

Welcome to E-XFL.COM

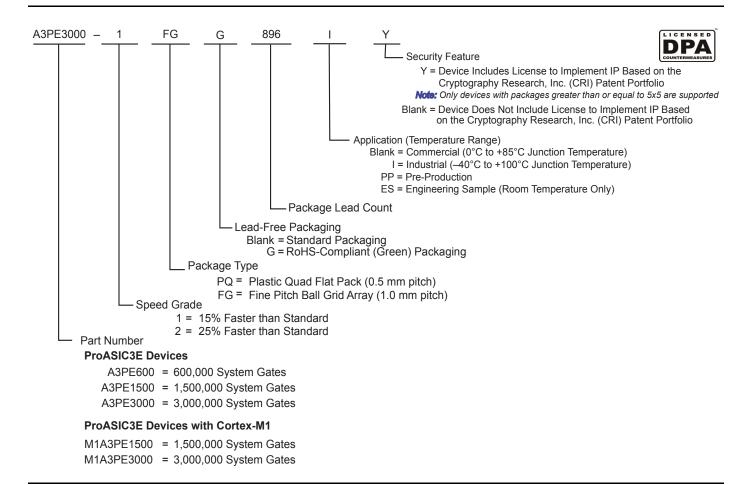
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


E-XF

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	444
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3pe1500-2fgg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3E Ordering Information

Microsemi.

ProASIC3E DC and Switching Characteristics

Symbol	Para	meter	Commercial	Industrial	Units
T _A	Ambient temperature		0 to +70	-40 to +85	°C
TJ	Junction temperature		0 to +85	-40 to +100	°C
VCC	1.5 V DC core supply volta	age	1.425 to 1.575	1.425 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage	Programming Mode ²	3.15 to 3.45	3.15 to 3.45	V
		Operation ³	0 to 3.6	0 to 3.6	V
VCCPLL	Analog power supply (PLL	_)	1.425 to 1.575	1.425 to 1.575	V
VCCI and VMV ⁴	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	3.0 V DC supply voltage ⁵		2.7 to 3.6	2.7 to 3.6	V
	LVDS/B-LVDS/M-LVDS dif	fferential I/O	2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Table 2-2 • Recommended Operating Conditions¹

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

2. The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to $85^{\circ}C$.

3. VPUMP can be left floating during normal operation (not programming mode).

- 4. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-13 on page 2-16. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.
- 5. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools.
- 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature¹

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

ProASIC3E DC and Switching Characteristics

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLXL exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 on page 2-4 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels ($0.75 V \pm 0.25 V$), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *ProASIC3E FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

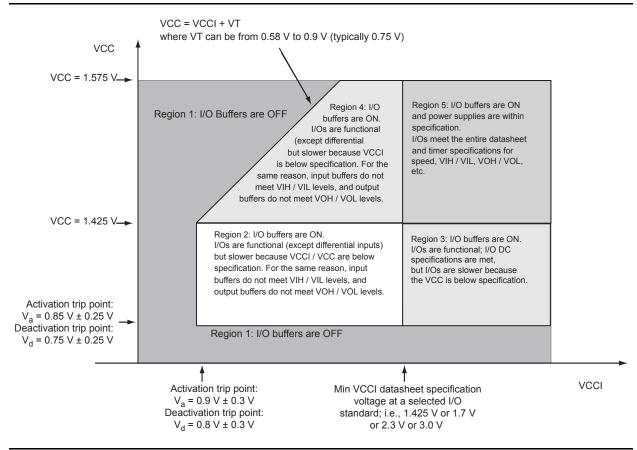


Figure 2-1 • I/O State as a Function of VCCI and VCC Voltage Levels

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-11 on page 2-11.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-12 on page 2-11.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-12 on page 2-11. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

P_{STAT} = PDC1 + N_{INPUTS} * PDC2 + N_{OUTPUTS} * PDC3

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL} * PAC4) * F_{CLK}

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3E FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3E FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 P_{S-CELL} = N_{S-CELL} * (PAC5 + α_1 / 2 * PAC6) * F_{CLK}

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on page 2-11.

F_{CLK} is the global clock signal frequency.

