

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2012.02	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	341
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3pe3000-2fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Advanced Architecture

The proprietary ProASIC3E architecture provides granularity comparable to standard-cell ASICs. The ProASIC3E device consists of five distinct and programmable architectural features (Figure 1-1 on page 3):

- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory
- Extensive CCCs and PLLs
- Pro I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the ProASIC3E core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC family of third-generation architecture Flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

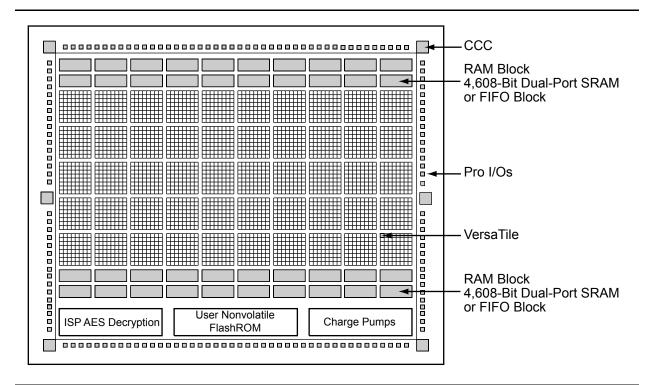


Figure 1-1 • ProASIC3E Device Architecture Overview

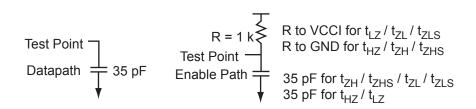
3.3 V LVCMOS Wide Range

3.3 V LVCMOS Wide Range	Equivalent Software Default Drive	v	IL	v	н	VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μA	μA	Max. mA ⁴	Max. mA ⁴	μA ⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	27	25	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	27	25	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	54	51	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	54	51	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	109	103	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	127	132	10	10
100 µA	24 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	181	268	10	10

Table 2-29 • Minimum and Maximum DC Input and Output Levels

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.


2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges.

4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Figure 2-7 • AC Loading

Table 2-30 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	_	35

Note: **Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.*

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-31 • 3.3 V LVCMOS Wide Range High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zhs}	Units
100 µA	4 mA	Std.	0.66	12.19	0.04	1.83	2.38	0.43	12.19	10.17	4.16	4.00	15.58	13.57	ns
		-1	0.56	10.37	0.04	1.55	2.02	0.36	10.37	8.66	3.54	3.41	13.26	11.54	ns
		-2	0.49	9.10	0.03	1.36	1.78	0.32	9.10	7.60	3.11	2.99	11.64	10.13	ns
100 µA	8 mA	Std.	0.66	7.85	0.04	1.83	2.38	0.43	7.85	6.29	4.71	4.97	11.24	9.68	ns
		-1	0.56	6.68	0.04	1.55	2.02	0.36	6.68	5.35	4.01	4.22	9.57	8.24	ns
		-2	0.49	5.86	0.03	1.36	1.78	0.32	5.86	4.70	3.52	3.71	8.40	7.23	ns
100 µA	12 mA	Std.	0.66	5.67	0.04	1.83	2.38	0.43	5.67	4.36	5.06	5.59	9.07	7.75	ns
		-1	0.56	4.82	0.04	1.55	2.02	0.36	4.82	3.71	4.31	4.75	7.71	6.59	ns
		-2	0.49	4.24	0.03	1.36	1.78	0.32	4.24	3.25	3.78	4.17	6.77	5.79	ns
100 µA	16 mA	Std.	0.66	5.35	0.04	1.83	2.38	0.43	5.35	3.96	5.15	5.76	8.75	7.35	ns
		-1	0.56	4.55	0.04	1.55	2.02	0.36	4.55	3.36	4.38	4.90	7.44	6.25	ns
		-2	0.49	4.00	0.03	1.36	1.78	0.32	4.00	2.95	3.85	4.30	6.53	5.49	ns
100 µA	24 mA	Std.	0.66	4.96	0.04	1.83	2.38	0.43	4.96	3.27	5.23	6.38	8.35	6.67	ns
		-1	0.56	4.22	0.04	1.55	2.02	0.36	4.22	2.78	4.45	5.43	7.11	5.67	ns
		-2	0.49	3.70	0.03	1.36	1.78	0.32	3.70	2.44	3.91	4.76	6.24	4.98	ns

Notes:

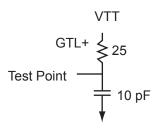
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. Software default selection highlighted in gray.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.


