



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                                           |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | H8S/2000                                                                      |
| Core Size                  | 16-Bit                                                                        |
| Speed                      | 24MHz                                                                         |
| Connectivity               | SCI, SmartCard, USB                                                           |
| Peripherals                | DMA, POR, PWM, WDT                                                            |
| Number of I/O              | 69                                                                            |
| Program Memory Size        | 128KB (128K x 8)                                                              |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | -                                                                             |
| RAM Size                   | 12K x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 3.6V                                                                   |
| Data Converters            | A/D 6x10b                                                                     |
| Oscillator Type            | External                                                                      |
| Operating Temperature      | -20°C ~ 75°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 100-TQFP                                                                      |
| Supplier Device Package    | 100-TQFP (12x12)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/df2218utf24v |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Item Page Revision (See Manual for Details) |     |                                                    |                                                  |                                      |            |                                              |
|---------------------------------------------|-----|----------------------------------------------------|--------------------------------------------------|--------------------------------------|------------|----------------------------------------------|
| Section 16 RAM                              | 551 | Table a                                            | amended                                          |                                      |            |                                              |
|                                             |     | Product C                                          | lass                                             | ROM Type                             | RAM Size   | RAM Address                                  |
|                                             |     | H8S/2218<br>Group                                  | HD64F2218<br>HD64F2218<br>HD64F2218<br>HD64F2217 | CU                                   | 12 kbytes  | H'FFC000 to H'FFEFBF<br>H'FFFFC0 to H'FFFFFF |
|                                             |     |                                                    | HD6432217                                        | Masked ROM Version                   | 8 kbytes   | H'FFD000 to H'FFEFBF<br>H'FFFFC0 to H'FFFFFF |
|                                             |     | H8S/2212<br>Group                                  | HDF64F221<br>HDF64F221<br>HDF64F221              | 2U                                   | 12 kbytes  | H'FFC000 to H'FFEFBF<br>H'FFFFC0 to H'FFFFFF |
|                                             |     |                                                    | HD64F2211<br>HD64F2211<br>HD64F2211<br>HD64F2210 |                                      | 8 kbytes   | H'FFD000 to H'FFEFBF<br>H'FFFFC0 to H'FFFFFF |
|                                             |     |                                                    | HD6432211                                        | Masked ROM Version                   | 8 kbytes   | H'FFD000 to H'FFEFBF<br>H'FFFFC0 to H'FFFFFF |
|                                             |     |                                                    | HD6432210<br>HD6432210                           | <u> </u>                             | 4 kbytes   | H'FFE000 to H'FFEFBF<br>H'FFFFC0 to H'FFFFFF |
| 17.1 Features                               | 553 | Table a                                            | amended                                          |                                      |            |                                              |
| Size:                                       |     | Produ                                              | ct Class                                         |                                      | ROM Size   | ROM Address                                  |
| 0.20.                                       |     | H8S/22                                             |                                                  | HD64F2218, HD64F2218U<br>HD64F2218CU | 128 kbytes | H'000000 to H'01FFFF<br>(Modes 6 and 7)      |
|                                             |     |                                                    | ŀ                                                | ID64F2217CU                          | 64 kbytes  | H'000000 to H'00FFFF<br>(Modes 6 and 7)      |
|                                             |     | H8S/22                                             |                                                  | ID64F2212, HD64F2212U<br>ID64F2212CU | 128 kbytes | H'000000 to H'01FFFF<br>(Mode 7)             |
|                                             |     |                                                    |                                                  | ID64F2211, HD64F2211U<br>ID64F2211CU | 64 kbytes  | H'000000 to H'00FFFF<br>(Mode 7)             |
|                                             |     |                                                    | ŀ                                                | ID64F2210CU                          | 32 kbytes  | H'000000 to H'007FFF<br>(Mode 7)             |
| <ul> <li>Two flash memory</li> </ul>        |     | Descrip                                            | otion ame                                        | nded                                 |            |                                              |
| operating modes                             |     |                                                    | Boot mod                                         | de                                   |            |                                              |
|                                             |     | SCI boot mode: HD64F2218, HD64F2212, and HD64F2211 |                                                  |                                      |            |                                              |
|                                             |     |                                                    |                                                  | t mode: HD64F22                      |            |                                              |
|                                             |     |                                                    |                                                  | 217CU, HD64F221<br>211U, HD64F2211   |            |                                              |

# Section 2 CPU

The H8S/2000 CPU is a high-speed central processing unit with an internal 32-bit architecture that is upward compatible with the H8/300 and H8/300H CPUs. The H8S/2000 CPU has sixteen 16-bit general registers, can address a 16-Mbyte linear address space, and is ideal for realtime control.

This section describes the H8S/2000 CPU. The usable modes and address spaces differ depending on the product. For details on each product, refer to section 3, MCU Operating Modes.

