

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	147
Number of Gates	3000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3pe3000-1pqg208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-11 on page 2-11.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-12 on page 2-11.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-12 on page 2-11. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

P_{STAT} = PDC1 + N_{INPUTS} * PDC2 + N_{OUTPUTS} * PDC3

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL} * PAC4) * F_{CLK}

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3E FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3E FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 P_{S-CELL} = N_{S-CELL} * (PAC5 + α_1 / 2 * PAC6) * F_{CLK}

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on page 2-11.

F_{CLK} is the global clock signal frequency.

Com	mercial ¹	Industrial ²		
IIL ³	IIH ⁴	IIL ³	IIH ⁴	
μA	μΑ	μΑ	μA	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
10	10	15	15	
	IIL ³ μA 10	μ A μ A 10 10	IIL ³ IIH ⁴ IIL ³ μA μA μA 10 10 15 10 10	

Table 2-14 • Summary of Maximum and Minimum DC Input Levels
Applicable to Commercial and Industrial Conditions

Notes:

1. Commercial range (0°C < T_A < 70°C) 2. Industrial range (-40°C < T_A < 85°C)

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

Table 2-19 • I/O Output Buffer Maximum Resistances ¹ (c	continued)	
--	------------	--

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	$R_{PULL-UP}(\Omega)^3$
3.3 V GTL+	35 mA	12	-
2.5 V GTL+	33 mA	15	-
HSTL (I)	8 mA	50	50
HSTL (II)	15 mA ⁴	25	25
SSTL2 (I)	15 mA	27	31
SSTL2 (II)	18 mA	13	15
SSTL3 (I)	14 mA	44	69
SSTL3 (II)	21 mA	18	32

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article.

- 2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec
- 3. R_(PULL-UP-MAX) = (VCCImax VOHspec) / IOHspec
- 4. Output drive strength is below JEDEC specification.

Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

		CPULL-UP) ¹ (Ω)	R _(WEAK PULL-DOWN) ² (Ω)				
VCCI	Min.	Max.	Min.	Max.			
3.3 V	10 k	45 k	10 k	45 k			
3.3 V (Wide Range I/Os)	10 k	45 k	10 k	45 k			
2.5 V	11 k	55 k	12 k	74 k			
1.8 V	18 k	70 k	17 k	110 k			
1.5 V	19 k	90 k	19 k	140 k			

Notes:

1. R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)

2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)

Kicrosemi.

ProASIC3E DC and Switching Characteristics

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
12 mA	Std.	0.66	6.03	0.04	1.20	1.57	0.43	6.14	5.02	3.28	3.47	8.37	7.26	ns
	-1	0.56	5.13	0.04	1.02	1.33	0.36	5.22	4.27	2.79	2.95	7.12	6.17	ns
	-2	0.49	4.50	0.03	0.90	1.17	0.32	4.58	3.75	2.45	2.59	6.25	5.42	ns
16 mA	Std.	0.66	5.62	0.04	1.20	1.57	0.43	5.72	4.72	3.32	3.58	7.96	6.96	ns
	-1	0.56	4.78	0.04	1.02	1.33	0.36	4.87	4.02	2.83	3.04	6.77	5.92	ns
	-2	0.49	4.20	0.03	0.90	1.17	0.32	4.27	3.53	2.48	2.67	5.94	5.20	ns
24 mA	Std.	0.66	5.24	0.04	1.20	1.57	0.43	5.34	4.69	3.39	3.96	7.58	6.93	ns
	-1	0.56	4.46	0.04	1.02	1.33	0.36	4.54	3.99	2.88	3.37	6.44	5.89	ns
	-2	0.49	3.92	0.03	0.90	1.17	0.32	3.99	3.50	2.53	2.96	5.66	5.17	ns

Table 2-28 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

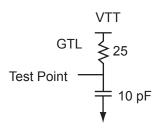
🌜 Microsemi.

ProASIC3E DC and Switching Characteristics

2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-51 • Minimum and Maximum DC Input and Output Levels


2.5 GTL	VIL		VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min., V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20	124	169	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.

