

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	8
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	11-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f301r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

13.4 Using the SMBus	115
13 / 1 SMBus Configuration Register	116
13 / 2 SMB0CN Control Register	110
13.4.3 Data Register	122
13.5 SMBus Transfer Modes	122
13.5.1 Master Transmitter Mode	123
13.5.2 Master Receiver Mode	120
13.5.2 Slave Possiver Mode	124
13.5.3. Slave Receiver Mode	120
12.6 SMPup Statup Decoding	120
	121
14.1 Enhanced Poul Date Concretion	131
14.1.2. Operational Madea	102
	133
14.2.1.8-BIT UAR I	133
14.2.2.9-Bit UAR I	134
14.3.Multiprocessor Communications	135
15. I imers	143
15.1. Limer 0 and Limer 1	143
15.1.1.Mode 0: 13-bit Counter/Timer	143
15.1.2.Mode 1: 16-bit Counter/Timer	145
15.1.3.Mode 2: 8-bit Counter/Timer with Auto-Reload	145
15.1.4.Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	146
15.2.Timer 2	151
15.2.1.16-bit Timer with Auto-Reload	151
15.2.2.8-bit Timers with Auto-Reload	152
16. Programmable Counter Array	155
16.1.PCA Counter/Timer	156
16.2.Capture/Compare Modules	157
16.2.1.Edge-triggered Capture Mode	158
16.2.2.Software Timer (Compare) Mode	159
16.2.3.High Speed Output Mode	160
16.2.4. Frequency Output Mode	161
16.2.5.8-Bit Pulse Width Modulator Mode	162
16.2.6.16-Bit Pulse Width Modulator Mode	163
16.3.Watchdog Timer Mode	164
16.3.1.Watchdog Timer Operation	164
16.3.2.Watchdog Timer Usage	165
16.4.Register Descriptions for PCA	167
17.C2 Interface	173
17.1.C2 Interface Registers	173
17.2.C2 Pin Sharing	175
Document Change List	176
Contact Information	178

10. Flash Memory	
Figure 10.1. Flash Program Memory Map	91
11.Oscillators	
Figure 11.1. Oscillator Diagram	97
Figure 11.2. 32.768 kHz External Crystal Example1	01
12. Port Input/Output	
Figure 12.1. Port I/O Functional Block Diagram	03
Figure 12.2. Port I/O Cell Block Diagram1	03
Figure 12.3. Crossbar Priority Decoder with XBR0 = 0x00	04
Figure 12.4. Crossbar Priority Decoder with XBR0 = 0x44 1	05
13.SMBus	
Figure 13.1. SMBus Block Diagram 1	11
Figure 13.2. Typical SMBus Configuration1	12
Figure 13.3. SMBus Transaction 1	13
Figure 13.4. Typical SMBus SCL Generation1	17
Figure 13.5. Typical Master Transmitter Sequence1	23
Figure 13.6. Typical Master Receiver Sequence1	24
Figure 13.7. Typical Slave Receiver Sequence1	25
Figure 13.8. Typical Slave Transmitter Sequence1	26
14.UART0	
Figure 14.1. UART0 Block Diagram 1	31
Figure 14.2. UART0 Baud Rate Logic 1	32
Figure 14.3. UART Interconnect Diagram1	33
Figure 14.4. 8-Bit UART Timing Diagram1	33
Figure 14.5. 9-Bit UART Timing Diagram1	34
Figure 14.6. UART Multi-Processor Mode Interconnect Diagram 1	35
15. Timers	
Figure 15.1. T0 Mode 0 Block Diagram1	44
Figure 15.2. T0 Mode 2 Block Diagram1	45
Figure 15.3. T0 Mode 3 Block Diagram 1	46
Figure 15.4. Timer 2 16-Bit Mode Block Diagram	51
Figure 15.5. Timer 2 8-Bit Mode Block Diagram	52
16. Programmable Counter Array	
Figure 16.1. PCA Block Diagram1	55
Figure 16.2. PCA Counter/Timer Block Diagram1	56
Figure 16.3. PCA Interrupt Block Diagram1	57
Figure 16.4. PCA Capture Mode Diagram1	58
Figure 16.5. PCA Software Timer Mode Diagram 1	59
Figure 16.6. PCA High Speed Output Mode Diagram1	60
Figure 16.7. PCA Frequency Output Mode1	61
Figure 16.8. PCA 8-Bit PWM Mode Diagram1	62
Figure 16.9. PCA 16-Bit PWM Mode1	63
Figure 16.10. PCA Module 2 with Watchdog Timer Enabled 1	64
17.C2 Interface	
Figure 17.1. Typical C2 Pin Sharing1	75

