

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	341
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3pe3000-1fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

static Microsemi.

ProASIC3E Flash Family FPGAs

I/Os Per Package¹

ProASIC3E Devices	A3P	E600	A3PE	1500 ³	A3PE	3000 ³					
Cortex-M1 Devices ²			M1A3F	PE1500	M1A3F	PE3000					
		I/O Types									
Package	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs					
PQ208	147	65	147	65	147	65					
FG256	165	79	-	-	-	-					
FG324	-	-	-	-	221	110					
FG484	270	135	280	139	341	168					
FG676	-	-	444	222	_	-					
FG896	-	-	-	-	620	310					

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3E FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.

- 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 3. For A3PE1500 and A3PE3000 devices, the usage of certain I/O standards is limited as follows:
 - SSTL3(I) and (II): up to 40 I/Os per north or south bank
 - LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
 - SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
- 4. FG256 and FG484 are footprint-compatible packages.
- 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os).
- 6. "G" indicates RoHS-compliant packages. Refer to the "ProASIC3E Ordering Information" on page III for the location of the "G" in the part number.

Package	PQ208	FG256	FG324	FG484	FG676	FG896
Length × Width (mm\mm)	28 × 28	17 × 17	19 × 19	23 × 23	27 × 27	31 × 31
Nominal Area (mm ²)	784	289	361	529	729	961
Pitch (mm)	0.5	1.0	1.0	1.0	1.0	1.0
Height (mm)	3.40	1.60	1.63	2.23	2.23	2.23

Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions

ProASIC3E Device Status

ProASIC3E Devices	Status	M1 ProASIC3E Devices	Status
A3PE600	Production		
A3PE1500	Production	M1A3PE1500	Production
A3PE3000	Production	M1A3PE3000	Production

1 – ProASIC3E Device Family Overview

General Description

ProASIC3E, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3E devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3E is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3E devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on six integrated phase-locked loops (PLLs). ProASIC3E devices have up to three million system gates, supported with up to 504 kbits of true dual-port SRAM and up to 620 user I/Os.

Several ProASIC3E devices support the Cortex-M1 soft IP cores, and the ARM-Enabled devices have Microsemi ordering numbers that begin with M1A3PE.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3E devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3E family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3E family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3E devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3E devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3E devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in ProASIC3E devices can be encrypted prior to loading, using the industryleading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3E devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3E devices with AES-based security provide a high level of protection for secure, remote field updates over public networks such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3E family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3E family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3E device provides the best available security for programmable logic designs.

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

		Equivalent			VIL	VIH		VOL	VOH	IOL ³	IOH ³
I/O Standard	Drive Strength		Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.30 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI					Per PC	CI Specificatio	n				
3.3 V PCI-X					Per PCI	-X Specificati	on				
3.3 V GTL	20 mA ²	20 mA ²	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20
2.5 V GTL	20 mA ²	20 mA ²	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20
3.3 V GTL+	35 mA	35 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35
2.5 V GTL+	33 mA	33 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	33	33
HSTL (I)	8 mA	8 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	8	8
HSTL (II)	15 mA ²	15 mA ²	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	15	15
SSTL2 (I)	15 mA	15 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	15	15
SSTL2 (II)	18 mA	18 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI – 0.43	18	18
SSTL3 (I)	14 mA	14 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14
SSTL3 (II)	21 mA	21 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI - 0.9	21	21

 Table 2-13 • Summary of Maximum and Minimum DC Input and Output Levels

 Applicable to Commercial and Industrial Conditions

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. Output drive strength is below JEDEC specification.

3. Currents are measured at 85°C junction temperature.

4. Output Slew Rates can be extracted from IBIS Models, located at http://www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.

🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.66	12.00	0.04	1.51	1.66	0.43	12.23	11.61	2.72	2.20	14.46	13.85	ns
	-1	0.56	10.21	0.04	1.29	1.41	0.36	10.40	9.88	2.31	1.87	12.30	11.78	ns
	-2	0.49	8.96	0.03	1.13	1.24	0.32	9.13	8.67	2.03	1.64	10.80	10.34	ns
8 mA	Std.	0.66	8.73	0.04	1.51	1.66	0.43	8.89	8.01	3.10	2.93	11.13	10.25	ns
	-1	0.56	7.43	0.04	1.29	1.41	0.36	7.57	6.82	2.64	2.49	9.47	8.72	ns
	-2	0.49	6.52	0.03	1.13	1.24	0.32	6.64	5.98	2.32	2.19	8.31	7.65	ns
12 mA	Std.	0.66	6.77	0.04	1.51	1.66	0.43	6.90	6.11	3.37	3.39	9.14	8.34	ns
	-1	0.56	5.76	0.04	1.29	1.41	0.36	5.87	5.20	2.86	2.89	7.77	7.10	ns
	-2	0.49	5.06	0.03	1.13	1.24	0.32	5.15	4.56	2.51	2.53	6.82	6.23	ns
16 mA	Std.	0.66	6.31	0.04	1.51	1.66	0.43	6.42	5.73	3.42	3.52	8.66	7.96	ns
	-1	0.56	5.37	0.04	1.29	1.41	0.36	5.46	4.87	2.91	3.00	7.37	6.77	ns
	-2	0.49	4.71	0.03	1.13	1.24	0.32	4.80	4.28	2.56	2.63	6.47	5.95	ns
24 mA	Std.	0.66	5.93	0.04	1.51	1.66	0.43	6.04	5.70	3.49	4.00	8.28	7.94	ns
	-1	0.56	5.05	0.04	1.29	1.41	0.36	5.14	4.85	2.97	3.40	7.04	6.75	ns
	-2	0.49	4.43	0.03	1.13	1.24	0.32	4.51	4.26	2.61	2.99	6.18	5.93	ns

Table 2-36 • 2.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

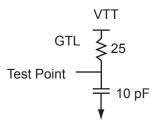
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Voltage-Referenced I/O Characteristics

3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-48 • Minimum and Maximum DC Input and Output Levels


3.3 V GTL		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20	181	268	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.

Figure 2-12 • AC Loading

Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: **Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.*

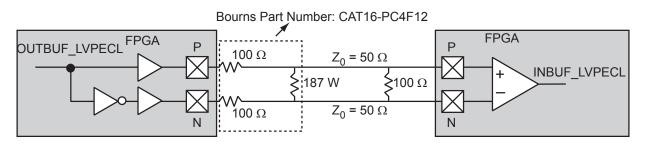
Timing Characteristics

Table 2-50 • 3.3 V GTL

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.08	0.04	2.93	0.43	2.04	2.08			4.27	4.31	ns
-1	0.51	1.77	0.04	2.50	0.36	1.73	1.77			3.63	3.67	ns
-2	0.45	1.55	0.03	2.19	0.32	1.52	1.55			3.19	3.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.



ProASIC3E DC and Switching Characteristics

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-24. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Figure 2-24 • LVPECL Circuit Diagram and Board-Level Implementation

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage	3.	3.0		3.3		3.6	
VOL	Output Low Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
VIL, VIH	Input Low, Input High Voltages	0	3.6	0	3.6	0	3.6	V
VODIFF	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
VOCM	Output Common-Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
VICM	Input Common-Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
VIDIFF	Input Differential Voltage	300		300		300		mV

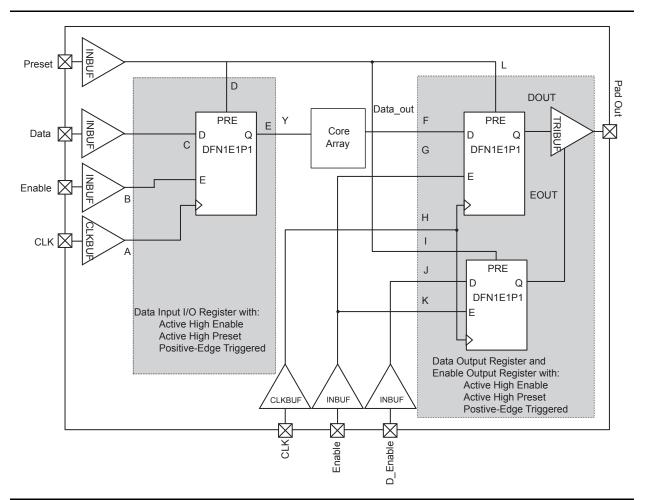
Table 2-81 • Minimum and Maximum DC Input and Output Levels

Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)
1.64	1.94	Cross point	-

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics


Table 2-83 • LVPECL

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.83	0.04	1.63	ns
-1	0.56	1.55	0.04	1.39	ns
-2	0.49	1.36	0.03	1.22	ns

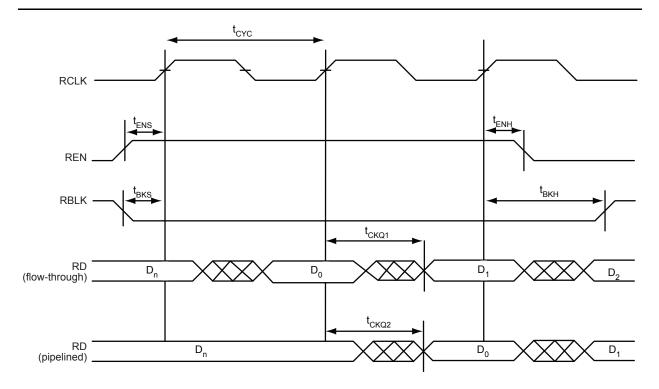
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

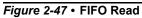
I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-25 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Microsemi


ProASIC3E DC and Switching Characteristics


Table 2-84 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
toesud	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OESUE}	Enable Setup Time for the Output Enable Register	K, H
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Note: *See Figure 2-25 on page 2-53 for more information.

Timing Waveforms

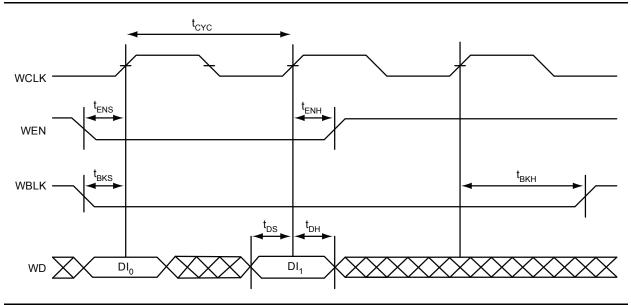


Figure 2-48 • FIFO Write

Pin Descriptions and Packaging

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC

Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

Related Documents

User's Guides

ProASIC3E FPGA Fabric User's Guide

http://www.microsemi.com/document-portal/doc_download/130883-proasic3e-fpga-fabric-user-s-guide

Packaging

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/document-portal/doc_download/131095-package-mechanical-drawings

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

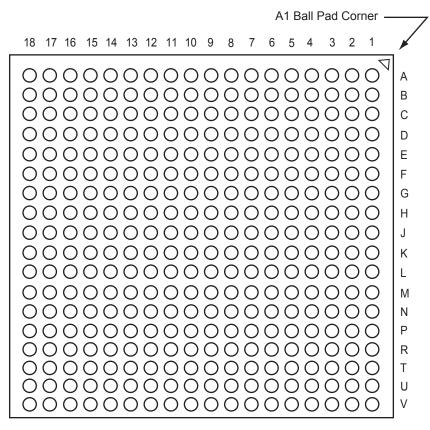
Additional packaging materials: http://www.microsemi.com/products/fpga-soc/solutions.