Figure 2-13 • AC Loading

Table 2-52 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-53 • 2.5 V GTL

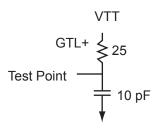
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.13	0.04	2.46	0.43	2.16	2.13			4.40	4.36	ns
-1	0.51	1.81	0.04	2.09	0.36	1.84	1.81			3.74	3.71	ns
-2	0.45	1.59	0.03	1.83	0.32	1.61	1.59			3.28	3.26	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.


Table 2-54 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	_	35	35	181	268	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-14 • AC Loading

Table 2-55 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-56 • 3.3 V GTL+

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.06	0.04	1.59	0.43	2.09	2.06			4.33	4.29	ns
-1	0.51	1.75	0.04	1.35	0.36	1.78	1.75			3.68	3.65	ns
-2	0.45	1.53	0.03	1.19	0.32	1.56	1.53			3.23	3.20	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

ProASIC3E DC and Switching Characteristics

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-98 • ProASIC3E CCC/PLL Specification

Parameter		Minimum	Typical	Maximum	Units
Clock Conditioning Circuitry Inp	out Frequency f _{IN_CCC}	1.5		350	MHz
Clock Conditioning Circuitry Ou	tput Frequency f _{OUT_CCC}	0.75		350	MHz
Delay Increments in Programm	able Delay Blocks ^{1, 2}		160 ³		ps
Serial Clock (SCLK) for Dynam	ic PLL ⁴			125	MHz
Number of Programmable Valu Programmable Delay Block	es in Each			32	
Input Period Jitter				1.5	ns
CCC Output Peak-to-Peak Per	od Jitter F _{CCC_OUT}	Max	<pre> Peak-to-Pe </pre>	ak Period Jitter	
		1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz		0.50%		0.70%	
24 MHz to 100 MHz		1.00%		1.20%	
100 MHz to 250 MHz		1.75%		2.00%	
250 MHz to 350 MHz		2.50%		5.60%	
Acquisition Time	LockControl = 0			300	μs
	LockControl = 1			6.0	ms
Tracking Jitter ⁵	LockControl = 0			1.6	ns
	LockControl = 1			0.8	ns
Output Duty Cycle		48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}		0.6		5.56	ns
Delay Range in Block: Program	imable Delay 2 ^{1,2}	0.025		5.56	ns
Delay Range in Block: Fixed D	elay ^{1,4}		2.2		ns

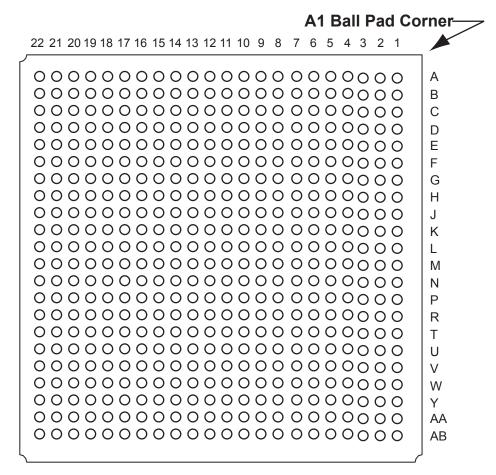
Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-5 for deratings

2. $T_J = 25^{\circ}C$, VCC = 1.5 V.

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help for more information.

