E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	147
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3pe1500-2pq208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

om file Save to file.			🗍 Show BSR D
Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
BYPASS_IO	ADLIB:INBUF	K1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
LED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
OEa	ADLIB:INBUF	E4	Z
ОЕЬ	ADLIB:INBUF	F1	Z
OSC_EN	ADLIB:INBUF	K3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	R7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF_LVCMOS33U	R6	Z

Figure 1-3 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
 - I/O States during programming are saved to the ADB and resulting programming files after completing programming file generation.

2 – ProASIC3E DC and Switching Characteristics

General Specifications

DC and switching characteristics for –F speed grade targets are based only on simulation.

The characteristics provided for the –F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The –F speed grade is only supported in the commercial temperature range.

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	-0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	-0.3 to 1.65	V
VCCI ²	DC I/O output buffer supply voltage	-0.3 to 3.75	V
VMV ²	DC I/O input buffer supply voltage	-0.3 to 3.75	V
VI	I/O input voltage	 -0.3 V to 3.6 V (when I/O hot insertion mode is enabled) -0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) 	V
T _{STG} ³	Storage temperature	-65 to +150	°C
T _J ³	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-3 on page 2-2.

 VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Microsemi.

ProASIC3E DC and Switching Characteristics

Symbol	Para	meter	Commercial	Industrial	Units
T _A	Ambient temperature		0 to +70	-40 to +85	°C
TJ	Junction temperature		0 to +85	-40 to +100	°C
VCC	1.5 V DC core supply volta	age	1.425 to 1.575	1.425 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage	Programming Mode ²	3.15 to 3.45	3.15 to 3.45	V
		Operation ³	0 to 3.6 0 to 3.6		V
VCCPLL	Analog power supply (PLL	_)	1.425 to 1.575	1.425 to 1.575	V
VCCI and VMV ⁴	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	3.0 V DC supply voltage ⁵	oly voltage ⁵		2.7 to 3.6	V
	LVDS/B-LVDS/M-LVDS dif	fferential I/O	2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Table 2-2 • Recommended Operating Conditions¹

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

2. The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to $85^{\circ}C$.

3. VPUMP can be left floating during normal operation (not programming mode).

- 4. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-13 on page 2-16. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.
- 5. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools.
- 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature¹

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

ProASIC3E DC and Switching Characteristics

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLXL exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 on page 2-4 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels ($0.75 V \pm 0.25 V$), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *ProASIC3E FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

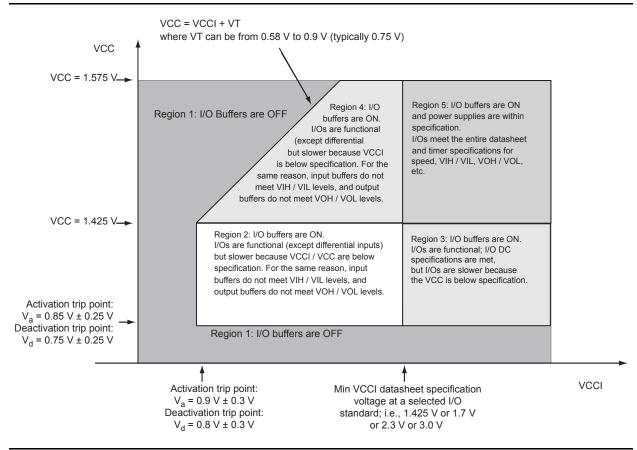


Figure 2-1 • I/O State as a Function of VCCI and VCC Voltage Levels

Detailed I/O DC Characteristics

Table 2-18 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
CINCLK	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-19 • I/O Output Buffer Maximum Resistances¹