Microsemi

Package Pin Assignments

	PQ208		PQ208	PQ208	
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function
1	GND	37	IO112PDB6V1	72	VCCIB5
2	GNDQ	38	IO112NDB6V1	73	IO85NPB5V0
3	VMV7	39	IO108PSB6V0	74	IO84NPB5V0
4	GAB2/IO133PSB7V1	40	VCCIB6	75	IO85PPB5V0
5	GAA2/IO134PDB7V1	41	GND	76	IO84PPB5V0
6	IO134NDB7V1	42	IO106PDB6V0	77	IO83NPB5V0
7	GAC2/IO132PDB7V1	43	IO106NDB6V0	78	IO82NPB5V0
8	IO132NDB7V1	44	GEC1/IO104PDB6V0	79	IO83PPB5V0
9	IO130PDB7V1	45	GEC0/IO104NDB6V	80	IO82PPB5V0
10	IO130NDB7V1		0	81	GND
11	IO127PDB7V1	46	GEB1/IO103PPB6V0	82	IO80NDB4V1
12	IO127NDB7V1	47	GEA1/IO102PPB6V0	83	IO80PDB4V1
13	IO126PDB7V0	48	GEB0/IO103NPB6V0	84	IO79NPB4V1
14	IO126NDB7V0	49	GEA0/IO102NPB6V0	85	IO78NPB4V1
15	IO124PSB7V0	50	VMV6	86	IO79PPB4V1
16	VCC	51	GNDQ	87	IO78PPB4V1
17	GND	52	GND	88	VCC
18	VCCIB7	53	VMV5	89	VCCIB4
19	IO122PPB7V0	54	GNDQ	90	IO76NDB4V1
20	IO121PSB7V0	55	IO101NDB5V2	91	IO76PDB4V1
21	IO122NPB7V0	56	GEA2/IO101PDB5V2	92	IO72NDB4V0
22	GFC1/IO120PSB7V0	57	IO100NDB5V2	93	IO72PDB4V0
23	GFB1/IO119PDB7V0	58	GEB2/IO100PDB5V2	94	IO70NDB4V0
24	GFB0/IO119NDB7V0	59	IO99NDB5V2	95	GDC2/IO70PDB4V0
25	VCOMPLF	60	GEC2/IO99PDB5V2	96	IO68NDB4V0
26	GFA0/IO118NPB6V1	61	IO98PSB5V2	97	GND
27	VCCPLF	62	VCCIB5	98	GDA2/IO68PDB4V0
28	GFA1/IO118PPB6V1	63	IO96PSB5V2	99	GDB2/IO69PSB4V0
29	GND	64	IO94NDB5V1	100	GNDQ
30	GFA2/IO117PDB6V1	65	GND	101	ТСК
31	IO117NDB6V1	66	IO94PDB5V1	102	TDI
32	GFB2/IO116PPB6V1	67	IO92NDB5V1	102	TMS
33	GFC2/IO115PPB6V1	68	IO92PDB5V1	104	VMV4
34	IO116NPB6V1	69	IO88NDB5V0	105	GND
35	IO115NPB6V1	70	IO88PDB5V0	106	VPUMP
36	VCC	71	VCC	100	GNDQ
50	000	L	·J	107	

	PQ208		PQ208	PQ208	
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function
108	TDO	144	IO47PDB2V1	180	IO19NPB0V2
109	TRST	145	IO44NDB2V1	181	IO18NPB0V2
110	VJTAG	146	IO44PDB2V1	182	IO17PPB0V2
111	VMV3	147	IO43NDB2V0	183	IO16PPB0V2
112	GDA0/IO67NPB3V1	148	IO43PDB2V0	184	IO17NPB0V2
113	GDB0/IO66NPB3V1	149	IO40NDB2V0	185	IO16NPB0V2
114	GDA1/IO67PPB3V1	150	IO40PDB2V0	186	VCCIB0
115	GDB1/IO66PPB3V1	151	GBC2/IO38PSB2V0	187	VCC
116	GDC0/IO65NDB3V1	152	GBA2/IO36PSB2V0	188	IO15PDB0V2
117	GDC1/IO65PDB3V1	153	GBB2/IO37PSB2V0	189	IO15NDB0V2
118	IO62NDB3V1	154	VMV2	190	IO13PDB0V2
119	IO62PDB3V1	155	GNDQ	191	IO13NDB0V2
120	IO58NDB3V0	156	GND	192	IO11PSB0V1
121	IO58PDB3V0	157	VMV1	193	IO09PDB0V1
122	GND	158	GNDQ	194	IO09NDB0V1
123	VCCIB3	159	GBA1/IO35PDB1V1	195	GND
124	GCC2/IO55PSB3V0	160	GBA0/IO35NDB1V1	196	IO07PDB0V1
125	GCB2/IO54PSB3V0	161	GBB1/IO34PDB1V1	197	IO07NDB0V1
126	NC	162	GND	198	IO05PDB0V0
127	IO53NDB3V0	163	GBB0/IO34NDB1V1	199	IO05NDB0V0
128	GCA2/IO53PDB3V0	164	GBC1/IO33PDB1V1	200	VCCIB0
129	GCA1/IO52PPB3V0	165	GBC0/IO33NDB1V1	201	GAC1/IO02PDB0V0
130	GND	166	IO31PDB1V1	202	GAC0/IO02NDB0V0
131	VCCPLC	167	IO31NDB1V1	203	GAB1/IO01PDB0V0
132	GCA0/IO52NPB3V0	168	IO27PDB1V0	204	GAB0/IO01NDB0V0
133	VCOMPLC	169	IO27NDB1V0	205	GAA1/IO00PDB0V0
134	GCB0/IO51NDB2V1	170	VCCIB1	206	GAA0/IO00NDB0V0
135	GCB1/IO51PDB2V1	171	VCC	207	GNDQ
136	GCC1/IO50PSB2V1	172	IO23PPB1V0	208	VMV0
137	IO49NDB2V1	173	IO22PSB1V0		
138	IO49PDB2V1	174	IO23NPB1V0		
139	IO48PSB2V1	175	IO21PDB1V0		
140	VCCIB2	176	IO21NDB1V0		
141	GND	177	IO19PPB0V2		
142	VCC	178	GND		
143	IO47NDB2V1	179	IO18PPB0V2		