### 2.1 Features

- Upward-compatible with H8/300 and H8/300H CPUs
  - Can execute H8/300 and H8/300H CPU object programs
- General-register architecture
  - Sixteen 16-bit general registers also usable as sixteen 8-bit registers or eight 32-bit registers
- Sixty-five basic instructions
  - 8/16/32-bit arithmetic and logic instructions
  - Multiply and divide instructions
  - Powerful bit-manipulation instructions
- Eight addressing modes
  - Register direct [Rn]
  - Register indirect [@ERn]
  - Register indirect with displacement [@(d:16,ERn) or @(d:32,ERn)]
  - Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]
  - Absolute address [@aa:8, @aa:16, @aa:24, or @aa:32]
  - Immediate [#xx:8, #xx:16, or #xx:32]
  - Program-counter relative [@(d:8,PC) or @(d:16,PC)]
  - Memory indirect [@@aa:8]
- 16-Mbyte address space
  - Program: 16 Mbytes
  - Data: 16 Mbytes
- High-speed operation
  - All frequently-used instructions execute in one or two states
  - 8/16/32-bit register-register add/subtract: 1 state
  - $8 \times 8$ -bit register-register multiply: 12 states
  - 16 ÷ 8-bit register-register divide: 12 states

# Section 3 MCU Operating Modes

### 3.1 Operating Mode Selection

This LSI supports four operating modes (modes 4 to 7). These modes enable selection of the CPU operating mode, enabling/disabling of on-chip ROM, and the initial bus width setting, by setting the mode pins (MD2 to MD0) as show in table 3.1. Modes 4 to 6 are external extended modes that allow access to the external memory and peripheral devices. In external extended mode, 8-bit or 16-bit address space can be set for each area depending on the bus controller setting after program execution starts. If 16-bit access is selected for any one area, 16-bit bus mode is set; if 8-bit access is selected for all areas, 8-bit bus mode is set. In mode 7, the external address space cannot be used. Do not change the mode pin settings during operation. Only mode 7 is available in the H8S/2212 Group.

| мси               |     |     |     |                       |                                           |                | External      | Data Bus         |
|-------------------|-----|-----|-----|-----------------------|-------------------------------------------|----------------|---------------|------------------|
| Operating<br>Mode | MD2 | MD1 | MD0 | CPU Operating<br>Mode | Description                               | On-chip<br>ROM | Initial Value | Maximum<br>Value |
| 4                 | 1   | 0   | 0   | Advanced mode         | On-chip ROM<br>disabled, extended<br>mode | Disabled       | 16 bits       | 16 bits          |
| 5                 | 1   | 0   | 1   | Advanced mode         | On-chip ROM<br>disabled, extended<br>mode | Disabled       | 8 bits        | 16 bits          |
| 6                 | 1   | 1   | 0   | Advanced mode         | On-chip ROM<br>enabled, extended<br>mode  | Enabled        | 8 bits        | 16 bits          |
| 7                 | 1   | 1   | 1   | Advanced mode         | Single-chip mode                          | Enabled        | -             | -                |

#### Table 3.1 MCU Operating Mode Selection

Note: When using the E6000 emulator:

- Mode 7 is not available in the H8S/2218 Group. (The E6000 emulator does not support mode 7.)
- Note following restrictions to use the RTC and USB in mode 6.
   Specify PFCR so that A9 and A8 are output on the PB1 and PB0 pins.
   Set H'FF in PCDDR so that A7 to A0 are output on the PC7 to PC0 pins.

### 4.8 Notes on Use of the Stack

When accessing word data or longword data, this LSI assumes that the lowest address bit is 0. The stack should always be accessed by word transfer instruction or longword transfer instruction, and the value of the stack pointer (SP: ER7) should always be kept even. Use the following instructions to save registers:

PUSH.W Rn (or MOV.W Rn, @-SP) PUSH.L ERn (or MOV.L ERn, @-SP)

Use the following instructions to restore registers:

POP.W Rn (or MOV.W @SP+, Rn) POP.L ERn (or MOV.L @SP+, ERn)

Setting SP to an odd value may lead to a malfunction. Figure 4.4 shows an example of what happens when the SP value is odd.