C8051F300/1/2/3/4/5

Figure 1.1. C8051F300/2 Block Diagram

Figure 1.2. C8051F301/3/4/5 Block Diagram

Figure 4.5. SOIC-14 Pinout Diagram (Top View)

Table 5.1. ADC0 Electrical Characteristics

 V_{DD} = 3.0 V, VREF = 2.40 V (REFSL = 0), PGA Gain = 1, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy		1	<u>. </u>	I	
Resolution			8		bits
Integral Nonlinearity		—	±0.5	±1	LSB
Differential Nonlinearity	Guaranteed Monotonic	—	±0.5	±1	LSB
Offset Error		-5.0	0.5	5.0	LSB
Full Scale Error	Differential mode	-5.0	-1	5.0	LSB
Dynamic Performance (10 kHz S	Sine-wave Differential Input, 1	dB belo	w Full Sc	ale, 500	ksps)
Signal-to-Noise Plus Distortion		45	48	_	dB
Total Harmonic Distortion	Up to the 5 th harmonic	-	-56		dB
Spurious-Free Dynamic Range		<u> </u>	58	<u> </u>	dB
Conversion Rate		4	<u> </u>	·I	
SAR Conversion Clock		—	<u> </u>	6	MHz
Conversion Time in SAR Clocks	-	11	<u> </u>		clocks
Track/Hold Acquisition Time	-	300	<u> </u>		ns
Throughput Rate		-	<u> </u>	500	ksps
Analog Inputs		J	·		
Input Voltage Range		0		VREF	V
Input Capacitance		—	5		pF
Temperature Sensor		—	!		
Linearity ^{1,2,3}		—	±0.5	—	°C
Oci=1.2.3		<u>† </u>	3350	_	μV / °C
Gam ^{-,-,-}			±110		
Offset ^{1,2,3}	(Temp = 0 °C)	$\left[- \right]$	897±31	$\overline{} - \overline{}$	mV
Power Specifications					
Power Supply Current (V _{DD} supplied to ADC0)	Operating Mode, 500 ksps	-	400	900	μA
Power Supply Rejection		<u> </u>	±0.3		mV/V
 Notes: 1. Represents one standard devia 2. Measured with PGA Gain = 2. 3. Includes ADC offset, gain, and 	ation from the mean.		<u> </u>		

	01111				omparato			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
_	_	CMX0N1	CMX0N0			CMX0P1	CMX0P0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x9F
Bits7–6:	UNUSED.	Read = 001	o, Write = do	n't care.		0		
Bits6-4:	CMX0N1-0	CMX0N0: C	comparator0	Negative	Input MUX	Select.		
	I nese bits	select whic	n Port pin is	used as t	the Compara	atoru negat	ive input.	
	CMX0N1	CMX0N0	Negative I	nput				
	0	0	 P0.1	•				
	0	1	P0.3					
	1	0	P0.5					
	1	1	P0.7					
Bits3–2:	UNUSED.	Read $= 00$	o, Write = do	n't care.				
Bits1–0:	CMX0P1-0	CMX0P0: C	comparator0	Positive I	nput MUX S	elect.		
	These bits	select whic	h Port pin is	used as t	the Compara	ator0 positiv	ve input.	
	CMX0P1	CMX0P0	Positive I	nput				
	0	0	P0.0	iput				
	0	1	P0.2					
	1	0	P0.4					
	1	1	P0.6					

