

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	·
Total RAM Bits	516096
Number of I/O	341
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3pe3000-fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

ProASIC3E	Device	Family	Overview
		· · · · · · · · · · · · · · · · · · ·	

General Description	
ProASIC3E DC and Switching Characteristics	
General Specifications	
Calculating Power Dissipation	
User I/O Characteristics	
VersaTile Characteristics	
Global Resource Characteristics	
Clock Conditioning Circuits	2-70
Embedded SRAM and FIFO Characteristics	

Pin Descriptions and Packaging

Supply Pins	3-1
User-Defined Supply Pins	3-2
User Pins	3-2
JTAG Pins	3-3
Special Function Pins	3-4
Packaging	3-4
Related Documents	3-4

Package Pin Assignments

PQ208		 			 	 	 			 			 	 				 		 		•••	 		 		 		4-	1
FG256		 			 	 	 			 			 	 		 		 		 		• •	 		 		 		4-	8
FG324		 			 		 			 			 	 		 		 		 		•••	 		 	•	 	4	-1	2
FG484		 			 		 			 			 	 				 		 		•••	 	•	 		 	4	-1	6
FG676		 			 		 			 			 	 				 		 		•••	 	•	 		 	4	-3	2
FG896		 			 		 			 			 	 				 		 		•••	 		 	•	 	4	-4	0

Datasheet Information

List of Changes	5-1
Datasheet Categories	5-12
Safety Critical, Life Support, and High-Reliability Applications Policy	5-12

VersaTiles

The ProASIC3E core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core tiles. The ProASIC3E VersaTile supports the following:

- All 3-input logic functions-LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set ٠

Refer to Figure 1-2 for VersaTile configurations.

User Nonvolatile FlashROM

ProASIC3E devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings ٠
- Device serialization and/or inventory control •
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms ٠
- Asset management/tracking ٠
- Date stamping •
- Version management

The FlashROM is written using the standard ProASIC3E IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks, as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3E development software solutions, Libero® System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

ProASIC3E Device Family Overview

Pro I/Os with Advanced I/O Standards

The ProASIC3E family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3E FPGAs support 19 different I/O standards, including single-ended, differential, and voltage-referenced. The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
- Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II)

ProASIC3E banks support M-LVDS with 20 multi-drop points.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-3 on page 1-7).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 - I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

from file Save to file	···		Show BSR De
Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
BYPASS_IO	ADLIB:INBUF	K1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
LED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
OEa	ADLIB:INBUF	E4	Z
ОЕЬ	ADLIB:INBUF	F1	Z
OSC_EN	ADLIB:INBUF	К3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	R7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF_LVCMOS33U	R6	Z
			-

Figure 1-3 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
 - I/O States during programming are saved to the ADB and resulting programming files after completing programming file generation.

Figure 2-5 • Tristate Output Buffer Timing Model and Delays (example)

Summary of I/O Timing Characteristics – Default I/O Software Settings

Standard	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_REF)	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	_	-	1.4 V
3.3 V LVCMOS Wide Range	-	-	1.4 V
2.5 V LVCMOS	-	-	1.2 V
1.8 V LVCMOS	-	-	0.90 V
1.5 V LVCMOS	-	-	0.75 V
3.3 V PCI	-	-	0.285 * VCCI (RR) 0.615 * VCCI (FF))
3.3 V PCI-X	_	_	0.285 * VCCI (RR) 0.615 * VCCI (FF)
3.3 V GTL	0.8 V	1.2 V	VREF
2.5 V GTL	0.8 V	1.2 V	VREF
3.3 V GTL+	1.0 V	1.5 V	VREF
2.5 V GTL+	1.0 V	1.5 V	VREF
HSTL (I)	0.75 V	0.75 V	VREF
HSTL (II)	0.75 V	0.75 V	VREF
SSTL2 (I)	1.25 V	1.25 V	VREF
SSTL2 (II)	1.25 V	1.25 V	VREF
SSTL3 (I)	1.5 V	1.485 V	VREF
SSTL3 (II)	1.5 V	1.485 V	VREF
LVDS	_	-	Cross point
LVPECL	_	_	Cross point

Table 2-15 • Summary of AC Measuring Points

Table 2-16 • I/O AC Parameter Definitions

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is supported as part of the 3.3 V LVTTL support.