Com	mercial ¹	Industrial ²		
IIL ³	IIH ⁴	IIL ³	IIH ⁴	
μA	μΑ	μΑ	μA	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
	IIL ³ μA 10	μ A μ A 10 10	IIL ³ IIH ⁴ IIL ³ μA μA μA 10 10 15 10 10	

Table 2-14 • Summary of Maximum and Minimum DC Input Levels
Applicable to Commercial and Industrial Conditions

Notes:

1. Commercial range (0°C < T_A < 70°C) 2. Industrial range (-40°C < T_A < 85°C)

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.66	12.00	0.04	1.51	1.66	0.43	12.23	11.61	2.72	2.20	14.46	13.85	ns
	-1	0.56	10.21	0.04	1.29	1.41	0.36	10.40	9.88	2.31	1.87	12.30	11.78	ns
	-2	0.49	8.96	0.03	1.13	1.24	0.32	9.13	8.67	2.03	1.64	10.80	10.34	ns
8 mA	Std.	0.66	8.73	0.04	1.51	1.66	0.43	8.89	8.01	3.10	2.93	11.13	10.25	ns
	-1	0.56	7.43	0.04	1.29	1.41	0.36	7.57	6.82	2.64	2.49	9.47	8.72	ns
	-2	0.49	6.52	0.03	1.13	1.24	0.32	6.64	5.98	2.32	2.19	8.31	7.65	ns
12 mA	Std.	0.66	6.77	0.04	1.51	1.66	0.43	6.90	6.11	3.37	3.39	9.14	8.34	ns
	-1	0.56	5.76	0.04	1.29	1.41	0.36	5.87	5.20	2.86	2.89	7.77	7.10	ns
	-2	0.49	5.06	0.03	1.13	1.24	0.32	5.15	4.56	2.51	2.53	6.82	6.23	ns
16 mA	Std.	0.66	6.31	0.04	1.51	1.66	0.43	6.42	5.73	3.42	3.52	8.66	7.96	ns
	-1	0.56	5.37	0.04	1.29	1.41	0.36	5.46	4.87	2.91	3.00	7.37	6.77	ns
	-2	0.49	4.71	0.03	1.13	1.24	0.32	4.80	4.28	2.56	2.63	6.47	5.95	ns
24 mA	Std.	0.66	5.93	0.04	1.51	1.66	0.43	6.04	5.70	3.49	4.00	8.28	7.94	ns
	-1	0.56	5.05	0.04	1.29	1.41	0.36	5.14	4.85	2.97	3.40	7.04	6.75	ns
	-2	0.49	4.43	0.03	1.13	1.24	0.32	4.51	4.26	2.61	2.99	6.18	5.93	ns

Table 2-36 • 2.5 V LVCMOS Low Slew

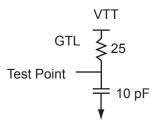
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Voltage-Referenced I/O Characteristics

3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-48 • Minimum and Maximum DC Input and Output Levels


3.3 V GTL	VIL		VIH		VIL VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²		
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20	181	268	10	10		

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.

Figure 2-12 • AC Loading

Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: **Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.*

Timing Characteristics

Table 2-50 • 3.3 V GTL

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.08	0.04	2.93	0.43	2.04	2.08			4.27	4.31	ns
-1	0.51	1.77	0.04	2.50	0.36	1.73	1.77			3.63	3.67	ns
-2	0.45	1.55	0.03	2.19	0.32	1.52	1.55			3.19	3.22	ns

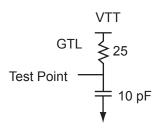
🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-51 • Minimum and Maximum DC Input and Output Levels


2.5 GTL		VIL	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min., V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20	124	169	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.

Figure 2-13 • AC Loading

Table 2-52 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

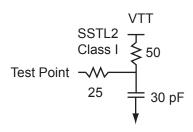
Timing Characteristics

Table 2-53 • 2.5 V GTL

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.13	0.04	2.46	0.43	2.16	2.13			4.40	4.36	ns
-1	0.51	1.81	0.04	2.09	0.36	1.84	1.81			3.74	3.71	ns
-2	0.45	1.59	0.03	1.83	0.32	1.61	1.59			3.28	3.26	ns

SSTL2 Class I


Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class I		VIL	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
15 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	15	15	87	83	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-18 • AC Loading

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-68 • SSTL 2 Class I

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.13	0.04	1.33	0.43	2.17	1.85			4.40	4.08	ns
–1	0.56	1.81	0.04	1.14	0.36	1.84	1.57			3.74	3.47	ns
-2	0.49	1.59	0.03	1.00	0.32	1.62	1.38			3.29	3.05	ns

