

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	8
Program Memory Size	8KB (8K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f300-gs

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F300/1/2/3/4/5

	8.3.4. Interrupt Latency	73
	8.3.5. Interrupt Register Descriptions	75
	8.4. Power Management Modes	80
	8.4.1. Idle Mode	80
	8.4.2. Stop Mode	81
9.	Reset Sources	83
	9.1. Power-On Reset	84
	9.2. Power-Fail Reset/VDD Monitor	84
	9.3. External Reset	85
	9.4. Missing Clock Detector Reset	85
	9.5. Comparator0 Reset	85
	9.6. PCA Watchdog Timer Reset	85
	9.7. Flash Error Reset	86
	9.8. Software Reset	86
10). Flash Memory	89
	10.1.Programming The Flash Memory	89
	10.1.1.Flash Lock and Key Functions	89
	10.1.2.Flash Erase Procedure	89
	10.1.3.Flash Write Procedure	90
	10.2.Non-Volatile Data Storage	90
	10.3.Security Options	90
	10.4.Flash Write and Erase Guidelines	94
	10.4.1.V חת Maintenance and the V חת monitor	94
	10.4.2.PSWE Maintenance	94
	10.4.3.System Clock	95
11	. Oscillators	97
	11.1.Programmable Internal Oscillator	97
	11.2.External Oscillator Drive Circuit	99
	11.3.System Clock Selection	99
	11.4.External Crystal Example	101
	11.5.External RC Example	102
	11.6.External Capacitor Example	102
12	Port Input/Output	103
	12.1.Priority Crossbar Decoder	104
	12.2.Port I/O Initialization	106
	12.3.General Purpose Port I/O	108
13	SMBus	111
	13.1.Supporting Documents	112
	13.2.SMBus Configuration	112
	13.3.SMBus Operation	112
	13.3.1.Arbitration	113
	13.3.2.Clock Low Extension	114
	13.3.3.SCL Low Timeout	114
	13.3.4.SCL High (SMBus Free) Timeout	114

1.1. CIP-51[™] Microcontroller Core

1.1.1. Fully 8051 Compatible

The C8051F300/1/2/3/4/5 family utilizes Silicon Labs' proprietary CIP-51 microcontroller core. The CIP-51 is fully compatible with the MCS-51[™] instruction set; standard 803x/805x assemblers and compilers can be used to develop software. The CIP-51 core offers all the peripherals included with a standard 8052, including two standard 16-bit counter/timers, one enhanced 16-bit counter/timer with external oscillator input, a full-duplex UART with extended baud rate configuration, 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space, and a byte-wide I/O Port.

1.1.2. Improved Throughput

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute with a maximum system clock of 12 to 24 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with only four instructions taking more than four system clock cycles.

The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	2/3	3	3/4	4	4/5	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. Figure 1.3 shows a comparison of peak throughputs for various 8-bit microcontroller cores with their maximum system clocks.

Figure 1.3. Comparison of Peak MCU Execution Speeds

1.2. On-Chip Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

The C8051F300/1/2/3 includes 8k bytes of Flash program memory (the C8051F304 includes 4k bytes; the C8051F305 includes 2k bytes). This memory may be reprogrammed in-system in 512 byte sectors, and requires no special off-chip programming voltage. See Figure 1.5 for the C8051F300/1/2/3 system memory map.

Figure 1.5. On-chip Memory Map (C8051F300/1/2/3 Shown)

Table 3.1. Global Electrical Characteristics (Continued)

-40 to +85 °C, 25 MHz system clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units
I _{DD} Supply Sensitivity (Note 3)	F = 25 MHz	i — '	47		%/V
	F = 1 MHz		59		%/V
I _{DD} Frequency Sensitivity	V _{DD} = 3.0 V, F <= 1 MHz, T = 25 °C		0.27		mA/MHz
(Note 3, Note 5)	V _{DD} = 3.0 V, F > 1 MHz, T = 25 °C		0.10	-	mA/MHz
	V _{DD} = 3.6 V, F <= 1 MHz, T = 25 °C		0.35		mA/MHz
	V _{DD} = 3.6 V, F > 1 MHz, T = 25 °C	—	0.12		mA/MHz
Digital Supply Current (Stop Mode, shutdown)	Oscillator not running, V _{DD} Monitor Disabled		< 0.1		μA

Notes:

- 1. Given in Table 9.2 on page 86.
- 2. SYSCLK must be at least 32 kHz to enable debugging.
- 3. Based on device characterization data; Not production tested.
- 4. Normal IDD can be estimated for frequencies <= 15 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} for >15 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number.