4. Maximum value obtained for a -2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.


5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

PQ208			PQ208		PQ208		
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function		
108	TDO	144	IO47PDB2V1	180	IO19NPB0V2		
109	TRST	145	IO44NDB2V1	181	IO18NPB0V2		
110	VJTAG	146	IO44PDB2V1	182	IO17PPB0V2		
111	VMV3	147	IO43NDB2V0	183	IO16PPB0V2		
112	GDA0/IO67NPB3V1	148	IO43PDB2V0	184	IO17NPB0V2		
113	GDB0/IO66NPB3V1	149	IO40NDB2V0	185	IO16NPB0V2		
114	GDA1/IO67PPB3V1	150	IO40PDB2V0	186	VCCIB0		
115	GDB1/IO66PPB3V1	151	GBC2/IO38PSB2V0	187	VCC		
116	GDC0/IO65NDB3V1	152	GBA2/IO36PSB2V0	188	IO15PDB0V2		
117	GDC1/IO65PDB3V1	153	GBB2/IO37PSB2V0	189	IO15NDB0V2		
118	IO62NDB3V1	154	VMV2	190	IO13PDB0V2		
119	IO62PDB3V1	155	GNDQ	191	IO13NDB0V2		
120	IO58NDB3V0	156	GND	192	IO11PSB0V1		
121	IO58PDB3V0	157	VMV1	193	IO09PDB0V1		
122	GND	158	GNDQ	194	IO09NDB0V1		
123	VCCIB3	159	GBA1/IO35PDB1V1	195	GND		
124	GCC2/IO55PSB3V0	160	GBA0/IO35NDB1V1	196	IO07PDB0V1		
125	GCB2/IO54PSB3V0	161	GBB1/IO34PDB1V1	197	IO07NDB0V1		
126	NC	162	GND	198	IO05PDB0V0		
127	IO53NDB3V0	163	GBB0/IO34NDB1V1	199	IO05NDB0V0		
128	GCA2/IO53PDB3V0	164	GBC1/IO33PDB1V1	200	VCCIB0		
129	GCA1/IO52PPB3V0	165	GBC0/IO33NDB1V1	201	GAC1/IO02PDB0V0		
130	GND	166	IO31PDB1V1	202	GAC0/IO02NDB0V0		
131	VCCPLC	167	IO31NDB1V1	203	GAB1/IO01PDB0V0		
132	GCA0/IO52NPB3V0	168	IO27PDB1V0	204	GAB0/IO01NDB0V0		
133	VCOMPLC	169	IO27NDB1V0	205	GAA1/IO00PDB0V0		
134	GCB0/IO51NDB2V1	170	VCCIB1	206	GAA0/IO00NDB0V0		
135	GCB1/IO51PDB2V1	171	VCC	207	GNDQ		
136	GCC1/IO50PSB2V1	172	IO23PPB1V0	208	VMV0		
137	IO49NDB2V1	173	IO22PSB1V0				
138	IO49PDB2V1	174	IO23NPB1V0				
139	IO48PSB2V1	175	IO21PDB1V0				
140	VCCIB2	176	IO21NDB1V0				
141	GND	177	IO19PPB0V2				
142	VCC	178	GND				
143	IO47NDB2V1	179	IO18PPB0V2				

FG484

Note: This is the bottom view of the package.

Note

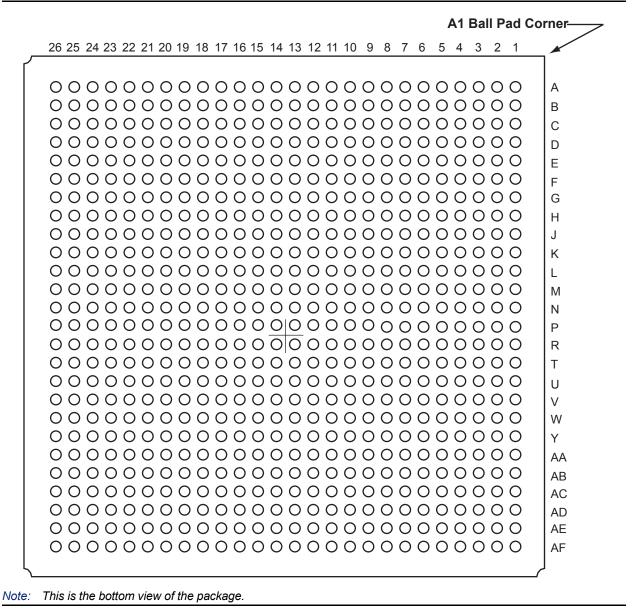
For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