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by the Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-22. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, ProASIC3E also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

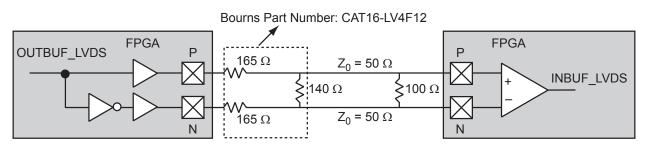


Figure 2-22 • LVDS Circuit Diagram and Board-Level Implementation

Microsemi

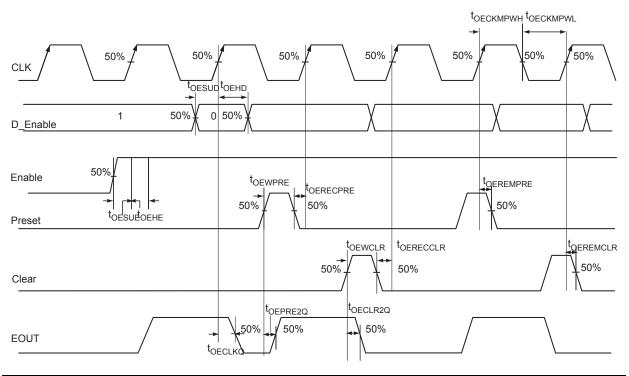

ProASIC3E DC and Switching Characteristics

Table 2-84 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
tOESUD	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OESUE}	Enable Setup Time for the Output Enable Register	K, H
t _{OEHE}	Enable Hold Time for the Output Enable Register	K, H
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Note: *See Figure 2-25 on page 2-53 for more information.

Figure 2-29 • Output Enable Register Timing Diagram

Timing Characteristics

Table 2-88 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.59	0.67	0.79	ns
tOESUD	Data Setup Time for the Output Enable Register	0.31	0.36	0.42	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.50	0.58	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.36	0.41	0.48	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.32	0.37	0.43	ns

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-93 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	-2	-1	Std.	Units
INV	Y = !A	t _{PD}	0.40	0.46	0.54	ns
AND2	$Y = A \cdot B$	t _{PD}	0.47	0.54	0.63	ns
NAND2	Y = !(A · B)	t _{PD}	0.47	0.54	0.63	ns
OR2	Y = A + B	t _{PD}	0.49	0.55	0.65	ns
NOR2	Y = !(A + B)	t _{PD}	0.49	0.55	0.65	ns
XOR2	Y = A ⊕ B	t _{PD}	0.74	0.84	0.99	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	0.70	0.79	0.93	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	0.87	1.00	1.17	ns
MUX2	Y = A !S + B S	t _{PD}	0.51	0.58	0.68	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	0.56	0.64	0.75	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

VersaTile Specifications as a Sequential Module

The ProASIC3E library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide*.

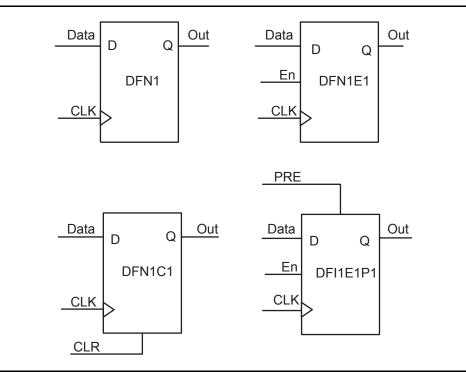


Figure 2-36 • Sample of Sequential Cells

ProASIC3E DC and Switching Characteristics

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

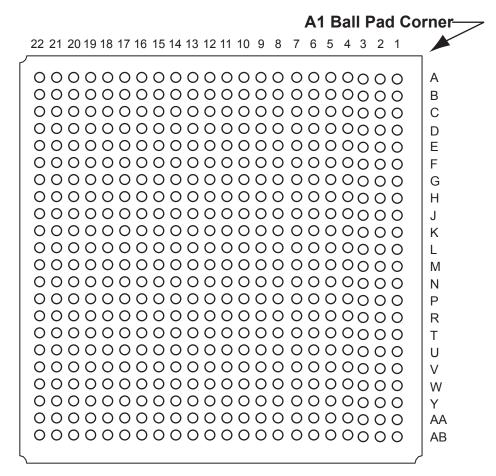
Table 2-98 • ProASIC3E CCC/PLL Specification