For example: V_{DD} = 3.0 V; F = 20 MHz, I_{DD} = 6.6 mA – (25 MHz – 20 MHz) x 0.16 mA/MHz = 5.8 mA.

5. Idle IDD can be estimated for frequencies <= 1 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle I_{DD} for >1 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number.

For example: V_{DD} = 3.0 V; F = 5 MHz, Idle I_{DD} = 3.3 mA – (25 MHz – 5 MHz) x 0.10 mA/MHz = 1.3 mA.

5.3. Modes of Operation

ADC0 has a maximum conversion speed of 500 ksps. The ADC0 conversion clock is a divided version of the system clock, determined by the AD0SC bits in the ADC0CF register (system clock divided by (AD0SC + 1) for $0 \le AD0SC \le 31$).

5.3.1. Starting a Conversion

A conversion can be initiated in one of five ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM2–0) in register ADC0CN. Conversions may be initiated by one of the following:

- 1. Writing a '1' to the AD0BUSY bit of register ADC0CN
- 2. A Timer 0 overflow (i.e. timed continuous conversions)
- 3. A Timer 2 overflow
- 4. A Timer 1 overflow
- 5. A rising edge on the CNVSTR input signal (pin P0.6)

Writing a '1' to AD0BUSY provides software control of ADC0 whereby conversions are performed "ondemand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt flag (AD0INT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT) should be used. Converted data is available in the ADC0 data register, ADC0, when bit AD0INT is logic 1. Note that when Timer 2 overflows are used as the conversion source, Timer 2 Low Byte overflows are used if Timer 2 is in 8-bit mode; Timer 2 High byte overflows are used if Timer 2 is in 16-bit mode. See **Section "15. Timers" on page 143** for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as Port pin P0.6. When the CNVSTR input is used as the ADC0 conversion source, Port pin P0.6 should be skipped by the Digital Crossbar. To configure the Crossbar to skip P0.6, set to '1' Bit6 in register XBR0. See **Section "12. Port Input/Output" on page 103** for details on Port I/O configuration.

R/W	R/W R/W R/W R/W R/W R/W R/W Reset Value											
	REFSL TEMPE BIASE 00000000											
Bit7	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:											
	0xD1											
Bits7–3:	Bits7–3: UNUSED. Read = 00000b; Write = don't care.											
Bit3:	REFSL: Voltage Reference Select.											
	This bit selects the source for the internal voltage reference.											
	0: VREF input pin used as voltage reference.											
	1: V _{DD} used as voltage reference.											
Bit2:	TEMPE: Ter	mperature S	Sensor Enal	ole Bit.								
	0: Internal Te	emperature	Sensor off.									
	1: Internal Te	emperature	Sensor on									
Bit1:	BIASE: Inter	rnal Analog	Bias Gene	rator Enable	e Bit. (Must	be '1' if usir	ng ADC).					
	0: Internal B	ias Genera	tor off.									
	1: Internal B	ias Genera	tor on.									
Bit0:	UNUSED. R	lead = 0b. \	Nrite = don'	t care.								

SFR Definition 6.1. REF0CN: Reference Control Register

Table 6.1. External Voltage Reference Circuit Electrical Characteristics $V_{DD} = 3.0 \text{ V}$; -40 to +85°C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Input Voltage Range		0	—	V _{DD}	V
Input Current	Sample Rate = 500 ksps; VREF = 3.0 V	—	12		μA

8. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51[™] instruction set; standard 803x/805x assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. Included are three 16-bit counter/timers (see description in **Section 15**), an enhanced full-duplex UART (see description in **Section 14**), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space (**Section 8.2.6**), and one byte-wide I/O Port (see description in **Section 12**). The CIP-51 also includes on-chip debug hardware (see description in **Section 17**), and interfaces directly with the analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 8.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput with 25 MHz Clock
- 0 to 25 MHz Clock Frequency
- 256 Bytes of Internal RAM
- Byte-Wide I/O Port

- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security

Figure 8.1. CIP-51 Block Diagram

CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

8.1.2. MOVX Instruction and Program Memory

The MOVX instruction is typically used to access external data memory (Note: the C8051F300/1/2/3/4/5 does not support external data or program memory). In the CIP-51, the MOVX instruction accesses the onchip program memory space implemented as re-programmable Flash memory. This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to **Section "10. Flash Memory" on page 89** for further details.