🌜 Microsemi.

Package Pin Assignments

	PQ208		PQ208	PQ208	
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
1	GND	37	IO184PDB6V2	73	IO145NDB5V1
2	GNDQ	38	IO184NDB6V2	74	IO145PDB5V1
3	VMV7	39	IO180PSB6V1	75	IO143NDB5V1
4	GAB2/IO220PSB7V3	40	VCCIB6	76	IO143PDB5V1
5	GAA2/IO221PDB7V3	41	GND	77	IO137NDB5V0
6	IO221NDB7V3	42	IO176PDB6V1	78	IO137PDB5V0
7	GAC2/IO219PDB7V3	43	IO176NDB6V1	79	IO135NDB5V0
8	IO219NDB7V3	44	GEC1/IO169PDB6V0	80	IO135PDB5V0
9	IO215PDB7V3	45	GEC0/IO169NDB6V0	81	GND
10	IO215NDB7V3	46	GEB1/IO168PPB6V0	82	IO131NDB4V2
11	IO212PDB7V2	47	GEA1/IO167PPB6V0	83	IO131PDB4V2
12	IO212NDB7V2	48	GEB0/IO168NPB6V0	84	IO129NDB4V2
13	IO208PDB7V2	49	GEA0/IO167NPB6V0	85	IO129PDB4V2
14	IO208NDB7V2	50	VMV6	86	IO127NDB4V2
15	IO204PSB7V1	51	GNDQ	87	IO127PDB4V2
16	VCC	52	GND	88	VCC
17	GND	53	VMV5	89	VCCIB4
18	VCCIB7	54	GNDQ	90	IO121NDB4V1
19	IO200PDB7V1	55	IO166NDB5V3	91	IO121PDB4V1
20	IO200NDB7V1	56	GEA2/IO166PDB5V3	92	IO119NDB4V1
21	IO196PSB7V0	57	IO165NDB5V3	93	IO119PDB4V1
22	GFC1/IO192PSB7V0	58	GEB2/IO165PDB5V3	94	IO113NDB4V0
23	GFB1/IO191PDB7V0	59	IO164NDB5V3	95	GDC2/IO113PDB4V0
24	GFB0/IO191NDB7V0	60	GEC2/IO164PDB5V3	96	IO112NDB4V0
25	VCOMPLF	61	IO163PSB5V3	97	GND
26	GFA0/IO190NPB6V2	62	VCCIB5	98	GDB2/IO112PDB4V0
27	VCCPLF	63	IO161PSB5V3	99	GDA2/IO111PSB4V0
28	GFA1/IO190PPB6V2	64	IO157NDB5V2	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO189PDB6V2	66	IO157PDB5V2	102	TDI
31	IO189NDB6V2	67	IO153NDB5V2	103	TMS
32	GFB2/IO188PPB6V2	68	IO153PDB5V2	104	VMV4
33	GFC2/IO187PPB6V2	69	IO149NDB5V1	105	GND
34	IO188NPB6V2	70	IO149PDB5V1	106	VPUMP
35	IO187NPB6V2	71	VCC	107	GNDQ
36	VCC	72	VCCIB5	108	TDO

