

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	8
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	11-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f301

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. ADC0 (8-Bit ADC, C8051F300/2)

The ADC0 subsystem for the C8051F300/2 consists of two analog multiplexers (referred to collectively as AMUX0) with 11 total input selections, a differential programmable gain amplifier (PGA), and a 500 ksps, 8-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector (see block diagram in Figure 5.1). The AMUX0, PGA, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shown in Figure 5.1. ADC0 operates in both Single-ended and Differential modes, and may be configured to measure any Port pin, the Temperature Sensor output, or V_{DD} with respect to any Port pin or GND. The ADC0 subsystem is enabled only when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1. The ADC0 subsystem is in low power shutdown when this bit is logic 0.

Figure 5.1. ADC0 Functional Block Diagram

5.1. Analog Multiplexer and PGA

The analog multiplexers (AMUX0) select the positive and negative inputs to the PGA, allowing any Port pin to be measured relative to any other Port pin or GND. Additionally, the on-chip temperature sensor or the positive power supply (V_{DD}) may be selected as the positive PGA input. When GND is selected as the negative input, ADC0 operates in Single-ended Mode; all other times, ADC0 operates in Differential Mode. The ADC0 input channels are selected in the AMX0SL register as described in SFR Definition 5.1.

The conversion code format differs in Single-ended versus Differential modes, as shown below. When in Single-ended Mode (negative input is selected GND), conversion codes are represented as 8-bit unsigned integers. Inputs are measured from '0' to VREF x 255/256. Example codes are shown below.

Input Voltage	ADC0 Output (Conversion Code)
VREF x 255/256	0xFF
VREF x 128/256	0x80
VREF x 64/256	0x40
0	0x00

When in Differential Mode (negative input is not selected as GND), conversion codes are represented as 8-bit signed 2s complement numbers. Inputs are measured from –VREF to VREF x 127/128. Example codes are shown below.

Input Voltage	ADC0 Output (Conversion Code)
VREF x 127/128	0x7F
VREF x 64/128	0x40
0	0x00
–VREF x 64/128	0xC0
-VREF	0x80

Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be configured as analog inputs and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to '0' the corresponding bit in register P0MDIN. To force the Crossbar to skip a Port pin, set to '1' the corresponding bit in register XBR0. See **Section "12. Port Input/Output" on page 103** for more Port I/O configuration details.

The PGA amplifies the AMUX0 output signal as defined by the AMP0GN1-0 bits in the ADC0 Configuration register (SFR Definition 5.2). The PGA is software-programmable for gains of 0.5, 1, 2, or 4. The gain defaults to 0.5 on reset.

5.2. Temperature Sensor

The typical temperature sensor transfer function is shown in Figure 5.2. The output voltage (V_{TEMP}) is the positive PGA input when the temperature sensor is selected by bits AMX0P2-0 in register AMX0SL; this voltage will be amplified by the PGA according to the user-programmed PGA settings.

SFR	Definition	5.2. ADC	OCF: ADCO	Configuration	(C8051F300	/2)
				5	•	

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
AD0SC-	4 AD0SC3	AD0SC2	AD0SC1	AD0SC0	—	AMP0GN1	AMP0GN0	11111000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBC
Bits7–3:	AD0SC4-0:	ADC0 SAR	Conversio	n Clock Per	iod Bits.			
	SAR Conver	sion clock i	s derived fr	om system	clock by th	e following e	equation, wl	here
	AD0SC refer	's to the 5-b	it value helo	d in bits AD)SC4-0. SA	R Conversio	on clock red	quirements
	are given in							
	AD0SC =	SYSCLK	- 1					
		CLK _{SAR}						
Bit2:	UNUSED. R	ead = 0b: V	Vrite = don'i	t care.				
Bits1–0:	AMP0GN1-0	0: ADC0 Int	ernal Ampli	ifier Gain (P	GA).			
	00: Gain = 0	.5						
	01: Gain = 1							
	10. $Gain = 2$ 11. $Gain = 4$							
	· · · · · · · · · · · · · · · · · · ·							