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³	
3.3 V LVTTL / 3.3 V LVCMOS	4 mA	100	300	
	8 mA	50	150	
	12 mA	25	75	
	16 mA	17	50	
	24 mA	11	33	
3.3 V LVCMOS Wide Range	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS	
2.5 V LVCMOS	4 mA	100	200	
Ī	8 mA	50	100	
T	12 mA	25	50	
	16 mA	20	40	
Ī	24 mA	11	22	
1.8 V LVCMOS	2 mA	200	225	
	4 mA	100	112	
	6 mA	50	56	
	8 mA	50	56	
	12 mA	20	22	
	16 mA	20	22	
1.5 V LVCMOS	2 mA	200	224	
	4 mA	100	112	
	6 mA	67	75	
	8 mA	33	37	
	12 mA	33	37	
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75	
3.3 V GTL	20 mA ⁴	11	_	
2.5 V GTL	20 mA ⁴	14	_	

Notes:

- These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.
- 2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec
- 3. R_(PULL-UP-MAX) = (VCCImax VOHspec) / IOHspec
- 4. Output drive strength is below JEDEC specification.

Table 2-19 • I/O Output Buffer Maximum Resistances ¹ (c	continued)	
--	------------	--

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	$R_{PULL-UP}$ (Ω) ³		
3.3 V GTL+	35 mA	12	-		
2.5 V GTL+	33 mA	15	-		
HSTL (I)	8 mA	50	50		
HSTL (II)	15 mA ⁴	25	25		
SSTL2 (I)	15 mA	27	31		
SSTL2 (II)	18 mA	13	15		
SSTL3 (I)	14 mA	44	69		
SSTL3 (II)	21 mA	18	32		

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.

- 2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec
- 3. R_(PULL-UP-MAX) = (VCCImax VOHspec) / IOHspec
- 4. Output drive strength is below JEDEC specification.

Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

		CPULL-UP) ¹ (Ω)	R _(WEAK PULL-DOWN) ² (Ω)			
VCCI	Min.	Max.	Min.	Max.		
3.3 V	10 k	45 k	10 k	45 k		
3.3 V (Wide Range I/Os)	10 k	45 k	10 k	45 k		
2.5 V	11 k	55 k	12 k	74 k		
1.8 V	18 k	70 k	17 k	110 k		
1.5 V	19 k	90 k	19 k	140 k		

Notes:

1. R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)

2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)

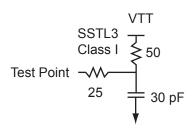
Kicrosemi.

ProASIC3E DC and Switching Characteristics

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
12 mA	Std.	0.66	6.03	0.04	1.20	1.57	0.43	6.14	5.02	3.28	3.47	8.37	7.26	ns
	-1	0.56	5.13	0.04	1.02	1.33	0.36	5.22	4.27	2.79	2.95	7.12	6.17	ns
	-2	0.49	4.50	0.03	0.90	1.17	0.32	4.58	3.75	2.45	2.59	6.25	5.42	ns
16 mA	Std.	0.66	5.62	0.04	1.20	1.57	0.43	5.72	4.72	3.32	3.58	7.96	6.96	ns
	-1	0.56	4.78	0.04	1.02	1.33	0.36	4.87	4.02	2.83	3.04	6.77	5.92	ns
	-2	0.49	4.20	0.03	0.90	1.17	0.32	4.27	3.53	2.48	2.67	5.94	5.20	ns
24 mA	Std.	0.66	5.24	0.04	1.20	1.57	0.43	5.34	4.69	3.39	3.96	7.58	6.93	ns
	-1	0.56	4.46	0.04	1.02	1.33	0.36	4.54	3.99	2.88	3.37	6.44	5.89	ns
	-2	0.49	3.92	0.03	0.90	1.17	0.32	3.99	3.50	2.53	2.96	5.66	5.17	ns

Table 2-28 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

SSTL3 Class I


Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL3 Class I	VIL		VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH II		IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
14 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14	54	51	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-20 • AC Loading

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-74 • SSTL3 Class I

```
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V
```

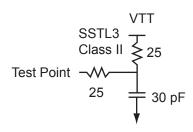
Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.31	0.04	1.25	0.43	2.35	1.84			4.59	4.07	ns
-1	0.56	1.96	0.04	1.06	0.36	2.00	1.56			3.90	3.46	ns
-2	0.49	1.72	0.03	0.93	0.32	1.75	1.37			3.42	3.04	ns

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

SSTL3 Class II

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.