SFR Definition 7.2. CPT0MX: Comparator0 MUX Selection

SFR Definition 7.3. CPT0MD: Comparator0 Mode Selection

								Depart \/alua	
R/W	K/ VV	R/W	R/W	R/W	R/ W	R/ W	R/ W		
—	—	—		—	—	CP0MD1	CP0MD0	00000010	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
								0x9D	
Bits7–2: Bits1–0:	Bits7–2: UNUSED. Read = 000000b, Write = don't care. Bits1–0: CP0MD1–CP0MD0: Comparator0 Mode Select. These bits select the response time for Comparator0.								
	wode	CPUMD1	CPUMDU	CPU Res	bonse lim	e(ITP)			
	0	0	0	Fastest	Response	Time			
	1	0	1		_				
	2	1	0		_				
	3	1	1	Lowest Po	ower Consu	umption			
	<u> </u>								

C8051F300/1/2/3/4/5

NOTES:

F8	CPT0CN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0			
F0	В	P0MDIN					EIP1	
E8	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2			RSTSRC
E0	ACC	XBR0	XBR1	XBR2	IT01CF		EIE1	
D8	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2			
D0	PSW	REF0CN						
C8	TMR2CN		TMR2RLL	TMR2RLH	TMR2L	TMR2H		
C0	SMB0CN	SMB0CF	SMB0DAT		ADC0GT		ADC0LT	
B8	IP			AMX0SL	ADC0CF		ADC0	
B0		OSCXCN	OSCICN	OSCICL			FLSCL	FLKEY
A8	IE							
A0					POMDOUT			
98	SCON0	SBUF0				CPT0MD		CPT0MX
90								
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
80	P0	SP	DPL	DPH				PCON
	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

Table 8.2. Special Function Register (SFR) Memory Map

(bit addressable)

Table 8.3. Special Function Registers*

Register	Address	Description	Page No.
ACC	0xE0	Accumulator	71
ADC0CF	0xBC	ADC0 Configuration	43
ADC0CN	0xE8	ADC0 Control	44
ADC0GT	0xC4	ADC0 Greater-Than Compare Word	46
ADC0LT	0xC6	ADC0 Less-Than Compare Word	46
ADC0	0xBE	ADC0 Data Word	43
AMX0SL	0xBB	ADC0 Multiplexer Channel Select	42
В	0xF0	B Register	71
CKCON	0x8E	Clock Control	149
CPT0CN	0xF8	Comparator0 Control	53
CPT0MD	0x9D	Comparator0 Mode Selection	54
CPT0MX	0x9F	Comparator0 MUX Selection	54
DPH	0x83	Data Pointer High	69
DPL	0x82	Data Pointer Low	68
EIE1	0xE6	Extended Interrupt Enable 1	77
EIP1	0xF6	External Interrupt Priority 1	78
FLKEY	0xB7	Flash Lock and Key	93
*Note: SFRs a	are listed in alpha	betical order. All undefined SFR locations are reserved	

SFR Definition 8.2. DPH: Data Pointer High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
D'17	Dite	Dite	Dita	D'io	D'io	Ditt	Dito	
Bit7	Bitb	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x83
Bits7–0:	DPH: Data	Pointer Hig	h.					
	The DPH re addressed I	gister is the lash memo	e high byte ory.	of the 16-b	it DPTR. D	PTR is use	d to acces	ss indirectly

SFR Definition 8.3. SP: Stack Pointer

SFR Definition 10.2. FLKEY: Flash Lock and Key

SFR Definition 10.3. FLSCL: Flash Scale

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
FOSE	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	1000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xB6
Bits7: Bits6–0:	FOSE: Flas This bit ena Flash sense 0: Flash one 1: Flash one RESERVED	h One-shot bles the 50 amps are e-shot disal e-shot enat 0. Read = 0	t Enable) ns Flash r enabled fo bled. bled.). Must Writ	ead one-sh r a full cloc re 0.	ot. When th k cycle duri	he Flash on ing Flash re	ie-shot disa eads.	abled, the

10.4. Flash Write and Erase Guidelines

Any system which contains routines which write or erase Flash memory from software involves some risk that the write or erase routines will execute unintentionally if the CPU is operating outside its specified operating range of V_{DD} , system clock frequency, or temperature. This accidental execution of Flash modi-fying code can result in alteration of Flash memory contents causing a system failure that is only recoverable by re-Flashing the code in the device.