SFR Definition 5.3. ADC0: ADC0 Data Word (C8051F300/2)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBE
Bits7–0:	ADC0 Data ADC0 holds mode, ADC0 complement	Word. the output) holds an 8 signed 8-b	data byte fr 3-bit unsigne it integer.	om the last ed integer. \	ADC0 conv When in Dif	rersion. Who ferential mo	en in Singl de, ADC0	e-ended holds a 2's

	01111				omparato			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
_	_	CMX0N1	CMX0N0			CMX0P1	CMX0P0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x9F
Bits7–6:	UNUSED.	Read = 001	o, Write = do	n't care.		0		
Bits6-4:	CMX0N1-0	CMX0N0: C	comparator0	Negative	Input MUX	Select.		
	I nese bits	select whic	n Port pin is	used as t	the Compara	atoru negat	ive input.	
	CMX0N1	CMX0N0	Negative I	nput				
	0	0	 P0.1	•				
	0	1	P0.3					
	1	0	P0.5					
	1	1	P0.7					
Bits3–2:	UNUSED.	Read $= 00$	o, Write = do	n't care.				
Bits1–0:	CMX0P1-0	CMX0P0: C	comparator0	Positive I	nput MUX S	elect.		
	These bits	select whic	h Port pin is	used as t	the Compara	ator0 positiv	ve input.	
	CMX0P1	CMX0P0	Positive I	nput				
	0	0	P0.0	iput				
	0	1	P0.2					
	1	0	P0.4					
	1	1	P0.6					

SFR Definition 7.2. CPT0MX: Comparator0 MUX Selection

SFR Definition 7.3. CPT0MD: Comparator0 Mode Selection

								Depart \/alua		
R/W	K/ VV	R/W	R/W	R/W	R/ W	R/ W	R/ W			
—	—	—		—	—	CP0MD1	CP0MD0	00000010		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0x9D		
Bits7–2: Bits1–0:	Bits7–2: UNUSED. Read = 000000b, Write = don't care. Bits1–0: CP0MD1–CP0MD0: Comparator0 Mode Select. These bits select the response time for Comparator0.									
	wode	CPUMD1	CPUMDU	CPU Res	bonse lim	e (TYP)				
	0	0	0	Fastest	Response	Time				
	1	0	1		_					
	2	1	0		_					
	3	1	1	Lowest Po	ower Consu	umption				
	<u> </u>									

CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

8.1.2. MOVX Instruction and Program Memory

The MOVX instruction is typically used to access external data memory (Note: the C8051F300/1/2/3/4/5 does not support external data or program memory). In the CIP-51, the MOVX instruction accesses the onchip program memory space implemented as re-programmable Flash memory. This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to **Section "10. Flash Memory" on page 89** for further details.

Mnemonic	Description	Bytes	Clock Cycles					
Arithmetic Operations								
ADD A, Rn	Add register to A	1	1					
ADD A, direct	Add direct byte to A	2	2					
ADD A, @Ri	Add indirect RAM to A	1	2					
ADD A, #data	Add immediate to A	2	2					
ADDC A, Rn	Add register to A with carry	1	1					
ADDC A, direct	Add direct byte to A with carry	2	2					
ADDC A, @Ri	Add indirect RAM to A with carry	1	2					
ADDC A, #data	Add immediate to A with carry	2	2					
SUBB A, Rn	Subtract register from A with borrow	1	1					
SUBB A, direct	Subtract direct byte from A with borrow	2	2					
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2					
SUBB A, #data	Subtract immediate from A with borrow	2	2					
INC A	Increment A	1	1					
INC Rn	Increment register	1	1					
INC direct	Increment direct byte	2	2					
INC @Ri	Increment indirect RAM	1	2					
DEC A	Decrement A	1	1					
DEC Rn	Decrement register	1	1					
DEC direct	Decrement direct byte	2	2					
DEC @Ri	Decrement indirect RAM	1	2					
INC DPTR	Increment Data Pointer	1	1					
MUL AB	Multiply A and B	1	4					
DIV AB	Divide A by B	1	8					
DA A	Decimal adjust A	1	1					
	Logical Operations							
ANL A, Rn	AND Register to A	1	1					
ANL A, direct	AND direct byte to A	2	2					
ANLA, @Ri	AND indirect RAM to A	1	2					
ANL A, #data	AND immediate to A	2	2					