Table 2-54 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+		VIL	VIH	VIH		VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	_	35	35	181	268	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

Figure 2-14 • AC Loading

Table 2-55 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-56 • 3.3 V GTL+

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.06	0.04	1.59	0.43	2.09	2.06			4.33	4.29	ns
-1	0.51	1.75	0.04	1.35	0.36	1.78	1.75			3.68	3.65	ns
-2	0.45	1.53	0.03	1.19	0.32	1.56	1.53			3.23	3.20	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by the Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-22. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, ProASIC3E also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

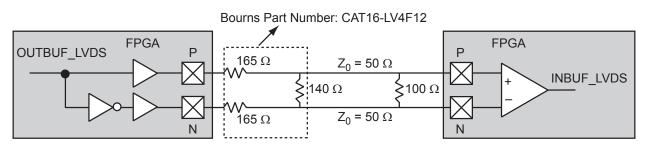


Figure 2-22 • LVDS Circuit Diagram and Board-Level Implementation

Timing Characteristics

Table 2-80 • LVDS

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.87	0.04	1.82	ns
-1	0.56	1.59	0.04	1.55	ns
-2	0.49	1.40	0.03	1.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in the LVDS section in Table 2-80.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

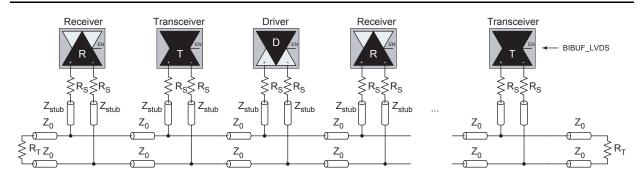


Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The ProASIC3E library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *Fusion*, *IGLOO®/e*, *and ProASIC3/E Macro Library Guide*.

Figure 2-34 • Sample of Combinatorial Cells

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-93 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	-2	-1	Std.	Units
INV	Y = !A	t _{PD}	0.40	0.46	0.54	ns
AND2	$Y = A \cdot B$	t _{PD}	0.47	0.54	0.63	ns
NAND2	Y = !(A · B)	t _{PD}	0.47	0.54	0.63	ns
OR2	Y = A + B	t _{PD}	0.49	0.55	0.65	ns
NOR2	Y = !(A + B)	t _{PD}	0.49	0.55	0.65	ns
XOR2	Y = A ⊕ B	t _{PD}	0.74	0.84	0.99	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	0.70	0.79	0.93	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	0.87	1.00	1.17	ns
MUX2	Y = A !S + B S	t _{PD}	0.51	0.58	0.68	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	0.56	0.64	0.75	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

VersaTile Specifications as a Sequential Module

The ProASIC3E library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide*.