Table 2-75 • Minimum and Maximum DC Input and Output Levels

SSTL3 Class II		VIL	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
21 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21	109	103	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-21 • AC Loading

Table 2-76 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-77 • SSTL3 Class II

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V, VREF = 1.5 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.07	0.04	1.25	0.43	2.10	1.67			4.34	3.91	ns
-1	0.56	1.76	0.04	1.06	0.36	1.79	1.42			3.69	3.32	ns
-2	0.49	1.54	0.03	0.93	0.32	1.57	1.25			3.24	2.92	ns

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by the Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-22. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, ProASIC3E also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

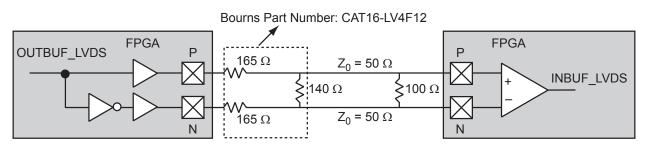


Figure 2-22 • LVDS Circuit Diagram and Board-Level Implementation

Microsemi

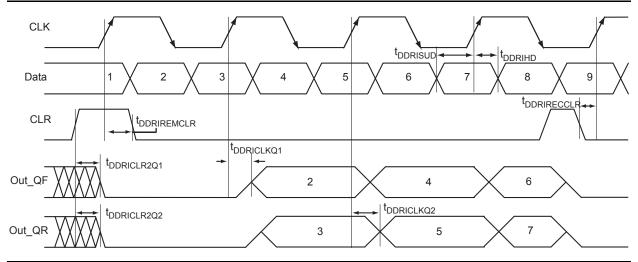

ProASIC3E DC and Switching Characteristics

Table 2-85 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
tosud	Data Setup Time for the Output Data Register	FF, HH
t _{онр}	Data Hold Time for the Output Data Register	FF, HH
tosue	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{oclr2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
toesud	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
toesue	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Note: *See Figure 2-26 on page 2-55 for more information.

Figure 2-31 • Input DDR Timing Diagram

Timing Characteristics

Table 2-90 • Input DDR Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.39	0.44	0.52	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.27	0.31	0.37	ns
t _{DDRISUD}	Data Setup for Input DDR	0.28	0.32	0.38	ns
t _{DDRIHD}	Data Hold for Input DDR	0.00	0.00	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear to Out Out_QR for Input DDR	0.57	0.65	0.76	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.46	0.53	0.62	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	0.00	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.22	0.25	0.30	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.22	0.25	0.30	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width High for Input DDR	0.36	0.41	0.48	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width Low for Input DDR	0.32	0.37	0.43	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	1404	1232	1048	MHz

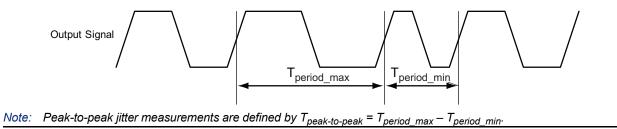
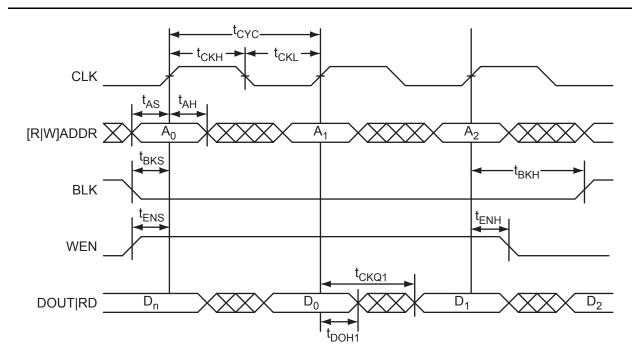