Table 8.1. CIP-51 Instruction Set Summary

Mnemonic	Description	Bytes	Clock Cycles
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2
	Boolean Manipulation		
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
	Program Branching		
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3

Table 8.1. CIP-51 Instruction Set Summary (Continued)

SFR Definition 8.10. EIP1: Extended	Interrupt Priority 1
-------------------------------------	-----------------------------

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
—	_	PCP0R	PCP0F	PPCA0	PADC0C	PWADC0	PSMB0	11000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF6
Bits7–6:	UNUSED. F	Read = $11b$.	Write = do	n't care.				
Bit5:	PCP0R: Co	mparator0 ((CP0) Risin	g Interrupt	Priority Co	ntrol.		
	This bit sets	s the priority	of the CPC) rising-edg	e interrupt.			
	0: CP0 risin	g interrupt s	set to low p	riority level				
D:14.	1: CPU risin	g interrupt s	Set to high		l. Driarity Ca	أمينهما		
BIL4:	PCPUF: CO	mparatoru (CPU) Fallin	g interrupt	Priority Col	ntrol.		
		a interrunt	set to low r	riority lovo	je mienupi. I	•		
	1: CP0 fallin	a interrunt	set to high	nriority leve	ו. בן			
Bit3 [.]	PPCA0: Pro	arammable	Counter A	rrav (PCA))) Interrupt	Priority Con	trol	
Dito.	This bit sets	the priority	of the PCA	0 interrupt				
	0: PCA0 int	errupt set to	low priorit	y level.				
	1: PCA0 int	errupt set to	high priori	, ty level.				
Bit2:	PADC0C AI	DC0 Conve	rsion Comp	lete Interru	pt Priority 0	Control		
	This bit sets	s the priority	of the ADC	C0 Convers	ion Comple	ete interrupt		
	0: ADC0 Co	onversion C	omplete int	errupt set t	o low priorit	ty level.		
	1: ADC0 Cc	nversion C	omplete int	errupt set t	o high prior	ity level.		
Bit1:	PWADC0: A	ADC0 Windo	ow Compar	ator Interru	pt Priority (Control.		
	This bit sets	the priority	of the ADC	20 Window	interrupt.			
		ndow interr	upt set to it	ow priority i	evel.			
Bit0.		ndow intern	upt Set to fi	Ign priority	level.			
DILU.	This hit sate	the priority	of the SMI	Sunitor. Rue interru	nt			
	0. SMBus in	terrunt set	to low prior	itv level				
	1: SMBus ir	terrupt set	to high prio	ritv level.				
		-1	5 1	,				

9.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to '1' and a MOVX operation is attempted above the user code space address limit.
- A Flash read is attempted above user code space. This occurs when a MOVC operation is attempted above the user code space address limit.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above the user code space address limit.

Device	User Code Space Address Limit
C8051F300/1/2/3	0x1DFF
C8051F304	0x0FFF
C8051F305	0x07FF

Table 9.1. User Code Space Address Limits

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the \overline{RST} pin is unaffected by this reset.

9.8. Software Reset

Software may force a reset by writing a '1' to the SWRSF bit (RSTSRC.4). The SWRSF bit will read '1' following a software forced reset. The state of the RST pin is unaffected by this reset.