Mnemonic	Description	Bytes	Clock Cycles
	I		
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, #data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, #data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, #data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal adjust A	1	1
	Logical Operations		
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANLA, @Ri	AND indirect RAM to A	1	2
ANL A, #data	AND immediate to A	2	2

Table 8.1. CIP-51 Instruction Set Summary

8.2. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The CIP-51 memory organization is shown in Figure 8.2 and Figure 8.3.

8.2.1. Program Memory

The CIP-51 core has a 64k-byte program memory space. The C8051F300/1/2/3 implements 8192 bytes of this program memory space as in-system, reprogrammable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x1FFF. Note: 512 bytes (0x1E00 - 0x1FFF) of this memory are reserved for factory use and are not available for user program storage. The C8051F304 implements 4096 bytes of reprogrammable Flash program memory space; the C8051F305 implements 2048 bytes of reprogrammable Flash program memory space. Figure 8.2 shows the program memory maps for C8051F300/1/2/3/4/5 devices.

Figure 8.2. Program Memory Maps

Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to **Section "10. Flash Memory" on page 89** for further details.

9. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the \overrightarrow{RST} pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. Refer to **Section "11. Oscillators" on page 97** for information on selecting and configuring the system clock source. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source (**Section "16.3. Watchdog Timer Mode" on page 164** details the use of the Watchdog Timer). Once the system clock source is stable, program execution begins at location 0x0000.

Figure 9.1. Reset Sources

SFR Definition 9.1. RSTSRC: Reset Source

R	R	R/W	R/W	R	R/W	R/W	R	Reset Value				
_	FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	Variable				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xEF				
(Note: Do	(Note: Do not use read-modify-write operations (ORL, ANL) on this register)											
D:47.												
Bit/:		ead = 0. W	rite = don't	care.								
DILO.	0. Source of	last reset v	nuicaloi. Vas not a F	lash road/w	rita/arasa a	rror						
	1: Source of last reset was a Flash read/write/erase error.											
Bit5:	CORSEF: Comparator0 Reset Enable and Flag.											
	Write											
	0: Comparat	or0 is not a	reset sour	ce.								
	1: Comparat	or0 is a res	et source (active-low).								
	Read	1										
	0: Source of	last reset v	vas not Col	mparatoru.								
Rit4.	SWRSE So	ftware Rese	et Force an	d Flag								
DIL T .	Write			la r lag.								
	0: No Effect.											
	1: Forces a	system rese	et.									
	Read											
	0: Source of	last reset v	vas not a w	rite to the S	WRSF bit.							
D:40.	1: Source of	last was a	write to the	SWRSF bi	t.							
BIt3:	WDIRSF: W	lact recet w	mer Reset	Flag.								
	1: Source of	last reset v	vas not a v vas a WDT	timeout								
Bit2:	MCDRSF: M	lissing Cloc	k Detector	Flag.								
	Write:	J		-0								
	0: Missing C	lock Detect	or disabled	ł.								
	1: Missing C	lock Detect	or enabled	; triggers a	reset if a mi	ssing clock	condition i	s detected.				
	Read:	1										
	0: Source of	last reset v	vas not a iv	issing Clock D	K Detector t	imeout.						
Bit1	PORSE PON	ver-On Res	set Force a	nd Flag		out.						
Ditt.	This bit is se	t anytime a	power-on	reset occurs	s. This may	be due to a	true power	-on reset or				
	a V _{DD} monit	or reset. In	either case	e, data mem	ory should l	be considei	red indeterr	ninate fol-				
	lowing the re	eset. Writing	g this bit en	ables/disab	les the V _{DD}	monitor.						
	Write:	-										
	0: V _{DD} moni	tor disabled	l.									
	1: V _{DD} moni	tor enabled										
	Read:											
	0: Last reset	was not a	power-on o	or V _{DD} moni	tor reset.							
	1: Last reset	was a pow	ver-on or V _I	_{DD} monitor I	eset; all oth	er reset fla	gs indetern	ninate.				
Bit0:	PINRSF: HV	V Pin Reset	t Flag.									
	0: Source of	last reset v	vas <u>not R</u> S	T pin.								
	1: Source of	last reset v	vas RST pi	n.								