The following guidelines are recommended for any system which contains routines which write or erase Flash from code.

10.4.1. V_{DD} Maintenance and the V_{DD} monitor

- 1. If the system power supply is subject to voltage or current "spikes," add sufficient transient protection devices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings table are not exceeded.
- 2. Make certain that the minimum V_{DD} rise time specification of 1 ms is met. If the system cannot meet this rise time specification, then add an external V_{DD} brownout circuit to the \overline{RST} pin of the device that holds the device in reset until V_{DD} reaches 2.7 V and re-asserts \overline{RST} if V_{DD} drops below 2.7 V.
- 3. Enable the on-chip V_{DD} monitor and enable the V_{DD} monitor as a reset source as early in code as possible. This should be the first set of instructions executed after the Reset Vector. For 'C'-based systems, this will involve modifying the startup code added by the 'C' compiler. See your compiler documentation for more details. Make certain that there are no delays in software between enabling the V_{DD} monitor and enabling the V_{DD} monitor as a reset source. Code examples showing this can be found in "AN201: Writing to Flash from Firmware", available from the Silicon Laboratories web site.
- 4. As an added precaution, explicitly enable the V_{DD} monitor and enable the V_{DD} monitor as a reset source inside the functions that write and erase Flash memory. The V_{DD} monitor enable instructions should be placed just after the instruction to set PSWE to a '1', but before the Flash write or erase operation instruction.
- Make certain that all writes to the RSTSRC (Reset Sources) register use direct assignment operators and explicitly DO NOT use the bit-wise operators (such as AND or OR). For example, "RSTSRC = 0x02" is correct. "RSTSRC |= 0x02" is incorrect.
- 6. Make certain that all writes to the RSTSRC register explicitly set the PORSF bit to a '1'. Areas to check are initialization code which enables other reset sources, such as the Missing Clock Detector or Comparator, for example, and instructions which force a Software Reset. A global search on "RSTSRC" can quickly verify this.

10.4.2. PSWE Maintenance

- 7. Reduce the number of places in code where the PSWE bit (b0 in PSCTL) is set to a '1'. There should be exactly one routine in code that sets PSWE to a '1' to write Flash bytes and one routine in code that sets PSWE and PSEE both to a '1' to erase Flash pages.
- 8. Minimize the number of variable accesses while PSWE is set to a '1'. Handle pointer address updates and loop variable maintenance outside the "PSWE = 1; ... PSWE = 0;" area. Code examples showing this can be found in *AN201*, "Writing to Flash from Firmware", available from the Silicon Laboratories web site.
- 9. Disable interrupts prior to setting PSWE to a '1' and leave them disabled until after PSWE has been reset to '0'. Any interrupts posted during the Flash write or erase operation will be ser-

SFR Definition 11.1. OSCICL: Internal Oscillator Calibration

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								variable
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xB3
Bit7: UNUSED. Read = 0. Write = don't care. Bits 6–0: OSCICL: Internal Oscillator Calibration Register.								
This register calibrates the internal oscillator period. The reset value for OSCICL defines the internal oscillator base frequency. On C8051F300/1 devices, the reset value is factory calibrated to generate an internal oscillator frequency of 24.5 MHz.								

SFR Definition 11.2. OSCICN: Internal Oscillator Control

R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	Reset Value			
—	_	_	IFRDY	CLKSL	IOSCEN	IFCN1	IFCN0	00010100			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xB2			
Bits7–5: Bit4: Bit3: Bit2:	 -5: UNUSED. Read = 000b, Write = don't care. IFRDY: Internal Oscillator Frequency Ready Flag. 0: Internal Oscillator is not running at programmed frequency. 1: Internal Oscillator is running at programmed frequency. CLKSL: System Clock Source Select Bit. 0: SYSCLK derived from the Internal Oscillator, and scaled as per the IFCN bits. 1: SYSCLK derived from the External Oscillator circuit. IOSCEN: Internal Oscillator Enable Bit. 0: Internal Oscillator Disabled 										
Bits1–0:	1: Internal C IFCN1-0: In 00: SYSCLH 01: SYSCLH 10: SYSCLH 11: SYSCLH	Dscillator En ternal Osci < derived fr < derived fr < derived fr < derived fr	nabled. Ilator Frequ om Interna om Interna om Interna	uency Cont I Oscillator I Oscillator I Oscillator I Oscillator	rol Bits. divided by divided by divided by divided by	8. 4. 2. 1.					