Table 9.2. Reset Electrical Characteristics

-40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
RST Output Low Voltage	$I_{OL} = 8.5 \text{ mA}, V_{DD} = 2.7 \text{ V to}$ 3.6 V	—		0.6	V
RST Input High Voltage		$0.7 \mathrm{x} \mathrm{V}_\mathrm{DD}$		—	V
RST Input Low Voltage		—		$0.3 \times V_{DD}$	
RST Input Leakage Current	RST = 0.0 V	—	25	40	μA
V_{DD} Monitor Threshold (V_{RST})		2.40	2.55	2.70	V
Missing Clock Detector Timeout	Time from last system clock ris- ing edge to reset initiation	100	220	500	μs
Reset Time Delay	Delay between release of any reset source and code execution at location 0x0000	5.0	_	_	μs
Minimum RST Low Time to Generate a System Reset		15		—	μs
V _{DD} Ramp Time	$V_{DD} = 0$ to V_{RST}	_	_	1	ms

NOTES:

10. Flash Memory

On-chip, reprogrammable Flash memory is included for program code and non-volatile data storage. The Flash memory can be programmed in-system, a single byte at a time, through the C2 interface or by software using the MOVX instruction. Once cleared to logic 0, a Flash bit must be erased to set it back to logic 1. Flash bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are automatically timed by hardware for proper execution; data polling to determine the end of the write/erase operation is not required. Code execution is stalled during a Flash write/erase operation. Refer to Table 10.1 for complete Flash memory electrical characteristics.

10.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the C2 interface using programming tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see **Section "17. C2 Interface" on page 173**.

To ensure the integrity of Flash contents, it is strongly recommended that the on-chip V_{DD} Monitor be enabled in any system that includes code that writes and/or erases Flash memory from software.

10.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function; Flash reads by user software are unrestricted. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in SFR Definition 10.2.

10.1.2. Flash Erase Procedure

The Flash memory can be programmed by software using the MOVX instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by: (1) setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory); and (2) Writing the Flash key codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared by software.

A write to Flash memory can clear bits but cannot set them; only an erase operation can set bits in Flash. **A byte location to be programmed should be erased before a new value is written.** The 8k byte Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

- Step 1. Disable interrupts (recommended).
- Step 2. Set the Program Store Erase Enable bit (PSEE in the PSCTL register).
- Step 3. Set the Program Store Write Enable bit (PSWE in the PSCTL register).
- Step 4. Write the first key code to FLKEY: 0xA5.
- Step 5. Write the second key code to FLKEY: 0xF1.
- Step 6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.

NOTES:

SFR Definition 11.1. OSCICL: Internal Oscillator Calibration

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
								variable				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xB3				
Bit7: UNUSED. Read = 0. Write = don't care. Bits 6–0: OSCICL: Internal Oscillator Calibration Register.												
This register calibrates the internal oscillator period. The reset value for OSCICL defines the internal oscillator base frequency. On C8051F300/1 devices, the reset value is factory calibrated to generate an internal oscillator frequency of 24.5 MHz.												

SFR Definition 11.2. OSCICN: Internal Oscillator Control

R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	Reset Value						
—	—	_	IFRDY	CLKSL	IOSCEN	IFCN1	IFCN0	00010100						
Bit7	Bit6Bit5Bit4Bit3Bit2Bit1Bit0SFR Address:													
	0xB2													
Bits7–5: Bit4: Bit3: Bit2:	 UNUSED. Read = 000b, Write = don't care. IFRDY: Internal Oscillator Frequency Ready Flag. 0: Internal Oscillator is not running at programmed frequency. 1: Internal Oscillator is running at programmed frequency. CLKSL: System Clock Source Select Bit. 0: SYSCLK derived from the Internal Oscillator, and scaled as per the IFCN bits. 1: SYSCLK derived from the External Oscillator circuit. IOSCEN: Internal Oscillator Enable Bit. 													
Bits1–0:	0: Internal Oscillator Enable Bit. 0: Internal Oscillator Disabled. 1: Internal Oscillator Enabled. 9: IFCN1-0: Internal Oscillator Frequency Control Bits.													
	00: SYSCL	< derived fr < derived fr	om interna	I Oscillator	divided by	8. 4.								
l	10: SYSCL	K derived fr	om Interna	l Oscillator	divided by	2.								
l	11: SYSCL	K derived fr	om Interna	l Oscillator	divided by	1.								