	FG484		FG484
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function
A1	GND	AA15	NC
A2	GND	AA16	IO71NDB4V0
A3	VCCIB0	AA17	IO71PDB4V0
A4	IO06NDB0V1	AA18	NC
A5	IO06PDB0V1	AA19	NC
A6	IO08NDB0V1	AA20	NC
A7	IO08PDB0V1	AA21	VCCIB3
A8	IO11PDB0V1	AA22	GND
A9	IO17PDB0V2	AB1	GND
A10	IO18NDB0V2	AB2	GND
A11	IO18PDB0V2	AB3	VCCIB5
A12	IO22PDB1V0	AB4	IO97NDB5V2
A13	IO26PDB1V0	AB5	IO97PDB5V2
A14	IO29NDB1V1	AB6	IO93NDB5V1
A15	IO29PDB1V1	AB7	IO93PDB5V1
A16	IO31NDB1V1	AB8	IO87NDB5V0
A17	IO31PDB1V1	AB9	IO87PDB5V0
A18	IO32NDB1V1	AB10	NC
A19	NC	AB11	NC
A20	VCCIB1	AB12	IO75NDB4V1
A21	GND	AB13	IO75PDB4V1
A22	GND	AB14	IO72NDB4V0
AA1	GND	AB15	IO72PDB4V0
AA2	VCCIB6	AB16	IO73NDB4V0
AA3	NC	AB17	IO73PDB4V0
AA4	IO98PDB5V2	AB18	NC
AA5	IO96NDB5V2	AB19	NC
AA6	IO96PDB5V2	AB20	VCCIB4
AA7	IO86NDB5V0	AB21	GND
AA8	IO86PDB5V0	AB22	GND
AA9	IO85PDB5V0	B1	GND
AA10	IO85NDB5V0	B2	VCCIB7
AA11	IO78PPB4V1	B3	NC
AA12	IO79NDB4V1	B4	IO03NDB0V0
AA13	IO79PDB4V1	B5	IO03PDB0V0
AA14	NC	B6	IO07NDB0V1

	FG484
Pin Number	A3PE600 Function
B7	IO07PDB0V1
B8	IO11NDB0V1
B9	IO17NDB0V2
B10	IO14PDB0V2
B11	IO19PDB0V2
B12	IO22NDB1V0
B13	IO26NDB1V0
B14	NC
B15	NC
B16	IO30NDB1V1
B17	IO30PDB1V1
B18	IO32PDB1V1
B19	NC
B20	NC
B21	VCCIB2
B22	GND
C1	VCCIB7
C2	NC
C3	NC
C4	NC
C5	GND
C6	IO04NDB0V0
C7	IO04PDB0V0
C8	VCC
C9	VCC
C10	IO14NDB0V2
C11	IO19NDB0V2
C12	NC
C13	NC
C14	VCC
C15	VCC
C16	NC
C17	NC
C18	GND
C19	NC
C20	NC

🌜 Microsemi.

Package Pin Assignments


FG484			FG484		FG484		
Pin Number	A3PE600 Function	Pin Number	A3PE600 Function	Pin Number	A3PE600 Function		
N17	IO57NPB3V0	R9	VCCIB5	U1	NC		
N18	IO55NPB3V0	R10	VCCIB5	U2	IO107PDB6V0		
N19	IO57PPB3V0	R11	IO84NDB5V0	U3	IO107NDB6V0		
N20	NC	R12	IO84PDB5V0	U4	GEB1/IO103PDB6V0		
N21	IO56NDB3V0	R13	VCCIB4	U5	GEB0/IO103NDB6V0		
N22	IO58PDB3V0	R14	VCCIB4	U6	VMV6		
P1	NC	R15	VMV3	U7	VCCPLE		
P2	IO111PDB6V1	R16	VCCPLD	U8	IO101NPB5V2		
P3	IO115NPB6V1	R17	GDB1/IO66PPB3V1	U9	IO95PPB5V1		
P4	IO113NPB6V1	R18	GDC1/IO65PDB3V1	U10	IO92PDB5V1		
P5	IO109PPB6V0	R19	IO61NDB3V1	U11	IO90PDB5V1		
P6	IO108PDB6V0	R20	VCC	U12	IO82PDB5V0		
P7	IO108NDB6V0	R21	IO59NDB3V0	U13	IO76NDB4V1		
P8	VCCIB6	R22	IO62PDB3V1	U14	IO76PDB4V1		
P9	GND	T1	NC	U15	VMV4		
P10	VCC	T2	IO110NDB6V0	U16	ТСК		
P11	VCC	Т3	NC	U17	VPUMP		
P12	VCC	T4	IO105PDB6V0	U18	TRST		
P13	VCC	T5	IO105NDB6V0	U19	GDA0/IO67NDB3V1		
P14	GND	Т6	GEC1/IO104PPB6V0	U20	NC		
P15	VCCIB3	T7	VCOMPLE	U21	IO64NDB3V1		
P16	GDB0/IO66NPB3V1	Т8	GNDQ	U22	IO63PDB3V1		
P17	IO60NDB3V1	Т9	GEA2/IO101PPB5V2	V1	NC		
P18	IO60PDB3V1	T10	IO92NDB5V1	V2	NC		
P19	IO61PDB3V1	T11	IO90NDB5V1	V3	GND		
P20	NC	T12	IO82NDB5V0	V4	GEA1/IO102PDB6V0		
P21	IO59PDB3V0	T13	IO74NDB4V1	V5	GEA0/IO102NDB6V0		
P22	IO58NDB3V0	T14	IO74PDB4V1	V6	GNDQ		
R1	NC	T15	GNDQ	V7	GEC2/IO99PDB5V2		
R2	IO110PDB6V0	T16	VCOMPLD	V8	IO95NPB5V1		
R3	VCC	T17	VJTAG	V9	IO91NDB5V1		
R4	IO109NPB6V0	T18	GDC0/IO65NDB3V1	V10	IO91PDB5V1		
R5	IO106NDB6V0	T19	GDA1/IO67PDB3V1	V11	IO83NDB5V0		
R6	IO106PDB6V0	T20	NC	V12	IO83PDB5V0		
R7	GEC0/IO104NPB6V0	T21	IO64PDB3V1	V13	IO77NDB4V1		
R8	VMV5	T22	IO62NDB3V1	V14	IO77PDB4V1		

	FG484		FG484		FG484
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function
H19	IO100PDB2V2	K11	GND	M3	IO272NDB6V4
H20	VCC	K12	GND	M4	GFA2/IO272PDB6V4
H21	VMV2	K13	GND	M5	GFA1/IO273PDB6V4
H22	IO105PDB2V2	K14	VCC	M6	VCCPLF
J1	IO285NDB7V1	K15	VCCIB2	M7	IO271NDB6V4
J2	IO285PDB7V1	K16	GCC1/IO112PPB2V3	M8	GFB2/IO271PDB6V4
J3	VMV7	K17	IO108NDB2V3	M9	VCC
J4	IO279PDB7V0	K18	IO108PDB2V3	M10	GND
J5	IO283PDB7V1	K19	IO110NPB2V3	M11	GND
J6	IO281PDB7V0	K20	IO106NPB2V3	M12	GND
J7	IO287NDB7V1	K21	IO109NDB2V3	M13	GND
J8	VCCIB7	K22	IO107NDB2V3	M14	VCC
J9	GND	L1	IO257PSB6V2	M15	GCB2/IO116PPB3V0
J10	VCC	L2	IO276PDB7V0	M16	GCA1/IO114PPB3V0
J11	VCC	L3	IO276NDB7V0	M17	GCC2/IO117PPB3V0
J12	VCC	L4	GFB0/IO274NPB7V0	M18	VCCPLC
J13	VCC	L5	GFA0/IO273NDB6V4	M19	GCA2/IO115PDB3V0
J14	GND	L6	GFB1/IO274PPB7V0	M20	IO115NDB3V0
J15	VCCIB2	L7	VCOMPLF	M21	IO126PDB3V1
J16	IO84NDB2V0	L8	GFC0/IO275NPB7V0	M22	IO124PSB3V1
J17	IO104NDB2V2	L9	VCC	N1	IO255PPB6V2
J18	IO104PDB2V2	L10	GND	N2	IO253NDB6V2
J19	IO106PPB2V3	L11	GND	N3	VMV6
J20	GNDQ	L12	GND	N4	GFC2/IO270PPB6V4
J21	IO109PDB2V3	L13	GND	N5	IO261PPB6V3
J22	IO107PDB2V3	L14	VCC	N6	IO263PDB6V3
K1	IO277NDB7V0	L15	GCC0/IO112NPB2V3	N7	IO263NDB6V3
K2	IO277PDB7V0	L16	GCB1/IO113PPB2V3	N8	VCCIB6
K3	GNDQ	L17	GCA0/IO114NPB3V0	N9	VCC
K4	IO279NDB7V0	L18	VCOMPLC	N10	GND
K5	IO283NDB7V1	L19	GCB0/IO113NPB2V3	N11	GND
K6	IO281NDB7V0	L20	IO110PPB2V3	N12	GND
K7	GFC1/IO275PPB7V0	L21	IO111NDB2V3	N13	GND
K8	VCCIB7	L22	IO111PDB2V3	N14	VCC
K9	VCC	M1	GNDQ	N15	VCCIB3
K10	GND	M2	IO255NPB6V2	N16	IO116NPB3V0

FG676

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

	FG676
Pin Number	A3PE1500 Function
W25	IO96PDB3V1
W26	IO94NDB3V0
Y1	IO175NDB6V1
Y2	IO175PDB6V1
Y3	IO173NDB6V0
Y4	IO173PDB6V0
Y5	GEC1/IO169PPB6V0
Y6	GNDQ
Y7	VMV6
Y8	VCCIB5
Y9	IO163NDB5V3
Y10	IO159PDB5V3
Y11	IO153PDB5V2
Y12	IO147PDB5V1
Y13	IO139PDB5V0
Y14	IO137PDB5V0
Y15	IO125NDB4V1
Y16	IO125PDB4V1
Y17	IO115NDB4V0
Y18	IO115PDB4V0
Y19	VCC
Y20	VPUMP
Y21	VCOMPLD
Y22	VCCPLD
Y23	IO100NDB3V1
Y24	IO100PDB3V1
Y25	IO96NDB3V1
Y26	IO98PDB3V1

Package Pin Assignments

FG896			FG896	FG896		
Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	Pin Number	A3PE3000 Function	
T11	VCC	U17	GND	V23	IO128NDB3V1	
T12	GND	U18	GND	V24	IO132PDB3V2	
T13	GND	U19	GND	V25	IO130PPB3V2	
T14	GND	U20	VCC	V26	IO126NDB3V1	
T15	GND	U21	VCCIB3	V27	IO129NDB3V1	
T16	GND	U22	IO120PDB3V0	V28	IO127NDB3V1	
T17	GND	U23	IO128PDB3V1	V29	IO125NDB3V1	
T18	GND	U24	IO124PDB3V1	V30	IO123PDB3V1	
T19	GND	U25	IO124NDB3V1	W1	IO266NDB6V4	
T20	VCC	U26	IO126PDB3V1	W2	IO262NDB6V3	
T21	VCCIB3	U27	IO129PDB3V1	W3	IO260NDB6V3	
T22	IO109NPB2V3	U28	IO127PDB3V1	W4	IO252NDB6V2	
T23	IO116NDB3V0	U29	IO125PDB3V1	W5	IO251NDB6V2	
T24	IO118NDB3V0	U30	IO121NDB3V0	W6	IO251PDB6V2	
T25	IO122NPB3V1	V1	IO268NDB6V4	W7	IO255NDB6V2	
T26	GCA1/IO114PPB3V0	V2	IO262PDB6V3	W8	IO249PPB6V1	
T27	GCB0/IO113NPB2V3	V3	IO260PDB6V3	W9	IO253PDB6V2	
T28	GCA2/IO115PPB3V0	V4	IO252PDB6V2	W10	VCCIB6	
T29	VCCPLC	V5	IO257NPB6V2	W11	VCC	
T30	IO121PDB3V0	V6	IO261NPB6V3	W12	GND	
U1	IO268PDB6V4	V7	IO255PDB6V2	W13	GND	
U2	IO264NDB6V3	V8	IO259PDB6V3	W14	GND	
U3	IO264PDB6V3	V9	IO259NDB6V3	W15	GND	
U4	IO258PDB6V3	V10	VCCIB6	W16	GND	
U5	IO258NDB6V3	V11	VCC	W17	GND	
U6	IO257PPB6V2	V12	GND	W18	GND	
U7	IO261PPB6V3	V13	GND	W19	GND	
U8	IO265NDB6V3	V14	GND	W20	VCC	
U9	IO263NDB6V3	V15	GND	W21	VCCIB3	
U10	VCCIB6	V16	GND	W22	IO134PDB3V2	
U11	VCC	V17	GND	W23	IO138PDB3V3	
U12	GND	V18	GND	W24	IO132NDB3V2	
U13	GND	V19	GND	W25	IO136NPB3V2	
U14	GND	V20	VCC	W26	IO130NPB3V2	
U15	GND	V21	VCCIB3	W27	IO141PDB3V3	
U16	GND	V22	IO120NDB3V0	W28	IO135PDB3V2	

	FG896					
Pin Number	A3PE3000 Function					
W29	IO131PDB3V2					
W30	IO123NDB3V1					
Y1	IO266PDB6V4					
Y2	IO250PDB6V2					
Y3	IO250NDB6V2					
Y4	IO246PDB6V1					
Y5	IO247NDB6V1					
Y6	IO247PDB6V1					
Y7	IO249NPB6V1					
Y8	IO245PDB6V1					
Y9	IO253NDB6V2					
Y10	GEB0/IO235NPB6V0					
Y11	VCC					
Y12	VCC					
Y13	VCC					
Y14	VCC					
Y15	VCC					
Y16	VCC					
Y17	VCC					
Y18	VCC					
Y19	VCC					
Y20	VCC					
Y21	IO142PPB3V3					
Y22	IO134NDB3V2					
Y23	IO138NDB3V3					
Y24	IO140NDB3V3					
Y25	IO140PDB3V3					
Y26	IO136PPB3V2					
Y27	IO141NDB3V3					
Y28	IO135NDB3V2					
Y29	IO131NDB3V2					
Y30	IO133PDB3V2					

Revision	Changes	Page
Revision 10 (March 2012)	The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34669).	I, 1-1
	The Y security option and Licensed DPA Logo were added to the "ProASIC3E Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34727).	III
	The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry allows for rapid, single- voltage (3.3 V) programming of IGLOOe devices via an IEEE 1532 JTAG interface" (SAR 34689).	1-3
	The "Specifying I/O States During Programming" section is new (SAR 34699).	1-6
	VCCPLL in Table 2-2 • Recommended Operating Conditions ¹ was corrected from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 33851).	2-2
	The T _J symbol was added to the table and notes regarding T _A and T _J were removed. The second of two parameters in the VCCI and VMV row, called "3.3 V DC supply voltage," was corrected to "3.0 V DC supply voltage" (SAR 37227).	
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—P _{CLOCK} " section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>ProASIC3E FPGA Fabric User's Guide</i> (SAR 34735).	2-9
	t_{DOUT} was corrected to t_{DIN} in Figure 2-3 \bullet Input Buffer Timing Model and Delays (example) (SAR 37109).	2-13
	The typo related to the values for 3.3 V LVCMOS Wide Range in Table 2-17 • Summary of I/O Timing Characteristics—Software Default Settings was corrected (SAR 37227).	2-19
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section and "3.3 V LVCMOS Wide Range" section and tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 34763).	2-18, 2-27

Datasheet Information

Revision	Changes	Page
Advance v0.5 (continued)	The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused.	2-50
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.	2-51
	The "Programming" section was updated to include information concerning serialization.	2-53
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54
	The "DC and Switching Characteristics" chapter was updated with new information.	Starting on page 3-1
	Table 3-6 was updated.	3-5
	In Table 3-10, PAC4 was updated.	3-8
	Table 3-19 was updated.	3-20
	The note in Table 3-24 was updated.	3-23
	All Timing Characteristics tables were updated from LVTTL to Register Delays	3-26 to 3-64
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-74 to 3-79
	F _{TCKMAX} was updated in Table 3-98.	3-80
Advance v0.4 (October 2005)	The "Packaging Tables" table was updated.	ii
Advance v0.3	Figure 2-11 was updated.	2-9
	The "Clock Resources (VersaNets)" section was updated.	2-9
	The "VersaNet Global Networks and Spine Access" section was updated.	2-9
	The "PLL Macro" section was updated.	2-15
	Figure 2-27 was updated.	2-28
	Figure 2-20 was updated.	2-19
	Table 2-5 was updated.	2-25
	Table 2-6 was updated.	2-25
	The "FIFO Flag Usage Considerations" section was updated.	2-27
	Table 2-33 was updated.	2-51
	Figure 2-24 was updated.	2-31
	The "Cold-Sparing Support" section is new.	2-34
	Table 2-45 was updated.	2-64
	Table 2-48 was updated.	2-81
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "Pin Descriptions" section was updated.	2-50
	Table 3-7 was updated.	3-6

Revision	Changes	Page
Advance v0.3 (continued)	The "Methodology" section was updated.	3-9
	The A3PE3000 "208-Pin PQFP" pin table was updated.	4-6

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.