Figure 2-39 • Peak-to-Peak Jitter Definition

Timing Waveforms

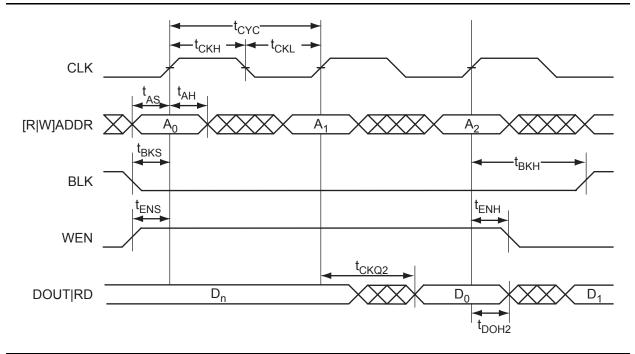


Figure 2-42 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

Pin Descriptions and Packaging

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC

Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

Related Documents

User's Guides

ProASIC3E FPGA Fabric User's Guide

http://www.microsemi.com/document-portal/doc_download/130883-proasic3e-fpga-fabric-user-s-guide

Packaging

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/document-portal/doc_download/131095-package-mechanical-drawings

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials: http://www.microsemi.com/products/fpga-soc/solutions.

Package Pin Assignments

	FG256		FG256		FG256
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function
G13	GCC1/IO50PPB2V1	K1	GFC2/IO115PSB6V1	M5	VMV5
G14	IO44NDB2V1	K2	IO113PPB6V1	M6	VCCIB5
G15	IO44PDB2V1	K3	IO112PDB6V1	M7	VCCIB5
G16	IO49NSB2V1	K4	IO112NDB6V1	M8	IO84NDB5V0
H1	GFB0/IO119NPB7V0	K5	VCCIB6	M9	IO84PDB5V0
H2	GFA0/IO118NDB6V1	K6	VCC	M10	VCCIB4
H3	GFB1/IO119PPB7V0	K7	GND	M11	VCCIB4
H4	VCOMPLF	K8	GND	M12	VMV3
H5	GFC0/IO120NPB7V0	K9	GND	M13	VCCPLD
H6	VCC	K10	GND	M14	GDB1/IO66PPB3V1
H7	GND	K11	VCC	M15	GDC1/IO65PDB3V1
H8	GND	K12	VCCIB3	M16	IO61NDB3V1
H9	GND	K13	IO54NPB3V0	N1	IO105PDB6V0
H10	GND	K14	IO57NPB3V0	N2	IO105NDB6V0
H11	VCC	K15	IO55NPB3V0	N3	GEC1/IO104PPB6V0
H12	GCC0/IO50NPB2V1	K16	IO57PPB3V0	N4	VCOMPLE
H13	GCB1/IO51PPB2V1	L1	IO113NPB6V1	N5	GNDQ
H14	GCA0/IO52NPB3V0	L2	IO109PPB6V0	N6	GEA2/IO101PPB5V2
H15	VCOMPLC	L3	IO108PDB6V0	N7	IO92NDB5V1
H16	GCB0/IO51NPB2V1	L4	IO108NDB6V0	N8	IO90NDB5V1
J1	GFA2/IO117PSB6V1	L5	VCCIB6	N9	IO82NDB5V0
J2	GFA1/IO118PDB6V1	L6	GND	N10	IO74NDB4V1
J3	VCCPLF	L7	VCC	N11	IO74PDB4V1
J4	IO116NDB6V1	L8	VCC	N12	GNDQ
J5	GFB2/IO116PDB6V1	L9	VCC	N13	VCOMPLD
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO65NDB3V1
J8	GND	L12	VCCIB3	N16	GDA1/IO67PDB3V1
J9	GND	L13	GDB0/IO66NPB3V1	P1	GEB1/IO103PDB6V0
J10	GND	L14	IO60NDB3V1	P2	GEB0/IO103NDB6V0
J11	VCC	L15	IO60PDB3V1	P3	VMV6
J12	GCB2/IO54PPB3V0	L16	IO61PDB3V1	P4	VCCPLE
J13	GCA1/IO52PPB3V0	M1	IO109NPB6V0	P5	IO101NPB5V2
J14	GCC2/IO55PPB3V0	M2	IO106NDB6V0	P6	IO95PPB5V1
J15	VCCPLC	M3	IO106PDB6V0	P7	IO92PDB5V1
J16	GCA2/IO53PSB3V0	M4	GEC0/IO104NPB6V0	P8	IO90PDB5V1