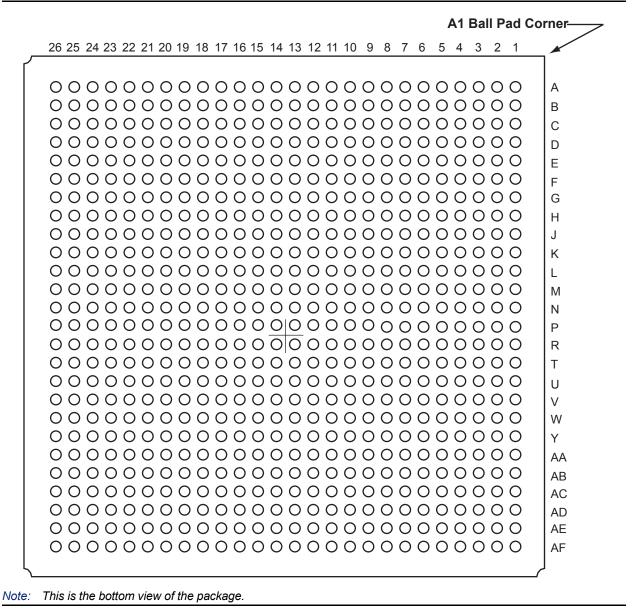
FG324

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

Microsemi


Package Pin Assignments

FG484				
Pin Number	A3PE1500 Function			
V15	IO112NDB4V0			
V16	GDB2/IO112PDB4V0			
V17	TDI			
V18	GNDQ			
V19	TDO			
V20	GND			
V21	NC			
V22	IO105NDB3V2			
W1	NC			
W2	NC			
W3	NC			
W4	GND			
W5	IO165NDB5V3			
W6	GEB2/IO165PDB5V3			
W7	IO164NDB5V3			
W8	IO153NDB5V2			
W9	IO153PDB5V2			
W10	IO147NDB5V1			
W11	IO133NDB4V2			
W12	IO130NDB4V2			
W13	IO130PDB4V2			
W14	IO113NDB4V0			
W15	GDC2/IO113PDB4V0			
W16	IO111NDB4V0			
W17	GDA2/IO111PDB4V0			
W18	TMS			
W19	GND			
W20	NC			
W21	NC			
W22	NC			
Y1	VCCIB6			
Y2	NC			
Y3	NC			
Y4	IO161NDB5V3			
Y5	GND			
Y6	IO163NDB5V3			

FG484				
Pin Number	A3PE1500 Function			
Y7	IO163PDB5V3			
Y8	VCC			
Y9	VCC			
Y10	IO147PDB5V1			
Y11	IO133PDB4V2			
Y12	IO131NPB4V2			
Y13	NC			
Y14	VCC			
Y15	VCC			
Y16	NC			
Y17	NC			
Y18	GND			
Y19	NC			
Y20	NC			
Y21	NC			
Y22	VCCIB3			

FG676

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

	FG676		FG676		FG676
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
L17	GND	N1	GFB0/IO191NPB7V0	P11	GND
L18	VCC	N2	VCOMPLF	P12	GND
L19	VCCIB2	N3	GFB1/IO191PPB7V0	P13	GND
L20	IO67PDB2V1	N4	IO196PDB7V0	P14	GND
L21	IO67NDB2V1	N5	GFA0/IO190NDB6V2	P15	GND
L22	IO71PDB2V2	N6	IO200PDB7V1	P16	GND
L23	IO71NDB2V2	N7	IO200NDB7V1	P17	GND
L24	GNDQ	N8	VCCIB7	P18	VCC
L25	IO82PDB2V3	N9	VCC	P19	VCCIB3
L26	IO84NDB2V3	N10	GND	P20	GCC0/IO85NDB2V3
M1	IO198NPB7V0	N11	GND	P21	GCC1/IO85PDB2V3
M2	IO202PDB7V1	N12	GND	P22	GCB1/IO86PPB2V3
M3	IO202NDB7V1	N13	GND	P23	IO88NPB3V0
M4	IO206NDB7V1	N14	GND	P24	GCA1/IO87PDB3V0
M5	IO206PDB7V1	N15	GND	P25	VCCPLC
M6	IO204NDB7V1	N16	GND	P26	VCOMPLC
M7	IO204PDB7V1	N17	GND	R1	IO189NDB6V2
M8	VCCIB7	N18	VCC	R2	IO185PDB6V2
M9	VCC	N19	VCCIB2	R3	IO187NPB6V2
M10	GND	N20	IO79PDB2V3	R4	IO193NPB7V0
M11	GND	N21	IO79NDB2V3	R5	GFC2/IO187PPB6V2
M12	GND	N22	GCA2/IO88PPB3V0	R6	GFC1/IO192PDB7V0
M13	GND	N23	IO81NPB2V3	R7	GFC0/IO192NDB7V0
M14	GND	N24	GCA0/IO87NDB3V0	R8	VCCIB6
M15	GND	N25	GCB0/IO86NPB2V3	R9	VCC
M16	GND	N26	IO83NDB2V3	R10	GND
M17	GND	P1	GFA2/IO189PDB6V2	R11	GND
M18	VCC	P2	VCCPLF	R12	GND
M19	VCCIB2	P3	IO193PPB7V0	R13	GND
M20	IO73NDB2V2	P4	IO196NDB7V0	R14	GND
M21	IO73PDB2V2	P5	GFA1/IO190PDB6V2	R15	GND
M22	IO81PPB2V3	P6	IO194PDB7V0	R16	GND
M23	IO77PDB2V2	P7	IO194NDB7V0	R17	GND
M24	IO77NDB2V2	P8	VCCIB6	R18	VCC
M25	IO82NDB2V3	P9	VCC	R19	VCCIB3
M26	IO83PDB2V3	P10	GND	R20	NC