Parameter		Minimum	Typical	Maximum	Units
Clock Conditioning Circuitry Inp	out Frequency f _{IN_CCC}	1.5		350	MHz
Clock Conditioning Circuitry Ou	tput Frequency f _{OUT_CCC}	0.75		350	MHz
Delay Increments in Programm	able Delay Blocks ^{1, 2}		160 ³		ps
Serial Clock (SCLK) for Dynam	ic PLL ⁴			125	MHz
Number of Programmable Valu Programmable Delay Block			32		
Input Period Jitter			1.5	ns	
CCC Output Peak-to-Peak Per	od Jitter F _{CCC_OUT}	Max	<pre> Peak-to-Pe </pre>	ak Period Jitter	
		1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz	0.50%		0.70%		
24 MHz to 100 MHz	1.00%		1.20%		
100 MHz to 250 MHz		1.75%		2.00%	
250 MHz to 350 MHz		2.50%		5.60%	
Acquisition Time	LockControl = 0			300	μs
	LockControl = 1			6.0	ms
Tracking Jitter ⁵	LockControl = 0			1.6	ns
	LockControl = 1			0.8	ns
Output Duty Cycle	48.5		51.5	%	
Delay Range in Block: Program	0.6		5.56	ns	
Delay Range in Block: Program	imable Delay 2 ^{1,2}	0.025		5.56	ns
Delay Range in Block: Fixed D	elay ^{1,4}		2.2		ns

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-5 for deratings

2. $T_J = 25^{\circ}C$, VCC = 1.5 V.


3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help for more information.

4. Maximum value obtained for a -2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

FG484

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

	FG484		FG484
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function
A1	GND	AA15	NC
A2	GND	AA16	IO71NDB4V0
A3	VCCIB0	AA17	IO71PDB4V0
A4	IO06NDB0V1	AA18	NC
A5	IO06PDB0V1	AA19	NC
A6	IO08NDB0V1	AA20	NC
A7	IO08PDB0V1	AA21	VCCIB3
A8	IO11PDB0V1	AA22	GND
A9	IO17PDB0V2	AB1	GND
A10	IO18NDB0V2	AB2	GND
A11	IO18PDB0V2	AB3	VCCIB5
A12	IO22PDB1V0	AB4	IO97NDB5V2
A13	IO26PDB1V0	AB5	IO97PDB5V2
A14	IO29NDB1V1	AB6	IO93NDB5V1
A15	IO29PDB1V1	AB7	IO93PDB5V1
A16	IO31NDB1V1	AB8	IO87NDB5V0
A17	IO31PDB1V1	AB9	IO87PDB5V0
A18	IO32NDB1V1	AB10	NC
A19	NC	AB11	NC
A20	VCCIB1	AB12	IO75NDB4V1
A21	GND	AB13	IO75PDB4V1
A22	GND	AB14	IO72NDB4V0
AA1	GND	AB15	IO72PDB4V0
AA2	VCCIB6	AB16	IO73NDB4V0
AA3	NC	AB17	IO73PDB4V0
AA4	IO98PDB5V2	AB18	NC
AA5	IO96NDB5V2	AB19	NC
AA6	IO96PDB5V2	AB20	VCCIB4
AA7	IO86NDB5V0	AB21	GND
AA8	IO86PDB5V0	AB22	GND
AA9	IO85PDB5V0	B1	GND
AA10	IO85NDB5V0	B2	VCCIB7
AA11	IO78PPB4V1	B3	NC
AA12	IO79NDB4V1	B4	IO03NDB0V0
AA13	IO79PDB4V1	B5	IO03PDB0V0
AA14	NC	B6	IO07NDB0V1

	FG484
Pin Number	A3PE600 Function
B7	IO07PDB0V1
B8	IO11NDB0V1
B9	IO17NDB0V2
B10	IO14PDB0V2
B11	IO19PDB0V2
B12	IO22NDB1V0
B13	IO26NDB1V0
B14	NC
B15	NC
B16	IO30NDB1V1
B17	IO30PDB1V1
B18	IO32PDB1V1
B19	NC
B20	NC
B21	VCCIB2
B22	GND
C1	VCCIB7
C2	NC
C3	NC
C4	NC
C5	GND
C6	IO04NDB0V0
C7	IO04PDB0V0
C8	VCC
C9	VCC
C10	IO14NDB0V2
C11	IO19NDB0V2
C12	NC
C13	NC
C14	VCC
C15	VCC
C16	NC
C17	NC
C18	GND
C19	NC
C20	NC