SFR Definition 12.1. XBR0: Port I/O Crossbar Register 0

R/W	R/W XSKP6	R/W XSKP5	R/W XSKP4	R/W XSKP3	R/W XSKP2	R/W XSKP1	R/W XSKP0	Reset Value				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
1								0xE1				
Bit7:	UNUSED. Read = 0b; Write = don't care.											
Bits6–0:	XSKP[6:0]: Crossbar Skip Enable Bits											
1	These bits select Port pins to be skipped by the Crossbar Decoder. Port pins used as ana- log inputs (for ADC or Comparator) or used as special functions (VREF input, external oscil-											
	lator circuit, CNVSTR input) should be skipped by the Crossbar.											
	0: Corresponding P0.n pin is not skipped by the Crossbar.											
	r. Correspon				1033041.							

SFR Definition 12.2. XBR1: Port I/O Crossbar Register 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PC	AOME	CP0AOEN	CP00EN	SYSCKE	SMB0OEN	URX0EN	UTX0EN	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE2
Bits7–6:	PCA0ME: P	CA Module	I/0 Enable	Bits				
	00: All PCA	I/O unavaila	ble at Port	pins.				
	01: CEX0 rc	outed to Port	pin.					
	10: CEX0, C	CEX1 routed	to Port pin	s.				
	11: CEX0, C	CEX1, CEX2	routed to F	Port pins.				
Bit5:	CP0AOEN:	Comparator	0 Asynchro	onous Outp	ut Enable			
	0: Asynchro	nous CP0 u	navailable a	at Port pin.				
	1: Asynchro	nous CP0 ro	outed to Po	rt pin.				
Bit4:	CP0OEN: C	comparator0	Output Ena	able				
	0: CP0 una	vailable at Po	ort pin.					
B 1/0	1: CP0 route	ed to Port pil	ר. <u>ר</u>					
Bit3:	SYSCRE: /S	SYSCLK Out	put Enable					
		unavailable	at Port pin	l. 				
D:40.			ed to Port p	oin.				
BILZ:	SMBUUEN:	SIVIBUS I/O	Enable	ina				
			e al Fuit pi	1115.				
Bit1 ·	LIDYOEN LI		on pins. ablo					
Dit i.		(A unavailah	le at Port n	in				
		(0 routed to	Port nin P0	5				
Bit0 [.]		ART TX Out	nut Enable	.0.				
Dito.	0. UART TX	0 unavailab	e at Port pi	in				
	1: UART TX	0 routed to I	Port pin P0	.4.				

13.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

- 1. The I²C-Bus and How to Use It (including specifications), Philips Semiconductor.
- 2. The I²C-Bus Specification Version 2.0, Philips Semiconductor.
- 3. System Management Bus Specification Version 1.1, SBS Implementers Forum.

13.2. SMBus Configuration

Figure 13.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 3.0 and 5.0 V; different devices on the bus may operate at different voltage levels. The bidirectional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pull-up resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 1000 ns, respectively.

Figure 13.2. Typical SMBus Configuration

13.3. SMBus Operation

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ). The master device initiates both types of data transfers and provides the serial clock pulses on SCL. The SMBus interface may operate as a master or a slave, and multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration. Note that it is not necessary to specify one device as the Master in a system; any device that transmits a START and a slave address becomes the master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7–1: 7-bit slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Each byte that is received (by a master or slave) must be acknowledged (ACK) with a low SDA during a high SCL (see Figure 13.3). If the receiving device does not ACK, the transmitting device will read a NACK (not acknowledge), which is a high SDA during a high SCL.