🌜 Microsemi.

Package Pin Assignments

	FG324		FG324		FG324
Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA
G1	GND	J1	IO267NDB6V4	L1	IO263NDB6V3
G2	IO287PDB7V1	J2	GFA0/IO273NDB6V4	L2	VCCIB6
G3	IO287NDB7V1	J3	VCOMPLF	L3	IO259PDB6V3
G4	IO283PPB7V1	J4	GFA2/IO272PDB6V4	L4	IO259NDB6V3
G5	VCCIB7	J5	GFB0/IO274NPB7V0	L5	GND
G6	IO279PDB7V0	J6	GFC0/IO275NDB7V0	L6	IO270NPB6V4
G7	IO291NPB7V2	J7	GFC1/IO275PDB7V0	L7	VCC
G8	VCC	J8	GND	L8	VCC
G9	IO26NDB0V3	J9	GND	L9	GND
G10	IO34NDB0V4	J10	GND	L10	GND
G11	VCC	J11	GND	L11	VCC
G12	IO94NPB2V1	J12	GCA2/IO115PDB3V0	L12	VCC
G13	IO98PDB2V2	J13	GCA1/IO114PDB3V0	L13	IO132PDB3V2
G14	VCCIB2	J14	GCA0/IO114NDB3V0	L14	GND
G15	GCC0/IO112NPB2V3	J15	GCB0/IO113NDB2V3	L15	IO117NDB3V0
G16	IO104PDB2V2	J16	VCOMPLC	L16	IO128NPB3V1
G17	IO104NDB2V2	J17	IO120NPB3V0	L17	VCCIB3
G18	GND	J18	IO108NDB2V3	L18	IO124PPB3V1
H1	IO267PDB6V4	K1	IO263PDB6V3	M1	GND
H2	VCCIB7	K2	GFA1/IO273PDB6V4	M2	IO255PDB6V2
H3	IO283NPB7V1	K3	VCCPLF	M3	IO255NDB6V2
H4	GFB1/IO274PPB7V0	K4	IO272NDB6V4	M4	IO251PPB6V2
H5	GND	K5	GFC2/IO270PPB6V4	M5	VCCIB6
H6	IO279NDB7V0	K6	GFB2/IO271PDB6V4	M6	GEB0/IO235NDB6V0
H7	VCC	K7	IO271NDB6V4	M7	GEB1/IO235PDB6V0
H8	VCC	K8	GND	M8	VCC
H9	GND	K9	GND	M9	IO192PPB4V4
H10	GND	K10	GND	M10	IO154NPB4V0
H11	VCC	K11	GND	M11	VCC
H12	VCC	K12	IO115NDB3V0	M12	GDA0/IO153NPB3V4
H13	IO98NDB2V2	K13	GCB2/IO116PDB3V0	M13	IO132NDB3V2
H14	GND	K14	IO116NDB3V0	M14	VCCIB3
H15	GCB1/IO113PDB2V3	K15	GCC2/IO117PDB3V0	M15	IO134NDB3V2
H16	GCC1/IO112PPB2V3	K16	VCCPLC	M16	IO134PDB3V2
H17	VCCIB2	K17	IO124NPB3V1	M17	IO128PPB3V1
H18	IO108PDB2V3	K18	IO120PPB3V0	M18	GND