Parameter	Conditions	Min	Тур	Max	Units				
Calibrated Internal Oscillator	C8051F300/1 devices –40 to +85 °C	24	24.5	25	MHz				
Frequency	C8051F300/1 devices 0 to +70 °C	24.3	24.7	25	MHz				
Uncalibrated Internal Oscillator Frequency	C8051F302/3/4/5 devices	16	20	24	MHz				
Internal Oscillator Supply Current (from V _{DD})	OSCICN.2 = 1		450		μA				

Table 11.1. Internal Oscillator Electrical Characteristics

11.2. External Oscillator Drive Circuit

-40 to +85 °C unless otherwise specified

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 11.1. A 10 M Ω resistor also must be wired across the XTAL2 and XTAL1 pins for the crystal/resonator configuration. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as shown in Option 2, 3, or 4 of Figure 11.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 11.3).

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins P0.2 and P0.3 are occupied as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P0.3 is occupied as XTAL2. The Port I/O Crossbar should be configured to skip the occupied Port pins; see **Section "12.1. Priority Crossbar Decoder" on page 104** for Crossbar configuration. Additionally, when using the external oscillator circuit in crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as **analog inputs**. In CMOS clock mode, the associated pin should be configured as a **digital input**. See **Section "12.2. Port I/O Initialization" on page 106** for details on Port input mode selection.

11.3. System Clock Selection

The CLKSL bit in register OSCICN selects which oscillator is used as the system clock. CLKSL must be set to '1' for the system clock to run from the external oscillator; however the external oscillator may still clock peripherals (timers, PCA) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal and external oscillator, so long as the selected oscillator is enabled and has settled. The internal oscillator requires little start-up time and may be enabled and selected as the system clock in the same write to OSCICN. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use as the system clock. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to '1' by hardware when the external oscillator is settled. To avoid reading a false XTLVLD, in crystal mode software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD. RC and C modes typically require no start-up time.

14.1. Enhanced Baud Rate Generation

The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 14.2), which is not user accessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see **Section "15.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 145**). The Timer 1 reload value should be set so that over-flows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of five sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, or the external oscillator clock / 8. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 14.1.

$$UartBaudRate = \frac{T1_{CLK}}{(256 - T1H)} \times \frac{1}{2}$$

Equation 14.1. UART0 Baud Rate

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in **Section "15.2. Timer 2" on page 151**. A quick reference for typical baud rates and system clock frequencies is given in Tables 14.1 through 14.6. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1 (see **Section "15.1. Timer 0 and Timer 1" on page 143** for more details).

14.2. Operational Modes

UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the S0MODE bit (SCON0.7). Typical UART connection options are shown below.

Figure 14.3. UART Interconnect Diagram

14.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX pin and received at the RX pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: RI0 must be logic 0, and if MCE0 is logic 1, the stop bit must be logic 1. In the event of a receive data overrun, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not be set. An interrupt will occur if enabled when either TI0 or RI0 is set.

Figure 14.4. 8-Bit UART Timing Diagram

16.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-bit Pulse Width Modulator, or 16-bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 16.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1. See Figure 16.3 for details on the PCA interrupt configuration.