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	н	VOL	он	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min., V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10

Table 2-25 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V< VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-6 • AC Loading

Table 2-26 • 3.3 V LVTTL / 3.3 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	-	35

Note: **Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.*

ProASIC3E DC and Switching Characteristics

Timing Characteristics

Table 2-39 • 1.8 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive	Speed													
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	12.10	0.04	1.45	1.91	0.43	9.59	12.10	2.78	1.64	11.83	14.34	ns
	-1	0.56	10.30	0.04	1.23	1.62	0.36	8.16	10.30	2.37	1.39	10.06	12.20	ns
	-2	0.49	9.04	0.03	1.08	1.42	0.32	7.16	9.04	2.08	1.22	8.83	10.71	ns
4 mA	Std.	0.66	7.05	0.04	1.45	1.91	0.43	6.20	7.05	3.25	2.86	8.44	9.29	ns
	-1	0.56	6.00	0.04	1.23	1.62	0.36	5.28	6.00	2.76	2.44	7.18	7.90	ns
	-2	0.49	5.27	0.03	1.08	1.42	0.32	4.63	5.27	2.43	2.14	6.30	6.94	ns
6 mA	Std.	0.66	4.52	0.04	1.45	1.91	0.43	4.47	4.52	3.57	3.47	6.70	6.76	ns
	-1	0.56	3.85	0.04	1.23	1.62	0.36	3.80	3.85	3.04	2.95	5.70	5.75	ns
	-2	0.49	3.38	0.03	1.08	1.42	0.32	3.33	3.38	2.66	2.59	5.00	5.05	ns
8 mA	Std.	0.66	4.12	0.04	1.45	1.91	0.43	4.20	3.99	3.63	3.62	6.43	6.23	ns
	-1	0.56	3.51	0.04	1.23	1.62	0.36	3.57	3.40	3.09	3.08	5.47	5.30	ns
	-2	0.49	3.08	0.03	1.08	1.42	0.32	3.14	2.98	2.71	2.71	4.81	4.65	ns
12 mA	Std.	0.66	3.80	0.04	1.45	1.91	0.43	3.87	3.09	3.73	4.24	6.10	5.32	ns
	-1	0.56	3.23	0.04	1.23	1.62	0.36	3.29	2.63	3.18	3.60	5.19	4.53	ns
	-2	0.49	2.83	0.03	1.08	1.42	0.32	2.89	2.31	2.79	3.16	4.56	3.98	ns
16 mA	Std.	0.66	3.80	0.04	1.45	1.91	0.43	3.87	3.09	3.73	4.24	6.10	5.32	ns
	-1	0.56	3.23	0.04	1.23	1.62	0.36	3.29	2.63	3.18	3.60	5.19	4.53	ns
	-2	0.49	2.83	0.03	1.08	1.42	0.32	2.89	2.31	2.79	3.16	4.56	3.98	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Voltage-Referenced I/O Characteristics

3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-48 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20	181	268	10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.

Figure 2-12 • AC Loading

Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.

Timing Characteristics

Table 2-50 • 3.3 V GTL

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.08	0.04	2.93	0.43	2.04	2.08			4.27	4.31	ns
-1	0.51	1.77	0.04	2.50	0.36	1.73	1.77			3.63	3.67	ns
-2	0.45	1.55	0.03	2.19	0.32	1.52	1.55			3.19	3.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Timing Characteristics

Table 2-80 • LVDS

Commercial-Ca	se Conditions: TJ = 70°C	, Worst-Case VCC = 1	.425 V, Worst-Case
VCCI = 2.3 V			

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.87	0.04	1.82	ns
-1	0.56	1.59	0.04	1.55	ns
-2	0.49	1.40	0.03	1.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in the LVDS section in Table 2-80.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

Timing Characteristics

Table 2-95 • A3PE600 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

			-2	-	–1 S		td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.83	1.04	0.94	1.18	1.11	1.39	ns
t _{RCKH}	Input High Delay for Global Clock	0.81	1.06	0.93	1.21	1.09	1.42	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.25		0.28		0.33	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Table 2-96 • A3PE1500 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2		·1	Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.07	1.29	1.22	1.47	1.43	1.72	ns
t _{RCKH}	Input High Delay for Global Clock	1.06	1.32	1.21	1.50	1.42	1.76	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

-1 Std. _2 Min.¹ Max.² Min.¹ Max.² Min.¹ Max.² Parameter Description Units Input Low Delay for Global Clock 1.41 1.62 1.60 1.85 1.88 2.17 ns t_{RCKL} Input High Delay for Global Clock 1.40 1.66 1.59 1.89 1.87 2.22 ns t_{RCKH} Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns t_{RCKMPWH} 0.85 1.13 Minimum Pulse Width Low for Global Clock 0.96 ns t_{RCKMPWL} Maximum Skew for Global Clock 0.26 0.29 0.35 ns t_{RCKSW} Notes:

Table 2-97 • A3PE3000 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

NOICS.

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-98 • ProASIC3E CCC/PLL Specification

Parameter	Minimum	Typical	Maximum	Units	
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		350	MHz	
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		350	MHz	
Delay Increments in Programmable Delay Blocks ^{1, 2}		160 ³		ps	
Serial Clock (SCLK) for Dynamic PLL ⁴			125	MHz	
Number of Programmable Values in Each Programmable Delay Block			32		
Input Period Jitter			1.5	ns	
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Max Peak-to-Peak Period Jitter				
	1 Global Network Used		3 Global Networks Used		
0.75 MHz to 24 MHz	0.50%		0.70%		
24 MHz to 100 MHz	1.00%		1.20%		
100 MHz to 250 MHz	1.75%		2.00%		
250 MHz to 350 MHz	2.50%		5.60%		
Acquisition Time LockControl = 0			300	μs	
LockControl = 1			6.0	ms	
Tracking Jitter ⁵ LockControl = 0			1.6	ns	
LockControl = 1			0.8	ns	
Output Duty Cycle	48.5		51.5	%	
Delay Range in Block: Programmable Delay 1 ^{1, 2}	0.6		5.56	ns	
Delay Range in Block: Programmable Delay 2 ^{1,2}	0.025		5.56	ns	
Delay Range in Block: Fixed Delay ^{1,4}		2.2		ns	

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-5 for deratings

2. $T_J = 25^{\circ}C$, VCC = 1.5 V.

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help for more information.

4. Maximum value obtained for a –2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

Embedded SRAM and FIFO Characteristics

RAM4K9 RAM512X18 ADDRA11 DOUTA8 RADDR8 **RD17** DOUTA7 RADDR7 **RD16** ADDRA10 ٠ . ٠ . DOUTA0 ADDRA0 RADDR0 RD0 DINA8 DINA7 . RW1 RW0 DINA0 WIDTHA1 WIDTHA0 PIPE PIPEA WMODEA BLKA a d REN WENA **SRCLK** CLKA ADDRB11 DOUTB8 WADDR8 DOUTB7 ADDRB10 WADDR7 ٠ ADDRB0 DOUTB0 WADDR0 WD17 WD16 DINB8 DINB7 • WD0 . DINB0 WW1 WW0 WIDTHB1 WIDTHB0 PIPEB WMODEB BLKB 0 -d WEN WENB d **DWCLK CLKB** RESET RESET

SRAM

Figure 2-40 • RAM Models

Timing Characteristics

Table 2-99 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	1.79	2.03	2.39	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET Low to data out Low on DO (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.

3 – Pin Descriptions and Packaging

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ

Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx

I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground through any resistor and the corresponding VCCIX grounded, then the leakage current to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx

I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F

PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *ProASIC3E FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There are six VCCPLX pins on ProASIC3E devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There are six VCOMPL pins (PLL ground) on ProASIC3E devices.

Package Pin Assignments

PQ208			PQ208	PQ208		
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	
1	GND	37	IO184PDB6V2	73	IO145NDB5V1	
2	GNDQ	38	IO184NDB6V2	74	IO145PDB5V1	
3	VMV7	39	IO180PSB6V1	75	IO143NDB5V1	
4	GAB2/IO220PSB7V3	40	VCCIB6	76	IO143PDB5V1	
5	GAA2/IO221PDB7V3	41	GND	77	IO137NDB5V0	
6	IO221NDB7V3	42	IO176PDB6V1	78	IO137PDB5V0	
7	GAC2/IO219PDB7V3	43	IO176NDB6V1	79	IO135NDB5V0	
8	IO219NDB7V3	44	GEC1/IO169PDB6V0	80	IO135PDB5V0	
9	IO215PDB7V3	45	GEC0/IO169NDB6V0	81	GND	
10	IO215NDB7V3	46	GEB1/IO168PPB6V0	82	IO131NDB4V2	
11	IO212PDB7V2	47	GEA1/IO167PPB6V0	83	IO131PDB4V2	
12	IO212NDB7V2	48	GEB0/IO168NPB6V0	84	IO129NDB4V2	
13	IO208PDB7V2	49	GEA0/IO167NPB6V0	85	IO129PDB4V2	
14	IO208NDB7V2	50	VMV6	86	IO127NDB4V2	
15	IO204PSB7V1	51	GNDQ	87	IO127PDB4V2	
16	VCC	52	GND	88	VCC	
17	GND	53	VMV5	89	VCCIB4	
18	VCCIB7	54	GNDQ	90	IO121NDB4V1	
19	IO200PDB7V1	55	IO166NDB5V3	91	IO121PDB4V1	
20	IO200NDB7V1	56	GEA2/IO166PDB5V3	92	IO119NDB4V1	
21	IO196PSB7V0	57	IO165NDB5V3	93	IO119PDB4V1	
22	GFC1/IO192PSB7V0	58	GEB2/IO165PDB5V3	94	IO113NDB4V0	
23	GFB1/IO191PDB7V0	59	IO164NDB5V3	95	GDC2/IO113PDB4V0	
24	GFB0/IO191NDB7V0	60	GEC2/IO164PDB5V3	96	IO112NDB4V0	
25	VCOMPLF	61	IO163PSB5V3	97	GND	
26	GFA0/IO190NPB6V2	62	VCCIB5	98	GDB2/IO112PDB4V0	
27	VCCPLF	63	IO161PSB5V3	99	GDA2/IO111PSB4V0	
28	GFA1/IO190PPB6V2	64	IO157NDB5V2	100	GNDQ	
29	GND	65	GND	101	TCK	
30	GFA2/IO189PDB6V2	66	IO157PDB5V2	102	TDI	
31	IO189NDB6V2	67	IO153NDB5V2	103	TMS	
32	GFB2/IO188PPB6V2	68	IO153PDB5V2	104	VMV4	
33	GFC2/IO187PPB6V2	69	IO149NDB5V1	105	GND	
34	IO188NPB6V2	70	IO149PDB5V1	106	VPUMP	
35	IO187NPB6V2	71	VCC	107	GNDQ	
36	VCC	72	VCCIB5	108	TDO	

Package Pin Assignments

FG484 FG484		FG484			
Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function	Pin Number	A3PE1500 Function
A1	GND	AA15	NC	B7	IO10PDB0V1
A2	GND	AA16	IO117NDB4V0	B8	IO15NDB0V1
A3	VCCIB0	AA17	IO117PDB4V0	B9	IO17NDB0V2
A4	IO05NDB0V0	AA18	IO115NDB4V0	B10	IO20PDB0V2
A5	IO05PDB0V0	AA19	IO115PDB4V0	B11	IO29PDB0V3
A6	IO11NDB0V1	AA20	NC	B12	IO32NDB1V0
A7	IO11PDB0V1	AA21	VCCIB3	B13	IO43NDB1V1
A8	IO15PDB0V1	AA22	GND	B14	NC
A9	IO17PDB0V2	AB1	GND	B15	NC
A10	IO27NDB0V3	AB2	GND	B16	IO53NDB1V2
A11	IO27PDB0V3	AB3	VCCIB5	B17	IO53PDB1V2
A12	IO32PDB1V0	AB4	IO159NDB5V3	B18	IO54PDB1V3
A13	IO43PDB1V1	AB5	IO159PDB5V3	B19	NC
A14	IO47NDB1V1	AB6	IO149NDB5V1	B20	NC
A15	IO47PDB1V1	AB7	IO149PDB5V1	B21	VCCIB2
A16	IO51NDB1V2	AB8	IO138NDB5V0	B22	GND
A17	IO51PDB1V2	AB9	IO138PDB5V0	C1	VCCIB7
A18	IO54NDB1V3	AB10	NC	C2	NC
A19	NC	AB11	NC	C3	NC
A20	VCCIB1	AB12	IO127NDB4V2	C4	NC
A21	GND	AB13	IO127PDB4V2	C5	GND
A22	GND	AB14	IO125NDB4V1	C6	IO07NDB0V0
AA1	GND	AB15	IO125PDB4V1	C7	IO07PDB0V0
AA2	VCCIB6	AB16	IO122NDB4V1	C8	VCC
AA3	NC	AB17	IO122PDB4V1	C9	VCC
AA4	IO161PDB5V3	AB18	NC	C10	IO20NDB0V2
AA5	IO155NDB5V2	AB19	NC	C11	IO29NDB0V3
AA6	IO155PDB5V2	AB20	VCCIB4	C12	NC
AA7	IO154NDB5V2	AB21	GND	C13	NC
AA8	IO154PDB5V2	AB22	GND	C14	VCC
AA9	IO143PDB5V1	B1	GND	C15	VCC
AA10	IO143NDB5V1	B2	VCCIB7	C16	NC
AA11	IO131PPB4V2	B3	NC	C17	NC
AA12	IO129NDB4V2	B4	IO03NDB0V0	C18	GND
AA13	IO129PDB4V2	B5	IO03PDB0V0	C19	NC
AA14	NC	B6	IO10NDB0V1	C20	NC