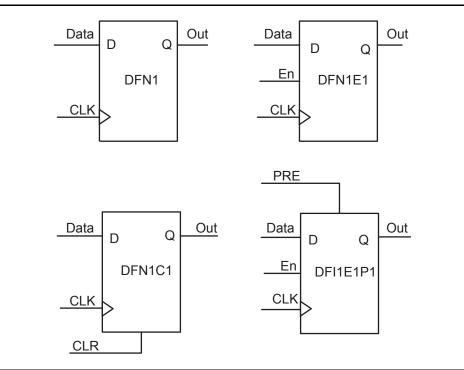


Figure 2-36 • Sample of Sequential Cells

ProASIC3E DC and Switching Characteristics

Clock Conditioning Circuits

CCC Electrical Specifications

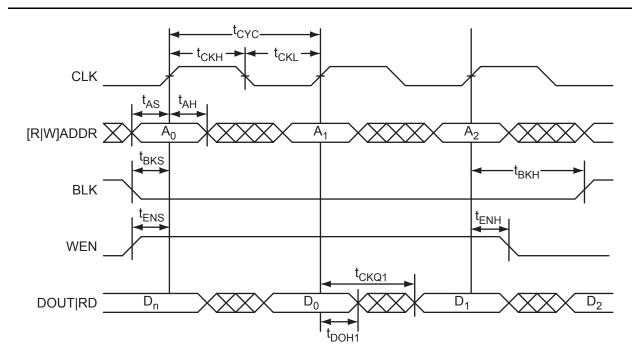
Timing Characteristics

Table 2-98 • ProASIC3E CCC/PLL Specification

Parameter		Minimum	Typical	Maximum	Units
Clock Conditioning Circuitry Inp	out Frequency f _{IN_CCC}	1.5		350	MHz
Clock Conditioning Circuitry Ou	tput Frequency f _{OUT_CCC}	0.75		350	MHz
Delay Increments in Programm	able Delay Blocks ^{1, 2}		160 ³		ps
Serial Clock (SCLK) for Dynam	ic PLL ⁴			125	MHz
Number of Programmable Valu Programmable Delay Block	es in Each			32	
Input Period Jitter				1.5	ns
CCC Output Peak-to-Peak Per	od Jitter F _{CCC_OUT}	Max	<pre> Peak-to-Pe </pre>	ak Period Jitter	
		1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz		0.50%		0.70%	
24 MHz to 100 MHz		1.00%		1.20%	
100 MHz to 250 MHz		1.75%		2.00%	
250 MHz to 350 MHz		2.50%		5.60%	
Acquisition Time	LockControl = 0			300	μs
	LockControl = 1			6.0	ms
Tracking Jitter ⁵	LockControl = 0			1.6	ns
	LockControl = 1			0.8	ns
Output Duty Cycle		48.5		51.5	%
Delay Range in Block: Program	0.6		5.56	ns	
Delay Range in Block: Program	0.025		5.56	ns	
Delay Range in Block: Fixed D	elay ^{1,4}		2.2		ns

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-5 for deratings


2. $T_J = 25^{\circ}C$, VCC = 1.5 V.

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help for more information.

4. Maximum value obtained for a -2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

Timing Waveforms

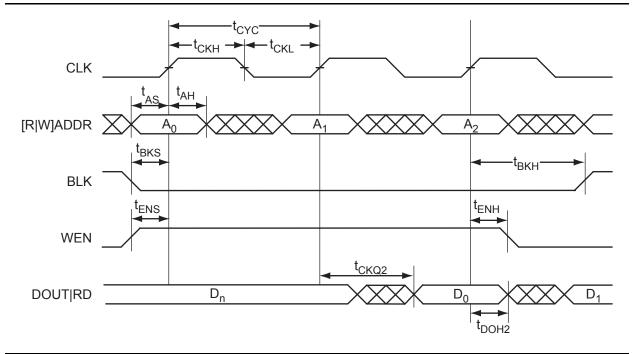


Figure 2-42 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

Table 2-100 • RAM512X18

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.18	0.20	0.24	ns
t _{ENH}	REN, WEN hold time	0.06	0.07	0.08	ns
t _{DS}	Input data (WD) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (WD) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	2.16	2.46	2.89	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	0.90	1.02	1.20	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.50	0.43	0.38	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.59	0.50	0.44	ns
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to data out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