SFR Definition 13.1	. SMB0CF: SMBus	Clock/Configuration
		.

ENSMB INH BUSY EXTHOLD SMBTOE SMBFTE SMBCS1 SMBCS0 00000000 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address 0xC1 Bit7: ENSMB: SMBus Enable. This bit enables/disables the SMBus interface. When enabled, the interface constantly mor itors the SDA and SCL pins. 0: SMBus interface disabled. 1: SMBus interface disabled. 1: SMBus interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address OxC1 Bit7: ENSMB: SMBus Enable. This bit enables/disables the SMBus interface. When enabled, the interface constantly mor itors the SDA and SCL pins. 0: SMBus interface disabled. 1: SMBus interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit7: ENSMB: SMBus Enable. This bit enables/disables the SMBus interface. When enabled, the interface constantly moritors the SDA and SCL pins. O: SMBus interface disabled. 1: SMBus interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. O: SMBus Slave Mode enabled. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times disabled. Bit5: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit7: ENSMB: SMBus Enable. This bit enables/disables the SMBus interface. When enabled, the interface constantly moritors the SDA and SCL pins. 0: SMBus interface disabled. 1: SMBus interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. 1: SDA Extended Setup and Hold Times enabled.
 Bit7: ENSMB: SMBus Enable. This bit enables/disables the SMBus interface. When enabled, the interface constantly mor itors the SDA and SCL pins. 0: SMBus interface disabled. 1: SMBus interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 This bit enables/disables the SMBus interface. When enabled, the interface constantly moritors the SDA and SCL pins. 0: SMBus interface disabled. 1: SMBus interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Itors the SDA and SCL pins. 0: SMBus interface disabled. 1: SMBus interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit6: INH: SMBus Interface enabled. Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit6: INH: SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave event: occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 not affected. 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times enabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 0: SMBus Slave Mode enabled. 1: SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 SMBus Slave Mode inhibited. Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. O: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit5: BUSY: SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free timeout is sensed. Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. Dis bit controls the SDA setup and hold times according to Table 13.2. Dis DA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
 Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
This bit controls the SDA setup and hold times according to Table 13.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
1: SDA Extended Setup and Hold Times enabled. Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
This bit enables SCL low timeout detection. If set to logic 1, the SMBus forces Timer 2 to
reload while SCL is high and allows Timer 2 to count when SCL goes low. If Timer 2 is con figured in split mode (T2SPLIT is set), only the high byte of Timer 2 is held in relead while
SCL is high. Timer 2 should be programmed to generate interrupts at 25 ms, and the Time
2 interrupt service routine should reset SMBus communication.
Bit2: SMBFTE: SMBus Free Timeout Detection Enable.
When this bit is set to logic 1, the bus will be considered free if SCL and SDA remain high fo
more than 10 SMBus clock source periods.
Bits1–0: SMBCS1-SMBCS0: SMBus Clock Source Selection.
I nese two bits select the SMBus clock source, which is used to generate the SMBus bit
Tale. The selected device should be conlighted according to Equation 15.1.
SMBCS1 SMBCS0 SMBus Clock Source
0 0 Timer 0 Overflow
0 1 Timer 1 Overflow
1 0 Timer 2 High Byte Overflow
1 1 Timer 2 Low Byte Overflow

13.5.4. Slave Transmitter Mode

Serial data is transmitted on SDA and the clock is received on SCL. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. Software responds to the received slave address with an ACK, or ignores the received slave address with a NACK. If the received address is ignored, slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, software should write data to SMB0DAT to force the SMBus into Slave Transmitter Mode. The switch from Slave Receiver to Slave Transmitter requires software management. Software should perform the steps outlined below only when a valid slave address is received (indicated by the label "RX-to-TX Steps" in Figure 13.8).