Revision	Changes	Page
Revision 10 (March 2012)	The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34669).	I, 1-1
	The Y security option and Licensed DPA Logo were added to the "ProASIC3E Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34727).	III
	The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry allows for rapid, single- voltage (3.3 V) programming of IGLOOe devices via an IEEE 1532 JTAG interface" (SAR 34689).	1-3
	The "Specifying I/O States During Programming" section is new (SAR 34699).	1-6
	VCCPLL in Table 2-2 • Recommended Operating Conditions ¹ was corrected from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 33851).	2-2
rer	The T _J symbol was added to the table and notes regarding T _A and T _J were removed. The second of two parameters in the VCCI and VMV row, called "3.3 V DC supply voltage," was corrected to "3.0 V DC supply voltage" (SAR 37227).	
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—P _{CLOCK} " section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>ProASIC3E FPGA Fabric User's Guide</i> (SAR 34735).	2-9
	t_{DOUT} was corrected to t_{DIN} in Figure 2-3 \bullet Input Buffer Timing Model and Delays (example) (SAR 37109).	2-13
	The typo related to the values for 3.3 V LVCMOS Wide Range in Table 2-17 • Summary of I/O Timing Characteristics—Software Default Settings was corrected (SAR 37227).	2-19
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section and "3.3 V LVCMOS Wide Range" section and tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 34763).	2-18, 2-27

Revision	Changes	Page
Advance v0.5 (continued)	The "RESET" section was updated.	2-25
	The "RESET" section was updated.	2-27
	The "Introduction" of the "Introduction" section was updated.	2-28
	PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 11 • VCCI Voltages and Compatible Standards	2-29
	Table 2-35 • ProASIC3E I/O Features was updated.	2-54
	The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature.	2-32
	The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information.	2-35
	Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices.	2-64
	The notes in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices were updated.	2-64
	The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new.	2-41
	A footnote was added to Table 2-37 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in ProASIC3E Devices (maximum drive strength and high slew selected).	2-55
	Table 2-48 • ProASIC3E I/O Attributes vs. I/O Standard Applications	2-81
	Table 2-55 • ProASIC3 I/O Standards—SLEW and Output Drive (OUT_DRIVE) Settings	2-85
	The "x" was updated in the "Pin Descriptions" section.	2-50
	The "VCC Core Supply Voltage" pin description was updated.	2-50
	The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected.	2-50
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24
	The CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} was updated in Table 2-13 • ProASIC3E CCC/PLL Specification.	2-30
	EXTFB was removed from Figure 2-27 • CCC/PLL Macro.	2-28
	The LVPECL specification in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64
	Table 2-15 • Levels of Hot-Swap Support was updated.	2-34
	The "Cold-Sparing Support" section was updated.	2-34
	"Electrostatic Discharge (ESD) Protection" section was updated.	2-35
	The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.	2-50
	The "VJTAG JTAG Supply Voltage" pin description was updated.	2-50
	The "VPUMP Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground.	2-50

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3E Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at *Microsemi SoC Reliability Report*. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.