ProASIC3E DC and Switching Characteristics

FIFO

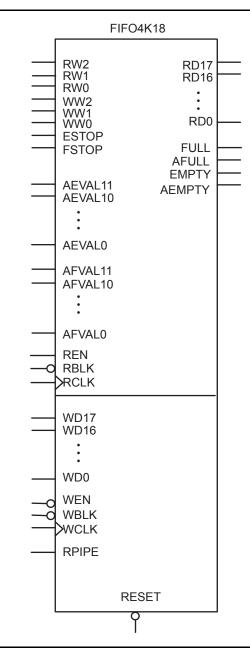
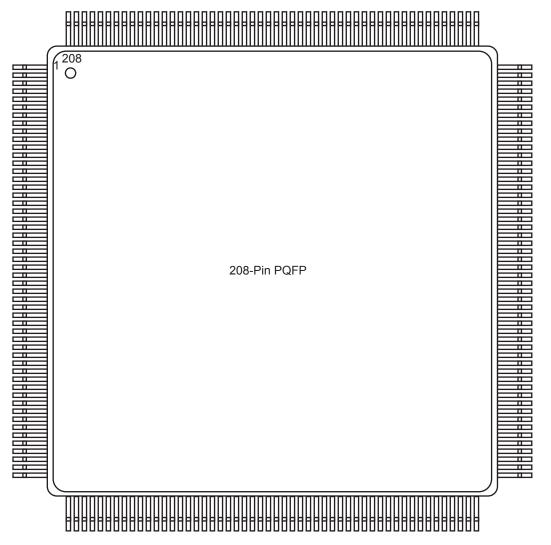



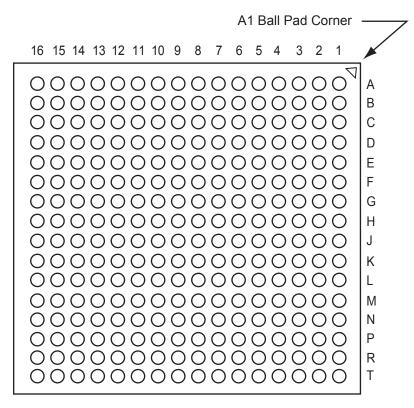
Figure 2-46 • FIFO Model

4 – Package Pin Assignments

PQ208

Note: This is the top view of the package.

Note


For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

Package Pin Assignments

	PQ208		PQ208		PQ208
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
1	GND	37	IO184PDB6V2	73	IO145NDB5V1
2	GNDQ	38	IO184NDB6V2	74	IO145PDB5V1
3	VMV7	39	IO180PSB6V1	75	IO143NDB5V1
4	GAB2/IO220PSB7V3	40	VCCIB6	76	IO143PDB5V1
5	GAA2/IO221PDB7V3	41	GND	77	IO137NDB5V0
6	IO221NDB7V3	42	IO176PDB6V1	78	IO137PDB5V0
7	GAC2/IO219PDB7V3	43	IO176NDB6V1	79	IO135NDB5V0
8	IO219NDB7V3	44	GEC1/IO169PDB6V0	80	IO135PDB5V0
9	IO215PDB7V3	45	GEC0/IO169NDB6V0	81	GND
10	IO215NDB7V3	46	GEB1/IO168PPB6V0	82	IO131NDB4V2
11	IO212PDB7V2	47	GEA1/IO167PPB6V0	83	IO131PDB4V2
12	IO212NDB7V2	48	GEB0/IO168NPB6V0	84	IO129NDB4V2
13	IO208PDB7V2	49	GEA0/IO167NPB6V0	85	IO129PDB4V2
14	IO208NDB7V2	50	VMV6	86	IO127NDB4V2
15	IO204PSB7V1	51	GNDQ	87	IO127PDB4V2
16	VCC	52	GND	88	VCC
17	GND	53	VMV5	89	VCCIB4
18	VCCIB7	54	GNDQ	90	IO121NDB4V1
19	IO200PDB7V1	55	IO166NDB5V3	91	IO121PDB4V1
20	IO200NDB7V1	56	GEA2/IO166PDB5V3	92	IO119NDB4V1
21	IO196PSB7V0	57	IO165NDB5V3	93	IO119PDB4V1
22	GFC1/IO192PSB7V0	58	GEB2/IO165PDB5V3	94	IO113NDB4V0
23	GFB1/IO191PDB7V0	59	IO164NDB5V3	95	GDC2/IO113PDB4V0
24	GFB0/IO191NDB7V0	60	GEC2/IO164PDB5V3	96	IO112NDB4V0
25	VCOMPLF	61	IO163PSB5V3	97	GND
26	GFA0/IO190NPB6V2	62	VCCIB5	98	GDB2/IO112PDB4V0
27	VCCPLF	63	IO161PSB5V3	99	GDA2/IO111PSB4V0
28	GFA1/IO190PPB6V2	64	IO157NDB5V2	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO189PDB6V2	66	IO157PDB5V2	102	TDI
31	IO189NDB6V2	67	IO153NDB5V2	103	TMS
32	GFB2/IO188PPB6V2	68	IO153PDB5V2	104	VMV4
33	GFC2/IO187PPB6V2	69	IO149NDB5V1	105	GND
34	IO188NPB6V2	70	IO149PDB5V1	106	VPUMP
35	IO187NPB6V2	71	VCC	107	GNDQ
36	VCC	72	VCCIB5	108	TDO