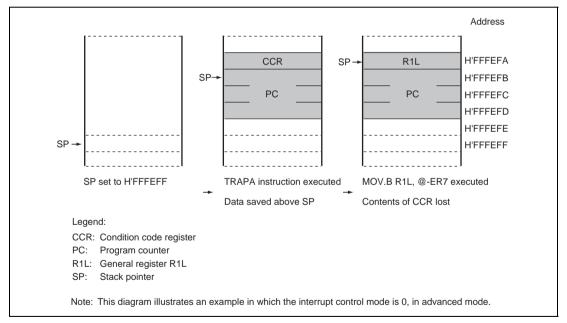



Figure 4.4 Operation when SP Value Is Odd

| • V | WCRL     |               |     |                                                                                                                                              |  |  |
|-----|----------|---------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit | Bit Name | Initial Value | R/W | Description                                                                                                                                  |  |  |
| 7   | W31      | 1             | R/W | Area 3 Wait Control 1 and 0                                                                                                                  |  |  |
| 6   | W30      | 1             | R/W | These bits select the number of program wait states<br>when area 3 in external space is accessed while the<br>AST3 bit in ASTCR is set to 1. |  |  |
|     |          |               |     | 00: Program wait not inserted when external space area 3 is accessed                                                                         |  |  |
|     |          |               |     | 01: 1 program wait state inserted when external space area 3 is accessed                                                                     |  |  |
|     |          |               |     | <ol> <li>2 program wait states inserted when external space<br/>area 3 is accessed</li> </ol>                                                |  |  |
|     |          |               |     | 11: 3 program wait states inserted when external space area 3 is accessed                                                                    |  |  |
| 5   | W21      | 1             | R/W | Area 2 Wait Control 1 and 0                                                                                                                  |  |  |
| 4   | W20      | 1             | R/W | These bits select the number of program wait states<br>when area 2 in external space is accessed while the<br>AST2 bit in ASTCR is set to 1. |  |  |
|     |          |               |     | 00: Program wait not inserted when external space area 2 is accessed                                                                         |  |  |
|     |          |               |     | 01: 1 program wait state inserted when external space area 2 is accessed                                                                     |  |  |
|     |          |               |     | <ol> <li>2 program wait states inserted when external space<br/>area 2 is accessed</li> </ol>                                                |  |  |
|     |          |               |     | 11: 3 program wait states inserted when external space area 2 is accessed                                                                    |  |  |

#### 6.6.4 Wait Control

When accessing external space, this LSI can extend the bus cycle by inserting one or more wait states (Tw). There are two ways of inserting wait states: program wait insertion and pin wait insertion using the  $\overline{WAIT}$  pin.

**Program Wait Insertion:** From 0 to 3 wait states can be inserted automatically between the  $T_2$  state and  $T_3$  state on an individual area basis in 3-state access space, according to the settings of WCRH and WCRL.

**Pin Wait Insertion:** Setting the WAITE bit in BCRH to 1 enables wait insertion by means of the WAIT pin in the H8S/2218 Group. When external space is accessed in this state, program wait insertion is first carried out according to the settings in WCRH and WCRL. Then, if the WAIT pin is low at the falling edge of  $\phi$  in the last T<sub>2</sub> or T<sub>W</sub> state, a T<sub>W</sub> state is inserted. If the WAIT pin is held low, T<sub>W</sub> states are inserted until it goes high.

### 7.6.4 Activation Source Acceptance

At the start of activation source acceptance, a low level is detected in both  $\overline{\text{DREQ}}$  signal falling edge sensing and low level sensing. Similarly, in the case of an internal interrupt, the interrupt request is detected. Therefore, a request is accepted from an internal interrupt or  $\overline{\text{DREQ}}$  pin low level that occurs before execution of the DMABCRL write to enable transfer.

When the DMAC is activated, take any necessary steps to prevent an internal interrupt or  $\overline{DREQ}$  signal low level remaining from the end of the previous transfer, etc.

### 7.6.5 Internal Interrupt after End of Transfer

When the DTE bit is cleared to 0 by the end of transfer or an abort, the selected internal interrupt request will be sent to the CPU even if DTA is set to 1.

Also, if internal DMAC activation has already been initiated when operation is aborted, the transfer is executed but flag clearing is not performed for the selected internal interrupt even if DTA is set to 1.

An internal interrupt request following the end of transfer or an abort should be handled by the CPU as necessary.

#### 7.6.6 Channel Re-Setting

To reactivate a number of channels when multiple channels are enabled, use exclusive handling of transfer end interrupts, and perform DMABCR control bit operations exclusively. Note, in particular, that in cases where multiple interrupts are generated between reading and writing of DMABCR, and a DMABCR operation is performed during new interrupt handling, the DMABCR write data in the original interrupt handling routine will be incorrect, and the write may invalidate the results of the operations by the multiple interrupts. Ensure that overlapping DMABCR operations are not performed by multiple interrupts, and that there is no separation between read and write operations by the use of a bit-manipulation instruction. Also, when the DTE and DTME bits are cleared by the DMAC or are written with 0, they must first be read while cleared to 0 before the CPU can write a 1 to them.

### 8.1.4 Pin Functions

#### Pin Functions of H8S/2218 Group

Port 1 pins also function as address bus (A23 to A20) output pins, TPU I/O pins, and external interrupt input ( $\overline{IRQ0}$  and  $\overline{IRQ1}$ ) pins. The correspondence between the register specification and the pin functions is shown below.