12. Port Input/Output

Digital and analog resources are available through a byte-wide digital I/O Port, Port0. Each of the Port pins can be defined as general-purpose I/O (GPIO), analog input, or assigned to one of the internal digital resources as shown in Figure 12.3. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 12.3 and Figure 12.4). The registers XBR0, XBR1, and XBR2, defined in SFR Definition 12.1, SFR Definition 12.2, and SFR Definition 12.3 are used to select internal digital functions.

All Port I/Os are 5 V tolerant (refer to Figure 12.2 for the Port cell circuit). The Port I/O cells are configured as either push-pull or open-drain in the Port0 Output Mode register (P0MDOUT). Complete Electrical Specifications for Port I/O are given in Table 12.1 on page 110.

Figure 12.1. Port I/O Functional Block Diagram

Figure 12.2. Port I/O Cell Block Diagram

SFR Definition 13.1	. SMB0CF: SMBus	Clock/Configuration

ENSMB INH BUSY EXTHOLD SMBTOE SMBFTE SMBCS1 SMBCS0 00000000 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address 0xC1 Bit7: ENSMB: SMBus Enable. This bit enables/disables the SMBus interface. When enabled, the interface constantly mor itors the SDA and SCL pins. 0: SMBus interface disabled. 1: SMBus interface disabled. 1: SMBus interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY; SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address OxC1 Bit7: ENSMB: SMBus Enable. This bit enables/disables the SMBus interface. When enabled, the interface constantly mor itors the SDA and SCL pins. 0: SMBus interface disabled. 1: SMBus interface enabled. 0: SMBus interface constantly mor itors the SDA and SCL pins. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit7: ENSMB: SMBus Enable. This bit enables/disables the SMBus interface. When enabled, the interface constantly moritors the SDA and SCL pins. 0: SMBus interface disabled. 1: SMBus interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit7: ENSMB: SMBus Enable. This bit enables/disables the SMBus interface. When enabled, the interface constantly moritors the SDA and SCL pins. 0: SMBus interface disabled. 1: SMBus interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit7: ENSMB: SMBus Enable. This bit enables/disables the SMBus interface. When enabled, the interface constantly moritors the SDA and SCL pins. O: SMBus interface disabled. 1: SMBus interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. O: SMBus Slave Mode enabled. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. O: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 This bit enables/disables the SMBus interface. When enabled, the interface constantly moritors the SDA and SCL pins. O: SMBus interface disabled. 1: SMBus interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. O: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. O: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. D: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. D: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit6: INH: SMBus Interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. O: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. Dis Dial Extended Setup and Hold Times disabled. Dis Dial Extended Setup and Hold Times enabled. Dis Dial Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
This bit enables SCL low timeout detection. If set to logic 1, the SMBus forces Timer 2 to
reload while SCL is high and allows Timer 2 to count when SCL goes low. If Timer 2 is con figured in split mode (T2SPLIT is set), only the high byte of Timer 2 is held in relead while
SCL is high. Timer 2 should be programmed to generate interrupts at 25 ms, and the Time
2 interrupt service routine should reset SMBus communication.
Bit2: SMBFTE: SMBus Free Timeout Detection Enable.
When this bit is set to logic 1, the bus will be considered free if SCL and SDA remain high fo
more than 10 SMBus clock source periods.
Bits1–0: SMBCS1-SMBCS0: SMBus Clock Source Selection.
I nese two bits select the SMBus clock source, which is used to generate the SMBus bit
Tale. The selected device should be conlighted according to Equation 15.1.
SMBCS1 SMBCS0 SMBus Clock Source
0 0 Timer 0 Overflow
0 1 Timer 1 Overflow
1 0 Timer 2 High Byte Overflow
1 1 Timer 2 Low Byte Overflow

13.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see SFR Definition 13.2). The higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. MASTER and TXMODE indicate the master/slave state and transmit/receive modes, respectively.