Step 1. Set ACK to '1'.
Step 2. Write outgoing data to SMB0DAT.
Step 3. Check SMB0DAT.7; if '1', do not perform steps 4, 6 or 7.
Step 4. Set STO to '1'.
Step 5. Clear SI to '0'.
Step 6. Poll for TXMODE => '1'.
Step 7. Clear STO to '0' (must be done before the next ACK cycle).

The interface enters Slave Transmitter Mode and transmits one or more bytes of data (the above steps are only required before the first byte of the transfer). After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to before SI is cleared (Note: an error condition may be generated if SMB0DAT is written following a received NACK while in Slave Transmitter Mode). The interface exits Slave Transmitter Mode after receiving a STOP. Note that the interface will switch to Slave Receiver Mode if SMB0DAT is not written following a Slave Transmitter interrupt. Figure 13.8 shows a typical Slave Transmitter sequence. Two transmitted data bytes are shown, though any number of bytes may be transmitted. Notice that the 'data byte transferred' interrupts occur **after** the ACK cycle in this mode.

SFR	Definition	15.4.	TL0:	Timer	0	Low I	Byte
-----	------------	-------	------	-------	---	-------	------

SFR Definition 15.5. TL1: Timer 1 Low Byte

SFR Definition 15.6. TH0: Timer 0 High Byte

SFR Definition 15.7. TH1: Timer 1 High Byte

SFR Definition 15.8. TMR2CN: Timer 2 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
TF2H	TF2L	TF2LEN		T2SPLIT	TR2		T2XCLK	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
	(bit addressable) 0xC8										
Bit7:	TF2H: Time	r 2 High By	te Overflow	/ Flag							
	Set by hard	ware when	the limer 2	high byte (DVerflows fr		0X00. In 1	6 bit mode,			
	enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine.										
	TF2H is not automatically cleared by hardware and must be cleared by software.										
Bit6:	TF2n is not automatically cleared by nardware and must be cleared by software. TF2L: Timer 2 Low Byte Overflow Flag										
	Set by hardware when the Timer 2 low byte overflows from 0xFF to 0x00. When this bit is										
	set, an inter	rupt will be	generated i	f TF2LEN is	s set and Ti	mer 2 interr	upts are er	nabled. TF2L			
	will set whe	n the low by	te overflow/	s regardles	s of the Tim	ner 2 mode	. This bit is	not automat-			
D:45.	ically cleare	d by hardwa	are.	ut Euchle							
BIt5:	TF2LEIN: III	mer 2 Low I blee/disable	Byte Interru	ipt Enable.	torrupte If T	FEOLEN is a	sot and Tin	or 2 inter-			
	runts are en	abled an ir	nterrunt will	be generat	ed when the	e low byte i	of Timer 2 (overflows			
	This bit sho	uld be clear	ed when or	perating Tin	ner 2 in 16-l	bit mode.					
	0: Timer 2 L	ow Byte int	errupts disa	abled.							
	1: Timer 2 L	ow Byte int	errupts ena	bled.							
Bit4:	UNUSED. F	Read = 0b. \	Nrite = don	't care.							
Bit3:	T2SPLIT: Ti	mer 2 Split	Mode Enat	ole teo eo two i		with outo w	ماممط				
	0. Timer 2 o	norates in 2	ner z opera 16-bit auto-	reload mod	o bit timers	with auto-re	eload.				
	1: Timer 2 0	perates as	two 8-bit au	uto-reload ti	mers						
Bit2:	TR2: Timer	2 Run Cont	trol.								
	This bit ena	bles/disable	es Timer 2.	In 8-bit mod	de, this bit e	enables/disa	ables TMR	2H only;			
	TMR2L is a	ways enab	led in this n	node.							
	0: Timer 2 d	isabled.									
Di+1.	1: limer 2 e	nabled.	Nrito - don	't ooro							
BitΩ [.]		mer 2 Exter	mal Clock S	l Care. Select							
Dito.	This bit sele	ects the exte	ernal clock	source for T	imer 2. If Ti	imer 2 is in	8-bit mode	, this bit			
	selects the	external osc	cillator clock	< source for	both timer	bytes. How	ever, the T	imer 2 Clock			
	Select bits (T2MH and	T2ML in reg	gister CKC0	ON) may sti	ll be used t	o select be	tween the			
	external clo	ck and the s	system cloc	k for either	timer.						
	0: Timer 2 e	xternal cloc	ck selection	is the syste	em clock div	/ided by 12	Nata that	4h a automaal			
	1: TIMEr 2 6	urce divide	rk Selection	is the exter	with the ev	stem clock	note that	ine external			
	USCIIIALUI SU		u by 0 15 Sy	nomonizeu	with the sy	SIGHT GOUK.					