#### Table 8.3P17 Pin Function

| TPU Channel 2 Setting* | Output Setting    | Input Setting | or Initial Value |  |  |
|------------------------|-------------------|---------------|------------------|--|--|
| P17DDR                 | _                 | 0             | 1                |  |  |
| Pin Function           | TIOCB2 output pin | P17 input pin | P17 output pin   |  |  |
|                        |                   | TIOCB2        | input pin        |  |  |
|                        | TCLKD input pin   |               |                  |  |  |

Note: \* For details on the TPU channel setting, refer to section 9, 16-Bit Timer Pulse Unit (TPU).

#### Table 8.4P16 Pin Function

| TPU Channel 2 Setting*1      | Output Setting    | Input Setting or Initial Value |                |  |  |
|------------------------------|-------------------|--------------------------------|----------------|--|--|
| P16DDR                       | —                 | 0                              | 1              |  |  |
| Pin Function                 | TIOCA2 output pin | P16 input pin                  | P16 output pin |  |  |
|                              |                   | TIOCA2                         | input pin      |  |  |
| IRQ1 input pin* <sup>2</sup> |                   |                                |                |  |  |

Notes: 1. For details on the TPU channel setting, refer to section 9, 16-Bit Timer Pulse Unit (TPU).

2. When this pin is used as an external interrupt pin, this pin must not be used for another function.

#### Table 8.5P15 Pin Function

| TPU Channel 1 Setting* | Output Setting    | Input Setting | or Initial Value |  |  |  |
|------------------------|-------------------|---------------|------------------|--|--|--|
| P15DDR                 | _                 | 0             | 1                |  |  |  |
| Pin Function           | TIOCB1 output pin | P15 input pin | P15 output pin   |  |  |  |
|                        |                   | TIOCB1        | input pin        |  |  |  |
|                        | TCLKC input pin   |               |                  |  |  |  |

Note: \* For details on the TPU channel setting, refer to section 9, 16-Bit Timer Pulse Unit (TPU).

#### Table 8.27P76 Pin Function

| EMLE         | (             | 1              |               |
|--------------|---------------|----------------|---------------|
| P76DDR       | 0             | 1              | —             |
| Pin Function | P76 input pin | P76 output pin | TCK input pin |

#### Table 8.28P75 Pin Function

| EMLE         | (             | 1              |               |
|--------------|---------------|----------------|---------------|
| P75DDR       | 0             | 1              | —             |
| Pin Function | P75 input pin | P75 output pin | TMS input pin |

### 8.5 Port 9

The port 9 is a 2-bit input port also functioning as A/D converter analog input pins. The port 9 of the H8S/2218 Group has the same function as that of the H8S/2212 Group.

• Port 9 register (PORT9)

#### 8.5.1 Port 9 Register (PORT9)

PORT9 indicates the pin states of the port 9.

| Bit  | Bit Name | Initial Value | R/W | Description                                              |
|------|----------|---------------|-----|----------------------------------------------------------|
| 7    | P97      | *             | R   | The pin states are always read when these bits are read. |
| 6    | P96      | *             | R   |                                                          |
| 5 to | _        | Undefined     | _   | Reserved                                                 |
| 0    |          |               |     | These bits are undefined.                                |

Note: \* Determined by the states of pins P97 and P96.

#### 8.5.2 Pin Function

The port 9 also functions as A/D converter analog input (AN15 and AN14) pins.



| Bit | Bit Name | Initial value | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|----------|---------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4   | BFA      | 0             | R/W | Buffer Operation A                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |          |               |     | Specifies whether TGRA is to operate in the normal way,<br>or TGRA and TGRC are to be used together for buffer<br>operation. When TGRC is used as a buffer register,<br>TGRC input capture/output compare is not generated. In<br>channels 1 and 2, which have no TGRC, bit 4 is reserved.<br>It is always read as 0 and cannot be modified.<br>0: TGRA operates normally<br>1: TGRA and TGRC used together for buffer operation |
| 3   | MD3      | 0             | R/W | Modes 3 to 0                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2   | MD2      | 0             | R/W | These bits are used to set the timer operating mode.                                                                                                                                                                                                                                                                                                                                                                             |
| 1   | MD1      | 0             | R/W | MD3 is a reserved bit. In a write, the write value should                                                                                                                                                                                                                                                                                                                                                                        |
| 0   | MD0      | 0             | R/W | always be 0. See table 9.8, for details.                                                                                                                                                                                                                                                                                                                                                                                         |

| Table 9.8         | MD3 to M          | ID0   |       |                       |
|-------------------|-------------------|-------|-------|-----------------------|
| Bit 3             | Bit2              | Bit 1 | Bit 0 |                       |
| MD3* <sup>1</sup> | MD2* <sup>2</sup> | MD1   | MD0   | Description           |
| 0                 | 0                 | 0     | 0     | Normal operation      |
|                   |                   |       | 1     | Reserved              |
|                   |                   | 1     | 0     | PWM mode 1            |
|                   |                   |       | 1     | PWM mode 2            |
|                   | 1                 | 0     | 0     | Phase counting mode 1 |
|                   |                   |       | 1     | Phase counting mode 2 |
|                   |                   | 1     | 0     | Phase counting mode 3 |
|                   |                   |       | 1     | Phase counting mode 4 |
| 1                 | х                 | х     | ×     | _                     |
| Logondi           |                   |       |       |                       |

Legend:

×: Don't care

~ ~

.....