	FG484	
Pin Number	A3PE600 Function	Pin Numbe
H19	IO41PDB2V0	K11
H20	VCC	K12
H21	NC	K13
H22	NC	K14
J1	IO123NDB7V0	K15
J2	IO123PDB7V0	K16
J3	NC	K17
J4	IO124PDB7V0	K18
J5	IO125PDB7V0	K19
J6	IO126PDB7V0	K20
J7	IO130NDB7V1	K21
J8	VCCIB7	K22
J9	GND	L1
J10	VCC	L2
J11	VCC	L3
J12	VCC	L4
J13	VCC	L5
J14	GND	L6
J15	VCCIB2	L7
J16	IO38NDB2V0	L8
J17	IO40NDB2V0	L9
J18	IO40PDB2V0	L10
J19	IO45PPB2V1	L11
J20	NC	L12
J21	IO48PDB2V1	L13
J22	IO46PDB2V1	L14
K1	IO121NDB7V0	L15
K2	IO121PDB7V0	L16
K3	NC	L17
K4	IO124NDB7V0	L18
K5	IO125NDB7V0	L19
K6	IO126NDB7V0	L20
K7	GFC1/IO120PPB7V0	L21
K8	VCCIB7	L22
K9	VCC	M1
K10	GND	M2

	FG484	
ıber	A3PE600 Function	Pin Numb
	GND	M3
	GND	M4
	GND	M5
	VCC	M6
	VCCIB2	M7
	GCC1/IO50PPB2V1	M8
	IO44NDB2V1	M9
	IO44PDB2V1	M10
	IO49NPB2V1	M11
	IO45NPB2V1	M12
	IO48NDB2V1	M13
	IO46NDB2V1	M14
	NC	M15
	IO122PDB7V0	M16
	IO122NDB7V0	M17
	GFB0/IO119NPB7V0	M18
	GFA0/IO118NDB6V1	M19
	GFB1/IO119PPB7V0	M20
	VCOMPLF	M21
	GFC0/IO120NPB7V0	M22
	VCC	N1
	GND	N2
	GND	N3
	GND	N4
	GND	N5
	VCC	N6
	GCC0/IO50NPB2V1	N7
	GCB1/IO51PPB2V1	N8
	GCA0/IO52NPB3V0	N9
	VCOMPLC	N10
	GCB0/IO51NPB2V1	N11
	IO49PPB2V1	N12
	IO47NDB2V1	N13
	IO47PDB2V1	N14
	NC	N15
	IO114NPB6V1	N16

FG484						
Pin Number A3PE600 Function						
M3	IO117NDB6V1					
M4	GFA2/IO117PDB6V1					
M5	GFA1/IO118PDB6V1					
M6	VCCPLF					
M7	IO116NDB6V1					
M8	GFB2/IO116PDB6V1					
-	VCC					
M9						
M10	GND					
M11	GND					
M12	GND					
M13	GND					
M14	VCC					
M15	GCB2/IO54PPB3V0					
M16	GCA1/IO52PPB3V0					
M17	GCC2/IO55PPB3V0					
M18	VCCPLC					
M19	GCA2/IO53PDB3V0					
M20	IO53NDB3V0					
M21	IO56PDB3V0					
M22	NC					
N1	IO114PPB6V1					
N2	IO111NDB6V1					
N3	NC					
N4	GFC2/IO115PPB6V1					
N5	IO113PPB6V1					
N6	IO112PDB6V1					
N7	IO112NDB6V1					
N8	VCCIB6					
N9	VCC					
N10	GND					
N11	GND					
N12	GND					
N13	GND					
N14	VCC					
N15	VCCIB3					
N16	IO54NPB3V0					