16.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/ timer and copy it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

Figure 16.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

SFR Definition 16.3. PCA0CPMn: PCA Capture/Compare Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
PWM16	n ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:					
								0xDA, 0xDB, 0xDC					
PCA0CPI	PCA0CPMn Address: $PCA0CPM0 = 0xDA (n = 0)$												
		PCA0	CPM1 = 0x	DB (n = 1)									
		PCA0	CPM2 = 0x	DC (n = 2)									
D:+7.			\/;dth \/adv	Jotion Enak									
DILT.	This hit solo	o-bil Puise	voluti iviout ode when l	Duleo Width	Modulation	n mode is e	nahlad (P\M	(Mn – 1)					
	0: 8-bit PWM selected.												
	u: 8-bit PWW selected.												
Bit6:	ECOMn: Co	mparator F	unction Ena	able.									
	This bit ena	bles/disable	es the comp	arator funct	ion for PCA	Module n.							
	0: Disabled.												
	1: Enabled.												
Bit5:	CAPPn: Ca	pture Positi	ve Function	Enable.									
	I his bit enal	bles/disable	es the positi	ve edge ca	oture for PC	A Module r	۱.						
	1. Enabled												
Bit4.	CAPNn: Ca	pture Nega	tive Functio	n Enable									
Dit i.	This bit ena	bles/disable	es the negat	ive edae ca	apture for P	CA Module	n.						
	0: Disabled.		.		1								
	1: Enabled.												
Bit3:	MATn: Matc	h Function	Enable.										
	This bit ena	bles/disable	es the match	n function fo	or PCA Mod	ule n. Whei	n enabled, r	natches of the					
	PCA counte	r with a mo	dule's captu	ire/compare	e register ca	use the CC	Fn bit in PC	CA0MD register					
	to be set to	logic 1.											
	1. Enabled												
Bit2:	TOGn: Togo	le Function	Enable.										
	This bit enal	bles/disable	es the toggle	e function fo	or PCA Mod	ule n. Whei	n enabled, r	matches of the					
	PCA counte	r with a mo	dule's captu	ire/compare	e register ca	use the log	ic level on t	he CEXn pin to					
	toggle. If the	e PWMn bit	is also set t	o logic 1, th	ne module o	perates in I	Frequency (Output Mode.					
	0: Disabled.												
D:44.	1: Enabled.	a Width M	dulation M	ada Enabla									
BILT:	This bit onal	bloc/disable	boulation ivio	function fo	r DCA Modu	ilo n Whon	onablad a	pulso width					
	modulated s	signal is out	nut on the (EXn nin 8	-hit PWM is	used if PM	/M16n is cle	ared: 16-bit					
	mode is use	d if PWM16	Sn is set to l	oaic 1. If th	e TOGn bit	is also set.	the module	operates in Fre-					
	quency Out	put Mode.		0		,							
	0: Disabled.												
	1: Enabled.												
Bit0:	ECCFn: Ca	pture/Comp	are Flag Int	errupt Enal	ole.								
	I his bit sets	the maskir	ig of the Ca	pture/Comp	oare ⊢lag (C	CFn) interr	upt.						
		Capture/Co	ipis. Impare Floc	interrupt r	auget what	n CCEn is s	ot						
			mpare i lag	, menupi le	Squest wild	10011133							