1000

Notes: 1. MD3 is reserved bit. In a write, it should be written with 0.

2. Phase counting mode cannot be set for channels 0 and 3. In this case, 0 should always be written to MD2.

### 9.3.9 Timer Synchro Register (TSYR)

TSYR selects independent operation or synchronous operation for the channel 0 to 2 TCNT counters. A channel performs synchronous operation when the corresponding bit in TSYR is set to 1.

| Bit  | Bit Name | Initial Value | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|----------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 to | _        | All 0         | _   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3    |          |               |     | The write value should always be 0.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2    | SYNC2    | 0             | R/W | Timer Synchro 2 to 0                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1    | SYNC1    | 0             | R/W | These bits select whether operation is independent of or                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0    | SYNC0    | 0             | R/W | synchronized with other channels.<br>When synchronous operation is selected, synchronous<br>presetting of multiple channels, and synchronous clearing<br>through counter clearing on another channel are possible.<br>To set synchronous operation, the SYNC bits for at least<br>two channels must be set to 1. To set synchronous<br>clearing, in addition to the SYNC bit, the TCNT clearing<br>source must also be set by means of bits CCLR2 to<br>CCLR0 in TCR. |
|      |          |               |     | <ul> <li>0: TCNT_2 to TCNT_0 operates independently<br/>(TCNT presetting /clearing is unrelated to other<br/>channels)</li> </ul>                                                                                                                                                                                                                                                                                                                                     |
|      |          |               |     | 1: TCNT_2 to TCNT_0 performs synchronous operation<br>TCNT synchronous presetting/synchronous clearing is<br>possible                                                                                                                                                                                                                                                                                                                                                 |



#### Section 9 16-Bit Timer Pulse Unit (TPU)

**Example of Synchronous Operation:** Figure 9.15 shows an example of synchronous operation. In this example, synchronous operation and PWM mode 1 have been designated for channels 0 to 2, TGRB\_0 compare match has been set as the channel 0 counter clearing source, and synchronous clearing has been set for the channel 1 and 2 counter clearing source. Three-phase PWM waveforms are output from pins TIOC0A, TIOC1A, and TIOC2A. At this time, synchronous presetting, and synchronous clearing by TGRB\_0 compare match, is performed for channel 0 to 2 TCNT counters, and the data set in TGRB\_0 is used as the PWM cycle. For details of PWM modes, see section 9.5.4, PWM Modes.

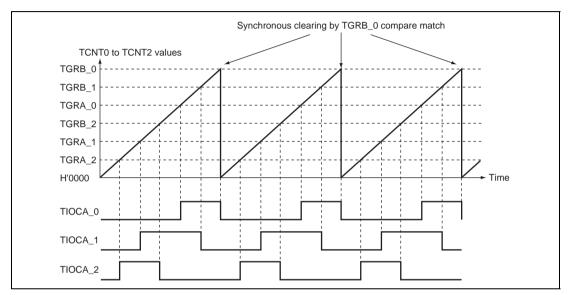



Figure 9.15 Example of Synchronous Operation



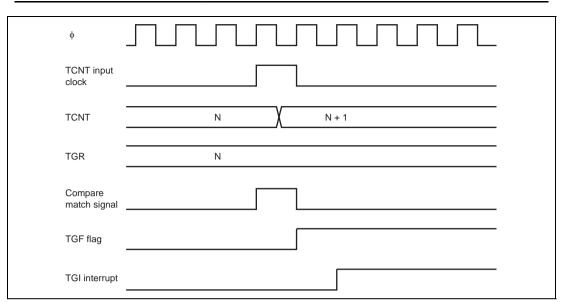
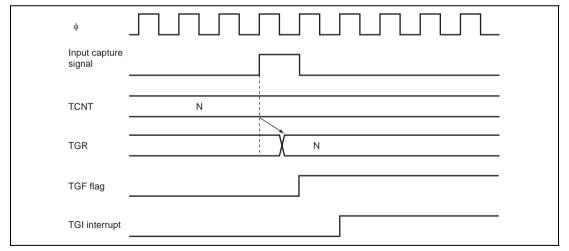
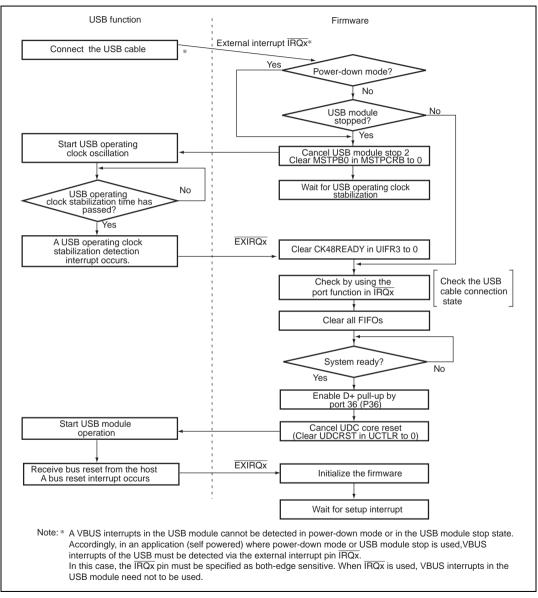