FG256

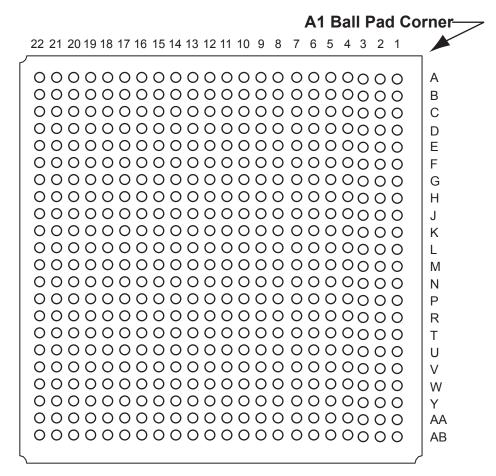
Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

FG256		FG256		FG256	
Pin Number A3PE600 Function		Pin Number A3PE600 Function		Pin Number	A3PE600 Function
A1	GND	C5	GAC0/IO02NDB0V0	E9	IO21NDB1V0
A2	GAA0/IO00NDB0V0	C6	GAC1/IO02PDB0V0	E10	VCCIB1
A3	GAA1/IO00PDB0V0	C7	IO15NDB0V2	E11	VCCIB1
A4	GAB0/IO01NDB0V0	C8	IO15PDB0V2	E12	VMV1
A5	IO05PDB0V0	C9	IO20PDB1V0	E13	GBC2/IO38PDB2V0
A6	IO10PDB0V1	C10	IO25NDB1V0	E14	IO37NDB2V0
A7	IO12PDB0V2	C11	IO27PDB1V0	E15	IO41NDB2V0
A8	IO16NDB0V2	C12	GBC0/IO33NDB1V1	E16	IO41PDB2V0
A9	IO23NDB1V0	C13	VCCPLB	F1	IO124PDB7V0
A10	IO23PDB1V0	C14	VMV2	F2	IO125PDB7V0
A11	IO28NDB1V1	C15	IO36NDB2V0	F3	IO126PDB7V0
A12	IO28PDB1V1	C16	IO42PDB2V0	F4	IO130NDB7V1
A13	GBB1/IO34PDB1V1	D1	IO128PDB7V1	F5	VCCIB7
A14	GBA0/IO35NDB1V1	D2	IO129PDB7V1	F6	GND
A15	GBA1/IO35PDB1V1	D3	GAC2/IO132PDB7V1	F7	VCC
A16	GND	D4	VCOMPLA	F8	VCC
B1	GAB2/IO133PDB7V1	D5	GNDQ	F9	VCC
B2	GAA2/IO134PDB7V1	D6	IO09NDB0V1	F10	VCC
B3	GNDQ	D7	IO09PDB0V1	F11	GND
B4	GAB1/IO01PDB0V0	D8	IO13PDB0V2	F12	VCCIB2
B5	IO05NDB0V0	D9	IO21PDB1V0	F13	IO38NDB2V0
B6	IO10NDB0V1	D10	IO25PDB1V0	F14	IO40NDB2V0
B7	IO12NDB0V2	D11	IO27NDB1V0	F15	IO40PDB2V0
B8	IO16PDB0V2	D12	GNDQ	F16	IO45PSB2V1
B9	IO20NDB1V0	D13	VCOMPLB	G1	IO124NDB7V0
B10	IO24NDB1V0	D14	GBB2/IO37PDB2V0	G2	IO125NDB7V0
B11	IO24PDB1V0	D15	IO39PDB2V0	G3	IO126NDB7V0
B12	GBC1/IO33PDB1V1	D16	IO39NDB2V0	G4	GFC1/IO120PPB7V0
B13	GBB0/IO34NDB1V1	E1	IO128NDB7V1	G5	VCCIB7
B14	GNDQ	E2	IO129NDB7V1	G6	VCC
B15	GBA2/IO36PDB2V0	E3	IO132NDB7V1	G7	GND
B16	IO42NDB2V0	E4	IO130PDB7V1	G8	GND
C1	IO133NDB7V1	E5	VMV0	G9	GND
C2	IO134NDB7V1	E6	VCCIB0	G10	GND
C3	VMV7	E7	VCCIB0	G11	VCC
C4	VCCPLA	E8	IO13NDB0V2	G12	VCCIB2