FG896		FG896		FG896		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
E17	IO49PDB1V1	F23	IO72PDB1V3	G29	IO100PPB2V2	
E18	IO50PDB1V1	F24	GNDQ	G30	GND	
E19	IO58PDB1V2	F25	GND	H1	IO294PDB7V2	
E20	IO60NDB1V2	F26	VMV2	H2	IO294NDB7V2	
E21	IO77PDB1V4	F27	IO86PDB2V0	H3	IO300NDB7V3	
E22	IO68NDB1V3	F28	IO92PDB2V1	H4	IO300PDB7V3	
E23	IO68PDB1V3	F29	VCC	H5	IO295PDB7V2	
E24	VCCIB1	F30	IO100NPB2V2	H6	IO299PDB7V3	
E25	IO74PDB1V4	G1	GND	H7	VCOMPLA	
E26	VCC	G2	IO296NPB7V2	H8	GND	
E27	GBB1/IO80PPB1V4	G3	IO306NDB7V4	H9	IO08NDB0V0	
E28	VCCIB2	G4	IO297NDB7V2	H10	IO08PDB0V0	
E29	IO82NPB2V0	G5	VCCIB7	H11	IO18PDB0V2	
E30	GND	G6	GNDQ	H12	IO26NPB0V3	
F1	IO296PPB7V2	G7	VCC	H13	IO28NDB0V3	
F2	VCC	G8	VMV0	H14	IO28PDB0V3	
F3	IO306PDB7V4	G9	VCCIB0	H15	IO38PPB0V4	
F4	IO297PDB7V2	G10	IO10NDB0V1	H16	IO42NDB1V0	
F5	VMV7	G11	IO16NDB0V1	H17	IO52NDB1V1	
F6	GND	G12	IO22PDB0V2	H18	IO52PDB1V1	
F7	GNDQ	G13	IO26PPB0V3	H19	IO62NDB1V2	
F8	IO12NDB0V1	G14	IO38NPB0V4	H20	IO62PDB1V2	
F9	IO12PDB0V1	G15	IO36NDB0V4	H21	IO70NDB1V3	
F10	IO10PDB0V1	G16	IO46NDB1V0	H22	IO70PDB1V3	
F11	IO16PDB0V1	G17	IO46PDB1V0	H23	GND	
F12	IO22NDB0V2	G18	IO56NDB1V1	H24	VCOMPLB	
F13	IO30NDB0V3	G19	IO56PDB1V1	H25	GBC2/IO84PDB2V0	
F14	IO30PDB0V3	G20	IO66NDB1V3	H26	IO84NDB2V0	
F15	IO36PDB0V4	G21	IO66PDB1V3	H27	IO96PDB2V1	
F16	IO48NDB1V0	G22	VCCIB1	H28	IO96NDB2V1	
F17	IO48PDB1V0	G23	VMV1	H29	IO89PDB2V0	
F18	IO50NDB1V1	G24	VCC	H30	IO89NDB2V0	
F19	IO58NDB1V2	G25	GNDQ	J1	IO290NDB7V2	
F20	IO60PDB1V2	G26	VCCIB2	J2	IO290PDB7V2	
F21	IO77NDB1V4	G27	IO86NDB2V0	J3	IO302NDB7V3	
F22	IO72NDB1V3	G28	IO92NDB2V1	J4	IO302PDB7V3	