Figure 9.38 TGI Interrupt Timing (Compare Match)

**TGF Flag Setting Timing in Case of Input Capture:** Figure 9.39 shows the timing for setting of the TGF flag in TSR by input capture occurrence, and TGI interrupt request signal timing.





Figure 9.39 TGI Interrupt Timing (Input Capture)

### Section 14 Universal Serial Bus (USB)

| Bit | Bit Name | Initial Value | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|----------|---------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | UIFRST   | 1             | R/W | USB Interface Software Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |          |               |     | Controls USB module internal reset. When the<br>UIFRST bit is set to 1, the USB internal modules other<br>than UCTLR, UIER3, and the CK48READY bit in<br>UIFR3 are all reset. At initialization, the UIFRST bit<br>must be cleared to 0 after the USB operating clock (48<br>MHz) stabilization time has passed following the<br>clearing of the USB module stop 2 bit.                                                                                                                                                                                                 |
|     |          |               |     | 0: Sets the USB internal modules to the operating<br>state. (At initialization, this bit must be cleared after<br>the USB operating clock stabilization time has<br>passed.)                                                                                                                                                                                                                                                                                                                                                                                            |
|     |          |               |     | <ol> <li>Sets the USB internal modules other than UCTLR,<br/>UIER3, and the CK48READY bit in UIFR3 to the<br/>reset state.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |          |               |     | If the UIFRST bit is set to 1 after it is cleared to 0, the UDCRST bit should also be set to 1 simultaneously.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0   | UDCRST   | 1             | R/W | UDC Core Software Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |          |               |     | Controls reset of the UDC core in the USB module.<br>When the UDCRST bit is set to 1, the UDC core is<br>reset and the USB bus synchronization operation<br>stops. At initialization, UDCRST must be cleared to 0<br>after D+ pull-up by the port (P36) control following the<br>clearing of the UIFRST bit. In the suspend state, to<br>maintain the internal state of the UDC core, enter<br>power-down mode after setting the USB module stop<br>2 bit with the UDCRST bit to be maintained to 0. After<br>VBUS disconnection detection, UDCRST must be set<br>to 1. |
|     |          |               |     | <ol> <li>Sets the UDC core in the USB module to operating<br/>state. (At initialization, UDCRST must be cleared<br/>to 0 after D+ pull-up by the port control following<br/>the clearing of the UIFRST bit.)</li> </ol>                                                                                                                                                                                                                                                                                                                                                 |
|     |          |               |     | 1: Sets the UDC core in the USB module to reset<br>state. (In the suspend state, UDCRST must not be<br>set to 1; after VBUS disconnection detection,<br>UDCRST must be set to 1.)                                                                                                                                                                                                                                                                                                                                                                                       |

#### (2) USB Cable Connection (When USB module stop or power-down mode is used)

If the USB cable enters the connection state from the disconnection state in an application (self powered) where USB module stop or power-down mode is used, perform the operation as shown in figure 14.4.



### Figure 14.4 USB Cable Connection (When USB Module Stop or Power-Down Mode Is Used)

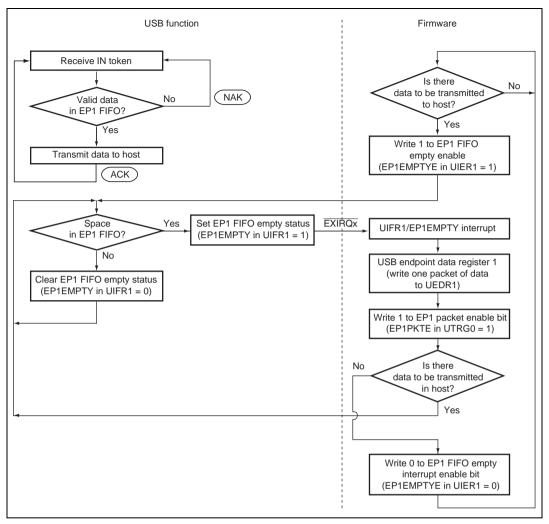



Figure 14.18 EP1 Bulk-In Transfer Operation

Figure 17.6 shows the block configuration of 64-kbyte flash memory in the HD64F2217CU, HD64F2211, HD64F2211U and HD64F2211CU. The thick lines indicate erasing units, the narrow lines indicate programming units, and the values are addresses. The flash memory is divided into one kbyte (four blocks), 28 kbytes (one block), and 16 kbytes (one block), eight kbytes (two blocks). Erasing is performed in these divided units. Programming is performed in 128-byte units starting from an address whose lower eight bits are H'00 or H'80.