The STA bit indicates that a START has been detected or generated since the last SMBus interrupt. When set to '1', the STA bit will cause the SMBus to enter Master mode and generate a START when the bus becomes free. STA is not cleared by hardware after the START is generated; it must be cleared by software.

As a master, writing the STO bit will cause the hardware to generate a STOP condition and end the current transfer after the next ACK cycle. STO is cleared by hardware after the STOP condition is generated. As a slave, STO indicates that a STOP condition has been detected since the last SMBus interrupt. STO is also used in slave mode to manage the transition from slave receiver to slave transmitter; see **Section 13.5.4** for details on this procedure.

If STO and STA are both set to '1' (while in Master Mode), a STOP followed by a START will be generated.

As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received on the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be ignored until the next START is detected.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when an arbitration is lost; see Table 13.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus is stalled until software clears SI.

Table 13.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 13.4 for SMBus status decoding using the SMB0CN register.

14.1. Enhanced Baud Rate Generation

The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 14.2), which is not user accessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see **Section "15.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 145**). The Timer 1 reload value should be set so that over-flows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of five sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, or the external oscillator clock / 8. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 14.1.

$$UartBaudRate = \frac{T1_{CLK}}{(256 - T1H)} \times \frac{1}{2}$$

Equation 14.1. UART0 Baud Rate

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in **Section "15.2. Timer 2" on page 151**. A quick reference for typical baud rates and system clock frequencies is given in Tables 14.1 through 14.6. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1 (see **Section "15.1. Timer 0 and Timer 1" on page 143** for more details).

			Frequ	ency: 22.1184	MHz		
	Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)
	230400	0.00%	96	SYSCLK	XX ²	1	0xD0
	115200	0.00%	192	SYSCLK	XX ²	1	0xA0
rom Dsc.	57600	0.00%	384	SYSCLK	XX ²	1	0x40
LK f	28800	0.00%	768	SYSCLK / 12	00	0	0xE0
SCI	14400	0.00%	1536	SYSCLK / 12	00	0	0xC0
SY Ex	9600	0.00%	2304	SYSCLK / 12	00	0	0xA0
	2400	0.00%	9216	SYSCLK / 48	10	0	0xA0
	1200	0.00%	18432	SYSCLK / 48	10	0	0x40
	230400	0.00%	96	EXTCLK / 8	11	0	0xFA
om sc.	115200	0.00%	192	EXTCLK / 8	11	0	0xF4
A fr	57600	0.00%	384	EXTCLK / 8	11	0	0xE8
SCL	28800	0.00%	768	EXTCLK / 8	11	0	0xD0
SΥ; Int	14400	0.00%	1536	EXTCLK / 8	11	0	0xA0
	9600	0.00%	2304	EXTCLK / 8	11	0	0x70

Table 14.3. Timer Settings for Standard Baud Rates Using an External 22.1184 MHzOscillator

Notes:

1. SCA1–SCA0 and T1M bit definitions can be found in **Section 15.1**.

2. X = Don't care.

16.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-bit Pulse Width Modulator, or 16-bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 16.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1. See Figure 16.3 for details on the PCA interrupt configuration.

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
X*	X*	1	0	0	0	0	Х*	Capture triggered by positive edge on CEXn
X*	Х*	0	1	0	0	0	X*	Capture triggered by negative edge on CEXn
X*	Х*	1	1	0	0	0	X*	Capture triggered by transition on CEXn
X*	1	0	0	1	0	0	X*	Software Timer
X*	1	0	0	1	1	0	X*	High Speed Output
X*	1	0	0	Х*	1	1	X*	Frequency Output
0	1	0	0	X*	0	1	X*	8-bit Pulse Width Modulator
1	1	0	0	Х*	0	1	Х*	16-bit Pulse Width Modulator

Table 16.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

*Note: X = Don't Care

C8051F300/1/2/3/4/5

16.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/ timer and copy it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

Figure 16.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

16.2.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Figure 16.5. PCA Software Timer Mode Diagram

C8051F300/1/2/3/4/5

NOTES:

