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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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ProASIC3E Device Family Overview
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3E FPGAs
do not require system configuration components such as EEPROMs or microcontrollers to load device
configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system
reliability.

Instant On
Flash-based ProASIC3E devices support Level 0 of the Instant On classification standard. This feature
helps in system component initialization, execution of critical tasks before the processor wakes up, setup
and configuration of memory blocks, clock generation, and bus activity management. The Instant On
feature of flash-based ProASIC3E devices greatly simplifies total system design and reduces total
system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these
purposes in a system. In addition, glitches and brownouts in system power will not corrupt the
ProASIC3E device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be
reloaded when system power is restored. This enables the reduction or complete removal of the
configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from
the PCB design. Flash-based ProASIC3E devices simplify total system design and reduce cost and
design risk while increasing system reliability and improving system initialization time.

Firm Errors
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not exist in the configuration memory of ProASIC3E flash-based
FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3E FPGAs cannot be
altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in
the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and
correction (EDAC) circuitry built into the FPGA fabric.

Low Power
Flash-based ProASIC3E devices exhibit power characteristics similar to an ASIC, making them an ideal
choice for power-sensitive applications. ProASIC3E devices have only a very limited power-on current
surge and no high-current transition period, both of which occur on many FPGAs.
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ProASIC3E DC and Switching Characteristics
Combinatorial Cells Contribution—PC-CELL 
PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK

NC-CELL is the number of VersaTiles used as combinatorial modules in the design.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on
page 2-11.

FCLK is the global clock signal frequency.

Routing Net Contribution—PNET
PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK

NS-CELL is the number of VersaTiles used as sequential modules in the design.

NC-CELL is the number of VersaTiles used as combinatorial modules in the design.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on
page 2-11.

FCLK is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS
PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK

NINPUTS is the number of I/O input buffers used in the design.

2 is the I/O buffer toggle rate—guidelines are provided in Table 2-11 on page 2-11.

FCLK is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS 
POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK

NOUTPUTS is the number of I/O output buffers used in the design.

2 is the I/O buffer toggle rate—guidelines are provided in Table 2-11 on page 2-11.

1 is the I/O buffer enable rate—guidelines are provided in Table 2-12 on page 2-11.

FCLK is the global clock signal frequency.

RAM Contribution—PMEMORY
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3

NBLOCKS is the number of RAM blocks used in the design.

FREAD-CLOCK is the memory read clock frequency.

2 is the RAM enable rate for read operations—guidelines are provided in Table 2-12 on
page 2-11.

FWRITE-CLOCK is the memory write clock frequency.

3 is the RAM enable rate for write operations—guidelines are provided in Table 2-12 on
page 2-11.

PLL Contribution—PPLL
PPLL = PAC13 + PAC14 * FCLKOUT

FCLKOUT is the output clock frequency.1

1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the
PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output
clock in the formula by adding its corresponding contribution (PAC14 * FCLKOUT product) to the total PLL contribution.
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ProASIC3E DC and Switching Characteristics
Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS
Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V
applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is
supported as part of the 3.3 V LVTTL support.

Table 2-25 • Minimum and Maximum DC Input and Output Levels

3.3 V LVTTL / 
3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive Strength
Min.

V
Max.

V
Min.,

V
Max.

V
Max.

V
Min.

V mA mA
Max.
mA3

Max.
mA3 µA4 µA4

2 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10

4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10

6 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10

8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10

12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 109 103 10 10

16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 127 132 10 10

24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 181 268 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V< VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-6 • AC Loading

Table 2-26 • 3.3 V LVTTL / 3.3 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 3.3 1.4 – 35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Test Point
Test Point

Enable PathDatapath 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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ProASIC3E Flash Family FPGAs
1.8 V LVCMOS
Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

Table 2-37 • Minimum and Maximum DC Input and Output Levels

1.8 V 
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 11 9 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 22 17 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 6 6 44 35 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8 51 45 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 12 12 74 91 10 10

16 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 16 16 74 91 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-9 • AC Loading

Table 2-38 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 1.8 0.9 – 35

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Test Point
Test Point

Enable PathDatapath 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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ProASIC3E Flash Family FPGAs
Differential I/O Characteristics

Physical Implementation
Configuration of the I/O modules as a differential pair is handled by the Designer software when the user
instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional
I/Os or tristates with the LVPECL standards.

LVDS
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It
requires that one data bit be carried through two signal lines, so two pins are needed. It also requires
external resistor termination. 

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-22. The
building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver
resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.

Along with LVDS I/O, ProASIC3E also supports Bus LVDS structure and Multipoint LVDS (M-LVDS)
configuration (up to 40 nodes).

Figure 2-22 • LVDS Circuit Diagram and Board-Level Implementation
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Package Pin Assignments
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