| EB0                                  | H'000000 | H'000001 | H'000002 | 🗕 Programming unit: 128 bytes 🔶 | H'00007F |
|--------------------------------------|----------|----------|----------|---------------------------------|----------|
| Erase unit <sup>*</sup>              |          |          | 1        |                                 | 1        |
| 1 kbyte                              | H'000380 | H'000381 | H'000382 |                                 | H'0003FF |
| · EB1                                | H'000400 | H'000401 | H'000402 | 🗕 Programming unit: 128 bytes 🔶 | H'00047F |
| Erase unit ≈                         | y .      |          |          |                                 | 1        |
| 1 kbyte                              | H'000780 | H'000781 | H'000782 |                                 | H'0007FF |
| EB2                                  | H'000800 | H'000801 | H'000802 | ← Programming unit: 128 bytes → | H'00087F |
| Erase unit ∝                         | :<br>ا   |          |          |                                 | 1        |
| 1 kbyte                              | H'000B80 | H'000B81 | H'000B82 |                                 | H'000BFF |
| EB3                                  | H'000C00 | H'000C01 | H'000C02 | 🗕 Programming unit: 128 bytes 🔶 | H'000C7F |
| Erase unit<br>1 kbyte                | y '      |          |          |                                 | 1        |
| TROyte                               | H'000F80 | H'000F81 | H'000F82 |                                 | H'000FFF |
| EB4                                  | H'001000 | H'001001 | H'001002 | 🗕 Programming unit: 128 bytes 🔶 | H'00107F |
| Erase unit<br>28 kbytes              | , i      |          | 1        |                                 | 1        |
| 20 100 100                           | H'007F80 | H'007F81 | H'007F82 |                                 | H'007FFF |
| EB5                                  | H'008000 | H'008001 | H'008002 | 🗕 Programming unit: 128 bytes 🔶 | H'00807F |
| Erase unit <sub>a</sub><br>16 kbytes | L I      |          | 1        |                                 |          |
| TO KDytes                            | H'00BF80 | H'00BF81 | H'00BF82 |                                 | H'00BFFF |
| EB6                                  | H'00C000 | H'00C001 | H'00C002 | 🗕 Programming unit: 128 bytes 🔶 | H'00C07F |
| Erase unit a                         | , i      |          |          |                                 | 1        |
| 8 kbytes                             | H'00DF80 | H'00DF81 | H'00DF82 |                                 | H'00DFFF |
| EB7                                  | H'00E000 | H'00E001 | H'00E002 | ← Programming unit: 128 bytes → | H'00E07F |
| Erase unit ∝                         |          |          |          |                                 |          |
| 8 kbytes                             | H'00FF80 | H'00FF81 | H'00FF82 |                                 | H'00FFFF |

# Figure 17.6 Flash Memory Block Configuration (HD64F2217CU, HD64F2211, HD64F2211U, HD64F2211CU)

| Pre-Transition | Status of Control Bit<br>at Transition |   |      |      | State after Transition<br>Invoked by SLEEP | State after Transition Back from<br>Power-Down Mode Invoked by |  |
|----------------|----------------------------------------|---|------|------|--------------------------------------------|----------------------------------------------------------------|--|
| State          | SSBY PSS                               |   | LSON | DTON | Command                                    | Interrupt                                                      |  |
| High-speed/    | 0                                      | × | 0    | ×    | Sleep                                      | High-speed/Medium-speed                                        |  |
| Medium-speed   | 0                                      | × | 1    | х    | —                                          | _                                                              |  |
|                | 1                                      | 0 | 0    | х    | Software standby                           | High-speed/Medium-speed                                        |  |
|                | 1                                      | 0 | 1    | ×    | —                                          | _                                                              |  |
|                | 1                                      | 1 | 0    | 0    | Watch                                      | High-speed                                                     |  |
|                | 1                                      | 1 | 1    | 0    | Watch                                      | Subactive                                                      |  |
|                | 1                                      | 1 | 0    | 1    | —                                          | _                                                              |  |
|                | 1                                      | 1 | 1    | 1    | Subactive                                  | _                                                              |  |
| Subactive      | 0                                      | 0 | ×    | ×    | —                                          | _                                                              |  |
|                | 0                                      | 1 | 0    | ×    | —                                          | _                                                              |  |
|                | 0                                      | 1 | 1    | ×    | Sub sleep                                  | Subactive                                                      |  |
|                | 1                                      | 0 | ×    | х    | —                                          | _                                                              |  |
|                | 1                                      | 1 | 0    | 0    | Watch                                      | High-speed                                                     |  |
|                | 1                                      | 1 | 1    | 0    | Watch                                      | Subactive                                                      |  |
|                | 1                                      | 1 | 0    | 1    | High-speed                                 | _                                                              |  |
|                | 1                                      | 1 | 1    | 1    | _                                          | _                                                              |  |

### Table 20.2 Transition Conditions of Power-Down Modes

Legend:

×: Don't care

-: Do not set



# Appendix

### A. I/O Port States in Each Processing State

| Port Name                                | MCU<br>Operating | Power-on        | Manual | Hardware<br>Standby | Software<br>Standby<br>Mode or       | Bus Right<br>Release | Program<br>Execution State                   |  |
|------------------------------------------|------------------|-----------------|--------|---------------------|--------------------------------------|----------------------|----------------------------------------------|--|
| Pin Name                                 | Mode             | Reset           | Reset  | Mode                | Watch Mode                           | State                | or Sleep Mode                                |  |
| P17 to P14                               | 4 to 7           | т               | keep   | Т                   | keep                                 | keep                 | I/O port                                     |  |
| P13/A23                                  | 7                | т               | keep   | т                   | keep                                 | keep                 | I/O port                                     |  |
| P12/A22                                  |                  |                 |        |                     |                                      |                      |                                              |  |
| P11/A21                                  |                  |                 |        |                     |                                      |                      |                                              |  |
| Address output<br>selected by AEn<br>bit | 4 to 6           | Т               | keep   | Т                   | [OPE=0]<br>T<br>[OPE=1]<br>keep      | Т                    | Address output                               |  |
| Port selection                           | 4 to 6           | т               | keep   | т                   | keep                                 | keep                 | I/O port                                     |  |
| P10/A20                                  | 7                | Т               | keep   | т                   | keep                                 | keep                 | I/O port                                     |  |
| Address output selected by AEn bit       | 4 and 5          | L               | keep   | Т                   | [OPE=0]<br>T<br>[OPE=1]              | T                    | Address output                               |  |
|                                          | 6                | т               |        |                     | keep                                 |                      |                                              |  |
| Port selection                           | 4 to 6           | T* <sup>1</sup> | keep   | Т                   | keep                                 | keep                 | I/O port                                     |  |
| Port 3                                   | 4 to 7           | Т               | keep   | т                   | keep                                 | keep                 | I/O port                                     |  |
| Port 4                                   | 4 to 7           | Т               | Т      | Т                   | т                                    | т                    | Input port                                   |  |
| P77 to P75*3                             | 7                | т               | keep   | Т                   | keep                                 | keep                 | I/O port                                     |  |
| P74* <sup>2</sup>                        | 4 to 7           | т               | keep   | Т                   | keep                                 | keep                 | I/O port                                     |  |
| P71/CS5*2                                | 7                | Т               | keep   | Т                   | keep                                 | keep                 | I/O port                                     |  |
| P70/ <del>CS4</del> * <sup>2</sup>       | 4 to 6           | Т               | keep   | Т                   | [DDR•OPE=0]<br>T<br>[DDR•OPE=1]<br>H | Т                    | [DDR=0]<br>Input port<br>[DDR=1]<br>CS5, CS4 |  |
| Port 9                                   | 4 to 7           | Т               | Т      | Т                   | [DAOEn=1]<br>keep<br>[DAOEn=0]<br>T  | keep                 | Input port                                   |  |

| Serial Communication Interface | 363 |
|--------------------------------|-----|
| Shift Instructions             | 51  |
| Single Mode                    | 542 |
| Software Protection            | 583 |
| Stack pointer (SP)             | 40  |
| Stack Status                   | 89  |
| Stall Operations               | 517 |
| Suspend and Resume             | 502 |
| Synchronous Operation          | 307 |
| System Control Instruction     | 55  |
|                                |     |

| TCI0V | 322 |
|-------|-----|
| TCI1U | 322 |
| TCI1V | 322 |
| TCI2U | 322 |
| TCI2V | 322 |
| TGI0A | 322 |
| TGI0B | 322 |
|       |     |

| TGI0C                          | 322      |
|--------------------------------|----------|
| TGI0D                          | 322      |
| TGI1A                          | 322      |
| TGI1B                          | 322      |
| TGI2A                          | 322      |
| TGI2B                          | 322      |
| Toggle output                  | 304      |
| Trace Bit                      | 41       |
| Traces                         |          |
| Trap Instruction               |          |
| TRAPA                          | 60, 88   |
| Universal Serial Bus           | 465      |
| USB Cable Connection/Disconnec | tion 498 |
| Watchdog timer                 | 339      |
| Waveform Output by Compare Ma  | atch 303 |
| WOVI                           | 345      |
|                                |          |