Package Pin Assignments

FG484							
Pin Number	A3PE1500 Function						
V15	IO112NDB4V0						
V16	GDB2/IO112PDB4V0						
V17	TDI						
V18	GNDQ						
V19	TDO						
V20	GND						
V21	NC						
V22	IO105NDB3V2						
W1	NC						
W2	NC						
W3	NC						
W4	GND						
W5	IO165NDB5V3						
W6	GEB2/IO165PDB5V3						
W7	IO164NDB5V3						
W8	IO153NDB5V2						
W9	IO153PDB5V2						
W10	IO147NDB5V1						
W11	IO133NDB4V2						
W12	IO130NDB4V2						
W13	IO130PDB4V2						
W14	IO113NDB4V0						
W15	GDC2/IO113PDB4V0						
W16	IO111NDB4V0						
W17	GDA2/IO111PDB4V0						
W18	TMS						
W19	GND						
W20	NC						
W21	NC						
W22	NC						
Y1	VCCIB6						
Y2	NC						
Y3	NC						
Y4	IO161NDB5V3						
Y5	GND						
Y6	IO163NDB5V3						

FG484		
Pin Number	A3PE1500 Function	
Y7	IO163PDB5V3	
Y8	VCC	
Y9	VCC	
Y10	IO147PDB5V1	
Y11	IO133PDB4V2	
Y12	IO131NPB4V2	
Y13	NC	
Y14	VCC	
Y15	VCC	
Y16	NC	
Y17	NC	
Y18	GND	
Y19	NC	
Y20	NC	
Y21	NC	
Y22	VCCIB3	

FG896			
Pin Number	A3PE3000 Function		
W29	IO131PDB3V2		
W30	IO123NDB3V1		
Y1	IO266PDB6V4		
Y2	IO250PDB6V2		
Y3	IO250NDB6V2		
Y4	IO246PDB6V1		
Y5	IO247NDB6V1		
Y6	IO247PDB6V1		
Y7	IO249NPB6V1		
Y8	IO245PDB6V1		
Y9	IO253NDB6V2		
Y10	GEB0/IO235NPB6V0		
Y11	VCC		
Y12	VCC		
Y13	VCC		
Y14	VCC		
Y15	VCC		
Y16	VCC		
Y17	VCC		
Y18	VCC		
Y19	VCC		
Y20	VCC		
Y21	IO142PPB3V3		
Y22	IO134NDB3V2		
Y23	IO138NDB3V3		
Y24	IO140NDB3V3		
Y25	IO140PDB3V3		
Y26	IO136PPB3V2		
Y27	IO141NDB3V3		
Y28	IO135NDB3V2		
Y29	IO131NDB3V2		
Y30	IO133PDB3V2		

Revision	Changes	Page
v2.1 (continued)	The words "ambient temperature" were added to the temperature range in the "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix" sections.	1-I
	The "Clock Conditioning Circuit (CCC) and PLL" section was updated.	1-I
	The caption "Main (chip)" in Figure 2-9 • Overview of Automotive ProASIC3 VersaNet Global Network was changed to "Chip (main)."	2-9
	The T _J parameter in Table 3-2 \bullet Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 4–6 were added.	3-2
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15
v2.0 (April 2007)	2.0 In the "Temperature Grade Offerings" section, Ambient was deleted. April 2007) In the "Temperature Grade Offerings" section, Ambient was deleted.	
	Ambient was deleted from "Temperature Grade Offerings".	iii
	Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".	iv
	The "PLL Macro" section was updated to include power-up information.	2-15
	Table 2-13 • ProASIC3E CCC/PLL Specification was updated.	2-30
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21
	The "RESET" section was updated with read and write information.	2-25
	The "RESET" section was updated with read and write information.	2-25
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	2-34
	Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated.	2-64
	Notes 3, 4, and 5 were added to Table 2-17 \cdot Comparison Table for 5 V–Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.	2-40
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50
	The "VPUMP Programming Supply Voltage" section was updated.	2-50
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51
	VJTAG was deleted from the "TCK Test Clock" section.	2-51
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os).	3-2
	In EQ 3-2, 150 was changed to 110 and the result changed to 5.88.	3-5