PSB5V2	105	GND
28	GFA1/IO273PPB6V4	67	IO212NDB5V2	106	VPUMP
29	GND	68	IO212PDB5V2	107	GNDQ
30	GFA2/IO272PDB6V4	69	IO208NDB5V1	108	TDO
31	IO272NDB6V4	70	IO208PDB5V1	109	TRST
32	GFB2/IO271PPB6V4	71	VCC	110	VJTAG
33	GFC2/IO270PPB6V4	72	VCCIB5	111	VMV3
34	IO271NPB6V4	73	IO202NDB5V1	112	GDA0/IO153NPB3V4
35	IO270NPB6V4	74	IO202PDB5V1	113	GDB0/IO152NPB3V4
36	VCC	75	IO198NDB5V0	114	GDA1/IO153PPB3V4
37	IO252PDB6V2	76	IO198PDB5V0	115	GDB1/IO152PPB3V4
38	IO252NDB6V2	77	IO197NDB5V0	116	GDC0/IO151NDB3V4
39	IO248PSB6V1	78	IO197PDB5V0	117	GDC1/IO151PDB3V4

	FG324		FG324		FG324
Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA
A1	GND	C1	IO305NDB7V3	E1	IO303NDB7V3
A2	IO08NDB0V0	C2	IO308NDB7V4	E2	GNDQ
A3	IO08PDB0V0	C3	GAA2/IO309PPB7V4	E3	VMV7
A4	IO10NDB0V1	C4	GAA1/IO00PPB0V0	E4	IO307NPB7V4
A5	IO10PDB0V1	C5	VMV0	E5	VCCPLA
A6	IO12PDB0V1	C6	IO14NDB0V1	E6	GAB0/IO01NPB0V0
A7	GND	C7	IO18PDB0V2	E7	VCCIB0
A8	IO32NDB0V3	C8	IO40NDB0V4	E8	GND
A9	IO32PDB0V3	C9	IO40PDB0V4	E9	IO28NDB0V3
A10	IO42PPB1V0	C10	IO44PDB1V0	E10	IO48PDB1V0
A11	IO52NPB1V1	C11	IO56NDB1V1	E11	GND
A12	GND	C12	IO64NDB1V2	E12	VCCIB1
A13	IO66NDB1V3	C13	IO64PDB1V2	E13	IO60NPB1V2
A14	IO72NDB1V3	C14	VMV1	E14	VCCPLB
A15	IO72PDB1V3	C15	GBC0/IO79NDB1V4	E15	IO82NDB2V0
A16	IO74NDB1V4	C16	GBC1/IO79PDB1V4	E16	VMV2
A17	IO74PDB1V4	C17	GBB2/IO83PPB2V0	E17	GNDQ
A18	GND	C18	IO88NDB2V0	E18	IO90NDB2V1
B1	IO305PDB7V3	D1	IO303PDB7V3	F1	IO299NDB7V3
B2	GAB2/IO308PDB7V4	D2	VCCIB7	F2	IO299PDB7V3
B3	GAA0/IO00NPB0V0	D3	GAC2/IO307PPB7V4	F3	IO295PDB7V2
B4	VCCIB0	D4	IO309NPB7V4	F4	IO295NDB7V2
B5	GNDQ	D5	GAB1/IO01PPB0V0	F5	VCOMPLA
B6	IO12NDB0V1	D6	IO14PDB0V1	F6	IO291PPB7V2
B7	IO18NDB0V2	D7	IO24NDB0V2	F7	GAC0/IO02NDB0V0
B8	VCCIB0	D8	IO24PDB0V2	F8	GAC1/IO02PDB0V0
B9	IO42NPB1V0	D9	IO28PDB0V3	F9	IO26PDB0V3
B10	IO44NDB1V0	D10	IO48NDB1V0	F10	IO34PDB0V4
B11	VCCIB1	D11	IO56PDB1V1	F11	IO58NDB1V2
B12	IO52PPB1V1	D12	IO60PPB1V2	F12	IO58PDB1V2
B13	IO66PDB1V3	D13	GBB0/IO80NDB1V4	F13	IO94PPB2V1
B14	GNDQ	D14	GBB1/IO80PDB1V4	F14	VCOMPLB
B15	VCCIB1	D15	GBA2/IO82PDB2V0	F15	GBC2/IO84PDB2V0
B16	GBA0/IO81NDB1V4	D16	IO83NPB2V0	F16	IO84NDB2V0
B17	GBA1/IO81PDB1V4	D17	VCCIB2	F17	IO92NDB2V1
B18	IO88PDB2V0	D18	IO90PDB2V1	F18	IO92PDB2V1