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
X*	X*	1	0	0	0	0	Х*	Capture triggered by positive edge on CEXn
X*	Х*	0	1	0	0	0	X*	Capture triggered by negative edge on CEXn
X*	Х*	1	1	0	0	0	X*	Capture triggered by transition on CEXn
X*	1	0	0	1	0	0	X*	Software Timer
X*	1	0	0	1	1	0	X*	High Speed Output
X*	1	0	0	Х*	1	1	X*	Frequency Output
0	1	0	0	X*	0	1	X*	8-bit Pulse Width Modulator
1	1	0	0	Х*	0	1	Х*	16-bit Pulse Width Modulator

Table 16.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

*Note: X = Don't Care

Note that the 8-bit offset held in PCA0CPH2 is compared to the upper byte of the 16-bit PCA counter. This offset value is the number of PCA0L overflows before a reset. Up to 256 PCA clocks may pass before the first PCA0L overflow occurs, depending on the value of the PCA0L when the update is performed. The total offset is then given (in PCA clocks) by Equation 16.4, where PCA0L is the value of the PCA0L register at the time of the update.

 $Offset = (256 \times PCA0CPL2) + (256 - PCA0L)$

Equation 16.4. Watchdog Timer Offset in PCA Clocks

The WDT reset is generated when PCA0L overflows while there is a match between PCA0CPH2 and PCA0H. Software may force a WDT reset by writing a '1' to the CCF2 flag (PCA0CN.2) while the WDT is enabled.

16.3.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

- Disable the WDT by writing a '0' to the WDTE bit.
- Select the desired PCA clock source (with the CPS2–CPS0 bits).
- Load PCA0CPL2 with the desired WDT update offset value.
- Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).
- Enable the WDT by setting the WDTE bit to '1'.
- Reload the WDT by writing any value to PCA0CPH2.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The Watchdog Timer is enabled by setting the WDTE or WDLCK bits in the PCA0MD register. When WDLCK is set, the WDT cannot be disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit.

The WDT is enabled following any reset. The PCA0 counter clock defaults to the system clock divided by 12, PCA0L defaults to 0x00, and PCA0CPL2 defaults to 0x00. Using Equation 16.4, this results in a WDT timeout interval of 3072 system clock cycles. Table 16.3 lists some example timeout intervals for typical system clocks, assuming SYSCLK / 12 as the PCA clock source.

R/W	R/W	R/W	R/W	/ R/W	R/W	R/W	R/W	Reset Value			
CIDL	WDTE	WDLC	<	CPS2	CPS1	CPS0	ECF	01000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xD9			
Bit7:	CIDL: PCA Specifies F 0: PCA cor	Counter/ CA behavintinues to	Timer Idle vior when function	e Control. CPU is in Idle normally while	Mode. he system	controller is	s in Idle M	lode.			
Bit6:	 PCA operation is suspended while the system controller is in Idle Mode. WDTE: Watchdog Timer Enable If this bit is set, PCA Module 2 is used as the Watchdog Timer. Watchdog Timer disabled. DCA Module 2 enabled as Watchdog Timer. 										
Bit5:	WDLCK: W This bit loc Timer may 0: Watchdo	Vatchdog ks/unlocks not be dis og Timer E	Timer Loo s the Wat sabled un Enable ur	ck chdog Timer E til the next syst locked.	nable. Whe em reset.	en WDLCK i	s set, the	Watchdog			
Bit4: Bits3–1:	 U: Watchdog Timer Enable Unlocked. 1: Watchdog Timer Enable locked. UNUSED. Read = 0b, Write = don't care. : CPS2–CPS0: PCA Counter/Timer Pulse Select. These bits select the clock source for the PCA counter 										
	CPS2	CPS1	CPS0			Timebase					
	0	0	0	System clock	divided by	12					
	0	0	1	System clock	divided by	4					
	0	1	0	Timer 0 overfl	WC						
	0	1	1	High-to-low tra divided by 4)	ansitions or	n ECI (max	rate = sys	stem clock			
	1	0	0	System clock							
	1	0	1	External clock	divided by	8*					
	1	1	0	Reserved							
	1	1	1	Reserved							
Bit0:	*Note: Ext ECF: PCA This bit set 0: Disable 1: Enable a	ernal oscilla Counter/T ts the mas the CF int a PCA Cou	ator sourc Timer Ove king of th errupt. unter/Tim	e divided by 8 is erflow Interrupt he PCA Counte her Overflow int	synchronize Enable. r/Timer Ove errupt whe	d with the sy erflow (CF) n CF (PCA0	stem clock interrupt.)CN.7) is	set.			
Note: Wł ontents o	nen the WD f the PCA0	TE bit is a MD regist	set to '1' ter, the V	, the PCA0MD Vatchdog Time	register c er must firs	annot be m st be disabl	odified. led.	To change the			