FG256				
Pin Number	A3PE600 Function			
P9	IO82PDB5V0			
P10	IO76NDB4V1			
P11	IO76PDB4V1			
P12	VMV4			
P13	TCK			
P14	VPUMP			
P15	TRST			
P16	GDA0/IO67NDB3V1			
R1	GEA1/IO102PDB6V0			
R2	GEA0/IO102NDB6V0			
R3	GNDQ			
R4	GEC2/IO99PDB5V2			
R5	IO95NPB5V1			
R6	IO91NDB5V1			
R7	IO91PDB5V1			
R8	IO83NDB5V0			
R9	IO83PDB5V0			
R10	IO77NDB4V1			
R11	IO77PDB4V1			
R12	IO69NDB4V0			
R13	GDB2/IO69PDB4V0			
R14	TDI			
R15	GNDQ			
R16	TDO			
T1	GND			
T2	IO100NDB5V2			
Т3	GEB2/IO100PDB5V2			
T4	IO99NDB5V2			
T5	IO88NDB5V0			
Т6	IO88PDB5V0			
T7	IO89NSB5V0			
Т8	IO80NSB4V1			
Т9	IO81NDB4V1			
T10	IO81PDB4V1			
T11	IO70NDB4V0			
T12	GDC2/IO70PDB4V0			


FG256			
Pin Number	A3PE600 Function		
T13	IO68NDB4V0		
T14	GDA2/IO68PDB4V0		
T15	TMS		
T16	GND		

FG324		FG324		FG324	
Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA	Pin Number	A3PE3000 FBGA
N1	IO247NDB6V1	R1	IO245NDB6V1	U1	IO241NDB6V0
N2	IO247PDB6V1	R2	VCCIB6	U2	GEA2/IO233PPB5V4
N3	IO251NPB6V2	R3	GEA1/IO234PPB6V0	U3	GEC2/IO231PPB5V4
N4	GEC0/IO236NDB6V0	R4	IO232NDB5V4	U4	VCCIB5
N5	VCOMPLE	R5	GEB2/IO232PDB5V4	U5	GNDQ
N6	IO212NDB5V2	R6	IO214NDB5V2	U6	IO208PDB5V1
N7	IO212PDB5V2	R7	IO202PDB5V1	U7	IO198PPB5V0
N8	IO192NPB4V4	R8	IO194PDB5V0	U8	VCCIB5
N9	IO174PDB4V2	R9	IO186PDB4V4	U9	IO182NPB4V3
N10	IO170PDB4V2	R10	IO178PDB4V3	U10	IO180NPB4V3
N11	GDA2/IO154PPB4V0	R11	IO168NSB4V1	U11	VCCIB4
N12	GDB2/IO155PPB4V0	R12	IO164PDB4V1	U12	IO166PPB4V1
N13	GDA1/IO153PPB3V4	R13	GDC2/IO156PDB4V0	U13	IO162PDB4V1
N14	VCOMPLD	R14	ТСК	U14	GNDQ
N15	GDB0/IO152NDB3V4	R15	VPUMP	U15	VCCIB4
N16	GDB1/IO152PDB3V4	R16	TRST	U16	TMS
N17	IO138NDB3V3	R17	VCCIB3	U17	VMV3
N18	IO138PDB3V3	R18	IO142NDB3V3	U18	IO146NDB3V4
P1	IO245PDB6V1	T1	IO241PDB6V0	V1	GND
P2	GNDQ	T2	GEA0/IO234NPB6V0	V2	IO218NDB5V3
P3	VMV6	Т3	IO233NPB5V4	V3	IO218PDB5V3
P4	GEC1/IO236PDB6V0	T4	IO231NPB5V4	V4	IO206NDB5V1
P5	VCCPLE	T5	VMV5	V5	IO206PDB5V1
P6	IO214PDB5V2	Т6	IO208NDB5V1	V6	IO198NPB5V0
P7	VCCIB5	T7	IO202NDB5V1	V7	GND
P8	GND	Т8	IO194NDB5V0	V8	IO190NDB4V4
P9	IO174NDB4V2	Т9	IO186NDB4V4	V9	IO190PDB4V4
P10	IO170NDB4V2	T10	IO178NDB4V3	V10	IO182PPB4V3
P11	GND	T11	IO166NPB4V1	V11	IO180PPB4V3
P12	VCCIB4	T12	IO164NDB4V1	V12	GND
P13	IO155NPB4V0	T13	IO156NDB4V0	V13	IO162NDB4V1
P14	VCCPLD	T14	VMV4	V14	IO160NDB4V0
P15	VJTAG	T15	TDI	V15	IO160PDB4V0
P16	GDC0/IO151NDB3V4	T16	GNDQ	V16	IO158NDB4V0
P17	GDC1/IO151PDB3V4	T17	TDO	V17	IO158PDB4V0
P18	IO142PDB3V3	T18	IO146PDB3V4	V18	GND