Package Pin Assignments

FG484		FG484		FG484		
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	
H19	IO67PDB2V1	K11	GND	M3	IO189NDB6V2	
H20	VCC	K12	GND	M4	GFA2/IO189PDB6V2	
H21	VMV2	K13	GND	M5	GFA1/IO190PDB6V2	
H22	IO74PSB2V2	K14	VCC	M6	VCCPLF	
J1	IO212NDB7V2	K15	VCCIB2	M7	IO188NDB6V2	
J2	IO212PDB7V2	K16	GCC1/IO85PPB2V3	M8	GFB2/IO188PDB6V2	
J3	VMV7	K17	IO73NDB2V2	M9	VCC	
J4	IO206PDB7V1	K18	IO73PDB2V2	M10	GND	
J5	IO204PDB7V1	K19	IO81NPB2V3	M11	GND	
J6	IO210PDB7V2	K20	IO75NPB2V2	M12	GND	
J7	IO215NDB7V3	K21	IO77NDB2V2	M13	GND	
J8	VCCIB7	K22	IO79NDB2V3	M14	VCC	
J9	GND	L1	NC	M15	GCB2/IO89PPB3V0	
J10	VCC	L2	IO196PDB7V0	M16	GCA1/IO87PPB3V0	
J11	VCC	L3	IO196NDB7V0	M17	GCC2/IO90PPB3V0	
J12	VCC	L4	GFB0/IO191NPB7V0	M18	VCCPLC	
J13	VCC	L5	GFA0/IO190NDB6V2	M19	GCA2/IO88PDB3V0	
J14	GND	L6	GFB1/IO191PPB7V0	M20	IO88NDB3V0	
J15	VCCIB2	L7	VCOMPLF	M21	IO93PDB3V0	
J16	IO60NDB2V0	L8	GFC0/IO192NPB7V0	M22	NC	
J17	IO65NDB2V1	L9	VCC	N1	IO185PPB6V2	
J18	IO65PDB2V1	L10	GND	N2	IO183NDB6V2	
J19	IO75PPB2V2	L11	GND	N3	VMV6	
J20	GNDQ	L12	GND	N4	GFC2/IO187PPB6V2	
J21	IO77PDB2V2	L13	GND	N5	IO184PPB6V2	
J22	IO79PDB2V3	L14	VCC	N6	IO186PDB6V2	
K1	IO200NDB7V1	L15	GCC0/IO85NPB2V3	N7	IO186NDB6V2	
K2	IO200PDB7V1	L16	GCB1/IO86PPB2V3	N8	VCCIB6	
K3	GNDQ	L17	GCA0/IO87NPB3V0	N9	VCC	
K4	IO206NDB7V1	L18	VCOMPLC	N10	GND	
K5	IO204NDB7V1	L19	GCB0/IO86NPB2V3	N11	GND	
K6	IO210NDB7V2	L20	IO81PPB2V3	N12	GND	
K7	GFC1/IO192PPB7V0	L21	IO83NDB2V3	N13	GND	
K8	VCCIB7	L22	IO83PDB2V3	N14	VCC	
K9	VCC	M1	GNDQ	N15	VCCIB3	
K10	GND	M2	IO185NPB6V2	N16	IO89NPB3V0	