SFR Definition 16.2. PCA0MD: PCA Mode

SFR Definition 16.3. PCA0CPMn: PCA Capture/Compare Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
PWM16	n ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xDA, 0xDB, 0xDC			
PCA0CPMn Address: PCA0CPM0 = 0xDA (n = 0)											
	PCA0CPM1 = 0xDB (n = 1)										
		PCA0	CPM2 = 0x	DC (n = 2)							
D:+7.			\/;dth \/adv	Jotion Enak							
DILT.	: PWM16n: 16-bit Pulse Width Modulation Enable.										
	0. 8-bit PW	A selected						win = 1).			
	1: 16-bit PW	/M selected									
Bit6:	ECOMn: Co	mparator F	unction Ena	able.							
	This bit ena	bles/disable	es the comp	arator funct	ion for PCA	Module n.					
	0: Disabled.										
	1: Enabled.										
Bit5:	CAPPn: Ca	pture Positi	ve Function	Enable.							
	I his bit enal	bles/disable	es the positi	ve edge ca	oture for PC	A Module r	۱.				
	1. Enabled										
Bit4.	CAPNn: Ca	pture Nega	tive Functio	n Enable							
Dit i.	This bit ena	bles/disable	es the negat	ive edae ca	apture for P	CA Module	n.				
	0: Disabled.		.		1						
	1: Enabled.										
Bit3:	MATn: Matc	h Function	Enable.								
	This bit ena	bles/disable	es the match	n function fo	or PCA Mod	ule n. Whei	n enabled, r	natches of the			
	PCA counte	r with a mo	dule's captu	ire/compare	e register ca	use the CC	Fn bit in PC	CA0MD register			
	to be set to	logic 1.									
	1. Enabled										
Bit2:	TOGn: Togo	le Function	Enable.								
	This bit enal	bles/disable	es the toggle	e function fo	or PCA Mod	ule n. Whei	n enabled, r	matches of the			
	PCA counte	r with a mo	dule's captu	ire/compare	e register ca	use the log	ic level on t	he CEXn pin to			
	toggle. If the	e PWMn bit	is also set t	o logic 1, th	ne module o	perates in I	Frequency (Output Mode.			
	0: Disabled.										
D:44.	1: Enabled.	a Width M	dulation M	ada Enabla							
BILT:	This bit onal	bloc/disable	boulation ivio	function fo	r DCA Modu	ilo n Whon	onablad a	pulso width			
	modulated s	signal is out	nut on the (EXn nin 8	-hit PWM is	used if PM	/M16n is cle	ared: 16-bit			
	mode is use	d if PWM16	Sn is set to l	oaic 1. If th	e TOGn bit	is also set.	the module	operates in Fre-			
	quency Output Mode.										
	0: Disabled.										
	1: Enabled.										
Bit0:	ECCFn: Ca	pture/Comp	are Flag Int	errupt Enal	ole.						
	I his bit sets	the maskir	ig of the Ca	pture/Comp	oare ⊢lag (C	CFn) interr	upt.				
		Capture/Co	ipis. Impare Floc	interrupt r	auget what	n CCEn is s	ot				
			mpare i lag	, menupi le	Squest wild	10011133					

SFR Definition 16.6. PCA0CPLn: PCA Capture Module Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xFB, 0xE9, 0xEB		
PCA0CPLn Address:PCA0CPL0 = $0xFB (n = 0)$ PCA0CPL1 = $0xE9 (n = 1)$ PCA0CPL2 = $0xEB (n = 2)$										
Bits7–0: PCA0CPLn: PCA Capture Module Low Byte. The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture Module n.										

SFR Definition 16.7. PCA0CPHn: PCA Capture Module High Byte