FG896		FG896		FG896	
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
AG9	IO225NPB5V3	AH15	IO195NDB5V0	AJ21	IO173PDB4V2
AG10	IO223NPB5V3	AH16	IO185NDB4V3	AJ22	IO163NDB4V1
AG11	IO221PDB5V3	AH17	IO185PDB4V3	AJ23	IO163PDB4V1
AG12	IO221NDB5V3	AH18	IO181PDB4V3	AJ24	IO167NPB4V1
AG13	IO205NPB5V1	AH19	IO177NDB4V2	AJ25	VCC
AG14	IO199NDB5V0	AH20	IO171NPB4V2	AJ26	IO156NPB4V0
AG15	IO199PDB5V0	AH21	IO165PPB4V1	AJ27	VCC
AG16	IO187NDB4V4	AH22	IO161PPB4V0	AJ28	TMS
AG17	IO187PDB4V4	AH23	IO157NDB4V0	AJ29	GND
AG18	IO181NDB4V3	AH24	IO157PDB4V0	AJ30	GND
AG19	IO171PPB4V2	AH25	IO155NDB4V0	AK2	GND
AG20	IO165NPB4V1	AH26	VCCIB4	AK3	GND
AG21	IO161NPB4V0	AH27	TDI	AK4	IO217PPB5V2
AG22	IO159NDB4V0	AH28	VCC	AK5	GND
AG23	IO159PDB4V0	AH29	VPUMP	AK6	IO215PPB5V2
AG24	IO158PPB4V0	AH30	GND	AK7	GND
AG25	GDB2/IO155PDB4V0	AJ1	GND	AK8	IO207NDB5V1
AG26	GDA2/IO154PPB4V0	AJ2	GND	AK9	IO207PDB5V1
AG27	GND	AJ3	GEA2/IO233PPB5V4	AK10	IO201NDB5V0
AG28	VJTAG	AJ4	VCC	AK11	IO201PDB5V0
AG29	VCC	AJ5	IO217NPB5V2	AK12	IO193NDB4V4
AG30	IO149NDB3V4	AJ6	VCC	AK13	IO193PDB4V4
AH1	GND	AJ7	IO215NPB5V2	AK14	IO197PDB5V0
AH2	IO233NPB5V4	AJ8	IO213NDB5V2	AK15	IO191NDB4V4
AH3	VCC	AJ9	IO213PDB5V2	AK16	IO191PDB4V4
AH4	GEB2/IO232PPB5V4	AJ10	IO209NDB5V1	AK17	IO189NDB4V4
AH5	VCCIB5	AJ11	IO209PDB5V1	AK18	IO189PDB4V4
AH6	IO219NDB5V3	AJ12	IO203NDB5V1	AK19	IO179PPB4V3
AH7	IO219PDB5V3	AJ13	IO203PDB5V1	AK20	IO175NDB4V2
AH8	IO227NDB5V4	AJ14	IO197NDB5V0	AK21	IO175PDB4V2
AH9	IO227PDB5V4	AJ15	IO195PDB5V0	AK22	IO169NDB4V1
AH10	IO225PPB5V3	AJ16	IO183NDB4V3	AK23	IO169PDB4V1
AH11	IO223PPB5V3	AJ17	IO183PDB4V3	AK24	GND
AH12	IO211NDB5V2	AJ18	IO179NPB4V3	AK25	IO167PPB4V1
AH13	IO211PDB5V2	AJ19	IO177PDB4V2	AK26	GND
AH14	IO205PPB5V1	AJ20	IO173NDB4V2	AK27	GDC2/IO156PPB4V0

Revision	Changes	Page	
v2.1 (continued)	The words "ambient temperature" were added to the temperature range in the "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix" sections.		
	The "Clock Conditioning Circuit (CCC) and PLL" section was updated.	1-I	
	The caption "Main (chip)" in Figure 2-9 • Overview of Automotive ProASIC3 VersaNet Global Network was changed to "Chip (main)."		
	The T_J parameter in Table 3-2 • Recommended Operating Conditions was changed to T_A , ambient temperature, and table notes 4–6 were added.	3-2	
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15	
v2.0 (April 2007)	In the "Temperature Grade Offerings" section, Ambient was deleted.	iii	
	Ambient was deleted from "Temperature Grade Offerings".	iii	
	Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".	iv	
	The "PLL Macro" section was updated to include power-up information.	2-15	
	Table 2-13 • ProASIC3E CCC/PLL Specification was updated.	2-30	
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18	
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21	
	The "RESET" section was updated with read and write information.	2-25	
	The "RESET" section was updated with read and write information.	2-25	
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28	
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.		
	Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64	
	Notes 3, 4, and 5 were added to Table 2-17 \cdot Comparison Table for 5 V– Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.	2-40	
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50	
	The "VPUMP Programming Supply Voltage" section was updated.	2-50	
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51	
	VJTAG was deleted from the "TCK Test Clock" section.	2-51	
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51	
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2	
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os).	3-2	
	In EQ 3-2, 150 was changed to 110 and the result changed to 5.88.	3-5	

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.