FG896

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

Revision	Changes	Page	
Revision 9 (Aug 2009)	All references to speed grade –F have been removed from this document.	N/A	
Product Brief v1.2			
	The "Pro I/Os with Advanced I/O Standards" section was revised to add definitions of hot-swap and cold-sparing.		
DC and Switching Characteristics v1.3	$3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained 3.3 V LVCMOS and 1.2 V LVCMOS data.		
	IIL and IIH input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.		
	-F was removed from the datasheet. The speed grade is no longer supported.		
	In the Table 2-2 • Recommended Operating Conditions ¹ "3.0 V DC supply voltage" and note 4 are new.		
	The Table 2-4 • Overshoot and Undershoot Limits ¹ table was updated.		
	The Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays table was updated.		
	There are new parameters and data was updated in the Table 2-99 • RAM4K9 table.		
	There are new parameters and data was updated in the Table 2-100 • RAM512X18 table.		
Revision 8 (Feb 2008)	Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions is new.	1-II	
Product Brief v1.1			
Revision 7 (Jun 2008) DC and Switching Characteristics v1.2	normania la managementa en aviet 1/0 ll Table ante O viene aviendate anne i		
	Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels was updated.		
Revision 6 (Jun 2008)	The A3PE600 "FG484" table was missing G22. The pin and its function were added to the table.		
Revision 5 (Jun 2008) Packaging v1.4	The naming conventions changed for the following pins in the "FG484" for the A3PE600:		
	Pin Number New Function Name		
	J19 IO45PPB2V1		
	K20 IO45NPB2V1		
	M2 IO114NPB6V1		
	N1 IO114PPB6V1		
	N4 GFC2/IO115PPB6V1		
	P3 IO115NPB6V1		
Revision 4 (Apr 2008) Product Brief v1.0) The product brief portion of the datasheet was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview.		
Packaging v1.3	The "FG324" package diagram was replaced.	4-12	

Revision	Changes	Page
v2.1 (continued)	The words "ambient temperature" were added to the temperature range in the "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix" sections.	
	The "Clock Conditioning Circuit (CCC) and PLL" section was updated.	1-I
	The caption "Main (chip)" in Figure 2-9 • Overview of Automotive ProASIC3 VersaNet Global Network was changed to "Chip (main)."	
	The T_J parameter in Table 3-2 • Recommended Operating Conditions was changed to T_A , ambient temperature, and table notes 4–6 were added.	3-2
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15
v2.0 (April 2007)	In the "Temperature Grade Offerings" section, Ambient was deleted.	iii
	Ambient was deleted from "Temperature Grade Offerings".	iii
	Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".	iv
	The "PLL Macro" section was updated to include power-up information.	2-15
	Table 2-13 • ProASIC3E CCC/PLL Specification was updated.	2-30
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21
	The "RESET" section was updated with read and write information.	2-25
	The "RESET" section was updated with read and write information.	2-25
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	
	Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64
	Notes 3, 4, and 5 were added to Table 2-17 \cdot Comparison Table for 5 V– Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.	2-40
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50
	The "VPUMP Programming Supply Voltage" section was updated.	2-50
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	
	VJTAG was deleted from the "TCK Test Clock" section.	2-51
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os).	3-2
	In EQ 3-2, 150 was changed to 110 and the result changed to 5.88.	3-5

Datasheet Information

Revision	Changes	Page
Advance v0.5 (continued)		
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.	2-51
	The "Programming" section was updated to include information concerning serialization.	2-53
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54
	The "DC and Switching Characteristics" chapter was updated with new information.	Starting on page 3-1
	Table 3-6 was updated.	3-5
	In Table 3-10, PAC4 was updated.	
	Table 3-19 was updated.	3-20
	The note in Table 3-24 was updated.	3-23
	All Timing Characteristics tables were updated from LVTTL to Register Delays	3-26 to 3-64
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-74 to 3-79
	F _{TCKMAX} was updated in Table 3-98.	3-80
Advance v0.4 (October 2005)	The "Packaging Tables" table was updated.	ii
Advance v0.3	Figure 2-11 was updated.	2-9
	The "Clock Resources (VersaNets)" section was updated.	2-9
	The "VersaNet Global Networks and Spine Access" section was updated.	2-9
	The "PLL Macro" section was updated.	2-15
	Figure 2-27 was updated.	2-28
	Figure 2-20 was updated.	2-19
	Table 2-5 was updated.	2-25
	Table 2-6 was updated.	2-25
	The "FIFO Flag Usage Considerations" section was updated.	2-27
	Table 2-33 was updated.	2-51
	Figure 2-24 was updated.	2-31
	The "Cold-Sparing Support" section is new.	2-34
	Table 2-45 was updated.	2-64
	Table 2-48 was updated.	2-81
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "Pin Descriptions" section was updated.	2-50
	Table 3-7 was updated.	3-6

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3E Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at *Microsemi SoC Reliability Report*. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.