FG484

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at *http://www.microsemi.com/products/fpga-soc/solutions*.

Datasheet Information

Revision	Changes	Page
Revision 3 (Apr 2008) Packaging v1.2	The following pins had duplicates and the extra pins were deleted from the "PQ208" A3PE3000 table:	4-2
	36, 62, 171	
	Note: There were no pin function changes in this update.	
	The following pins had duplicates and the extra pins were deleted from the "FG324" table:	4-12
	E2, E3, E16, E17, P2, P3, T16, U17	
	Note: There were no pin function changes in this update.	
	The "FG256" pin table was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.	4-9
	The "FG484" was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version.	4-22
	The following pins had duplicates and the extra pins were deleted from the "FG896" table:	4-41
	AD6, AE5, AE28, AF29, F5, F26, G6, G25	
	Note: There were no pin function changes in this update.	
Revision 2 (Mar 2008) Product Brief rev. 1	B) The FG324 package was added to the "ProASIC3E Product Family" table, the "I/Os Per Package1" table, and the "Temperature Grade Offerings" table for A3PE3000.	
Revision 1 (Feb 2008) DC and Switching Characteristics v1.1	In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature 1, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades.	2
	The "PLL Behavior at Brownout Condition" section is new.	2-4
	In the "PLL Contribution—PPLL" section, the following was deleted: FCLKIN is the input clock frequency.	2-10
	In Table 2-14 • Summary of Maximum and Minimum DC Input Levels, the note was incorrect. It previously said T_J and it was corrected and changed to T_A .	2-17
	In Table 2-98 • ProASIC3E CCC/PLL Specification, the SCLK parameter and note 1 are new.	2-70
	Table 2-103 • JTAG 1532 was populated with the parameter data, which was not in the previous version of the document.	2-83
Revision 1 (cont'd)	The "PQ208" pin table for A3PE3000 was updated.	4-2
Packaging v1.1	The "FG324" pin table for A3PE3000 is new.	4-13
	The "FG484" pin table for A3PE3000 is new.	4-17
	The "FG896" pin table for A3PE3000 is new.	4-41
Revision 0 (Jan 2008)	This document was previously in datasheet v2.1. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is 51700098-001-0.	
v2.1 (July 2007)	CoreMP7 information was removed from the "Features and Benefits" section.	1-I
	The M1 device part numbers have been updated in ProASIC3E Product Family, "Packaging Tables", "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix".	1-1