Package Pin Assignments

FG896		FG896		FG896		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
T11	VCC	U17	GND	V23	IO128NDB3V1	
T12	GND	U18	GND	V24	IO132PDB3V2	
T13	GND	U19	GND	V25	IO130PPB3V2	
T14	GND	U20	VCC	V26	IO126NDB3V1	
T15	GND	U21	VCCIB3	V27	IO129NDB3V1	
T16	GND	U22	IO120PDB3V0	V28	IO127NDB3V1	
T17	GND	U23	IO128PDB3V1	V29	IO125NDB3V1	
T18	GND	U24	IO124PDB3V1	V30	IO123PDB3V1	
T19	GND	U25	IO124NDB3V1	W1	IO266NDB6V4	
T20	VCC	U26	IO126PDB3V1	W2	IO262NDB6V3	
T21	VCCIB3	U27	IO129PDB3V1	W3	IO260NDB6V3	
T22	IO109NPB2V3	U28	IO127PDB3V1	W4	IO252NDB6V2	
T23	IO116NDB3V0	U29	IO125PDB3V1	W5	IO251NDB6V2	
T24	IO118NDB3V0	U30	IO121NDB3V0	W6	IO251PDB6V2	
T25	IO122NPB3V1	V1	IO268NDB6V4	W7	IO255NDB6V2	
T26	GCA1/IO114PPB3V0	V2	IO262PDB6V3	W8	IO249PPB6V1	
T27	GCB0/IO113NPB2V3	V3	IO260PDB6V3	W9	IO253PDB6V2	
T28	GCA2/IO115PPB3V0	V4	IO252PDB6V2	W10	VCCIB6	
T29	VCCPLC	V5	IO257NPB6V2	W11	VCC	
T30	IO121PDB3V0	V6	IO261NPB6V3	W12	GND	
U1	IO268PDB6V4	V7	IO255PDB6V2	W13	GND	
U2	IO264NDB6V3	V8	IO259PDB6V3	W14	GND	
U3	IO264PDB6V3	V9	IO259NDB6V3	W15	GND	
U4	IO258PDB6V3	V10	VCCIB6	W16	GND	
U5	IO258NDB6V3	V11	VCC	W17	GND	
U6	IO257PPB6V2	V12	GND	W18	GND	
U7	IO261PPB6V3	V13	GND	W19	GND	
U8	IO265NDB6V3	V14	GND	W20	VCC	
U9	IO263NDB6V3	V15	GND	W21	VCCIB3	
U10	VCCIB6	V16	GND	W22	IO134PDB3V2	
U11	VCC	V17	GND	W23	IO138PDB3V3	
U12	GND	V18	GND	W24	IO132NDB3V2	
U13	GND	V19	GND	W25	IO136NPB3V2	
U14	GND	V20	VCC	W26	IO130NPB3V2	
U15	GND	V21	VCCIB3	W27	IO141PDB3V3	
U16	GND	V22	IO120NDB3V0	W28	IO135PDB3V2	

Datasheet Information

Revision	Changes	Page		
Advance v0.5 (continued)	The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused.			
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.			
	The "Programming" section was updated to include information concerning serialization.			
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54		
	The "DC and Switching Characteristics" chapter was updated with new information.	Starting on page 3-1		
	Table 3-6 was updated.			
	In Table 3-10, PAC4 was updated.			
	Table 3-19 was updated.			
	The note in Table 3-24 was updated.	3-23		
	All Timing Characteristics tables were updated from LVTTL to Register Delays	3-26 to 3-64		
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-74 to 3-79		
	F _{TCKMAX} was updated in Table 3-98.	3-80		
Advance v0.4 (October 2005)	The "Packaging Tables" table was updated.	ii		
Advance v0.3	Figure 2-11 was updated.	2-9		
	The "Clock Resources (VersaNets)" section was updated.			
	The "VersaNet Global Networks and Spine Access" section was updated.			
	The "PLL Macro" section was updated.			
	Figure 2-27 was updated.			
	Figure 2-20 was updated.			
	Table 2-5 was updated.	2-25		
	Table 2-6 was updated.	2-25		
	The "FIFO Flag Usage Considerations" section was updated.	2-27		
	Table 2-33 was updated.	2-51		
	Figure 2-24 was updated.	2-31		
	The "Cold-Sparing Support" section is new.	2-34		
	Table 2-45 was updated.	2-64		
	Table 2-48 was updated.	2-81		
	Pin descriptions in the "JTAG Pins" section were updated.	2-51		
	The "Pin Descriptions" section was updated.	2-50		
	Table 3-7 was updated.	3-6		