

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	8
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	11-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f302-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1. CIP-51[™] Microcontroller Core

1.1.1. Fully 8051 Compatible

The C8051F300/1/2/3/4/5 family utilizes Silicon Labs' proprietary CIP-51 microcontroller core. The CIP-51 is fully compatible with the MCS-51[™] instruction set; standard 803x/805x assemblers and compilers can be used to develop software. The CIP-51 core offers all the peripherals included with a standard 8052, including two standard 16-bit counter/timers, one enhanced 16-bit counter/timer with external oscillator input, a full-duplex UART with extended baud rate configuration, 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space, and a byte-wide I/O Port.

1.1.2. Improved Throughput

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute with a maximum system clock of 12 to 24 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with only four instructions taking more than four system clock cycles.

The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	2/3	3	3/4	4	4/5	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. Figure 1.3 shows a comparison of peak throughputs for various 8-bit microcontroller cores with their maximum system clocks.

Figure 1.3. Comparison of Peak MCU Execution Speeds

Figure 4.5. SOIC-14 Pinout Diagram (Top View)

The output of Comparator0 can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, the Comparator0 output is available asynchronous or synchronous to the system clock; the asynchronous output is available even in STOP mode (with no system clock active). When disabled, the Comparator0 output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and its supply current falls to less than 100 nA. See **Section "12.1. Priority Crossbar Decoder" on page 104** for details on configuring the Comparator0 output via the digital Crossbar. Comparator0 inputs can be externally driven from -0.25 to (V_{DD}) + 0.25 V without damage or upset. The complete electrical specifications for Comparator0 are given in Table 7.1.

The Comparator0 response time may be configured in software via the CP0MD1-0 bits in register CPT0MD (see SFR Definition 7.3). Selecting a longer response time reduces the amount of power consumed by Comparator0. See Table 7.1 for complete timing and power consumption specifications.

The hysteresis of Comparator0 is software-programmable via its Comparator0 Control register (CPT0CN). The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator0 hysteresis is programmed using Bits3–0 in the Comparator0 Control Register CPT0CN (shown in SFR Definition 7.1). The amount of negative hysteresis voltage is determined by the settings of the CP0HYN bits. As shown in Figure 7.2, settings of 20, 10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CP0HYP bits.

Mnemonic	Description	Bytes	Clock Cycles
ANL direct, A	AND A to direct byte	2	2
ANL direct, #data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR indirect RAM to A	1	2
ORL A, #data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2
ORL direct, #data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, #data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
	Data Transfer		·
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, #data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri. #data	Move immediate to indirect RAM	2	2

Table 8.1. CIP-51 Instruction Set Summary (Continued)

3

3

3

1

Load DPTR with 16-bit constant

Move code byte relative DPTR to A

MOV DPTR, #data16

MOVC A, @A+DPTR

F8	CPT0CN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0			
F0	В	P0MDIN					EIP1	
E8	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2			RSTSRC
E0	ACC	XBR0	XBR1	XBR2	IT01CF		EIE1	
D8	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2			
D0	PSW	REF0CN						
C8	TMR2CN		TMR2RLL	TMR2RLH	TMR2L	TMR2H		
C0	SMB0CN	SMB0CF	SMB0DAT		ADC0GT		ADC0LT	
B8	IP			AMX0SL	ADC0CF		ADC0	
B0		OSCXCN	OSCICN	OSCICL			FLSCL	FLKEY
A8	IE							
A0					POMDOUT			
98	SCON0	SBUF0				CPT0MD		CPT0MX
90								
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
80	P0	SP	DPL	DPH				PCON
	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

Table 8.2. Special Function Register (SFR) Memory Map

(bit addressable)

Table 8.3. Special Function Registers*

Register	Address	Description	Page No.
ACC	0xE0	Accumulator	71
ADC0CF	0xBC	ADC0 Configuration	43
ADC0CN	0xE8	ADC0 Control	44
ADC0GT	0xC4	ADC0 Greater-Than Compare Word	46
ADC0LT	0xC6	ADC0 Less-Than Compare Word	46
ADC0	0xBE	ADC0 Data Word	43
AMX0SL	0xBB	ADC0 Multiplexer Channel Select	42
В	0xF0	B Register	71
CKCON	0x8E	Clock Control	149
CPT0CN	0xF8	Comparator0 Control	53
CPT0MD	0x9D	Comparator0 Mode Selection	54
CPT0MX	0x9F	Comparator0 MUX Selection	54
DPH	0x83	Data Pointer High	69
DPL	0x82	Data Pointer Low	68
EIE1	0xE6	Extended Interrupt Enable 1	77
EIP1	0xF6	External Interrupt Priority 1	78
FLKEY	0xB7	Flash Lock and Key	93
*Note: SFRs a	are listed in alpha	betical order. All undefined SFR locations are reserved	

SFR Definition 8.2. DPH: Data Pointer High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
D'17	Dite	Dite	Dita	D'io	D'io	Ditt	Dito	
Bit7	Bitb	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x83
Bits7–0:	DPH: Data	Pointer Hig	h.					
	The DPH re addressed I	gister is the lash memo	e high byte ory.	of the 16-b	it DPTR. D	PTR is use	d to acces	ss indirectly

SFR Definition 8.3. SP: Stack Pointer

8.4. Power Management Modes

The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode halts the CPU while leaving the peripherals and clocks active. In Stop mode, the CPU is halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the system clock is stopped (analog peripherals remain in their selected states). Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the least power. SFR Definition 8.12 describes the Power Control Register (PCON) used to control the CIP-51's power management modes.

Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power management of the entire MCU is better accomplished by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or serial buses, draw little power when they are not in use. Turning off the oscillators lowers power consumption considerably; however a reset is required to restart the MCU.

8.4.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system. Refer to **Section "16.3. Watchdog Timer Mode" on page 164** for more information on the use and configuration of the WDT.

Note: Any instruction that sets the IDLE bit should be immediately followed by an instruction that has 2 or more opcode bytes. For example:

// in 'C':	
PCON $ = 0 \times 01;$	// set IDLE bit
PCON = PCON;	// followed by a 3-cycle dummy instruction
; in assembly:	
ORL PCON, #01h	; set IDLE bit
MOV PCON, PCON	; followed by a 3-cycle dummy instruction

If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from IDLE mode when a future interrupt occurs.

8.4.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout of 100 μ sec.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
GF5	GF4	GF3	GF2	GF1	GF0	STOP	IDLE	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0x87			
Bits7–2:	: GF5–GF0: General Purpose Flags 5-0. These are general purpose flags for use under software control.										
Bit1:	STOP: Stop	Mode Sele	ct.								
	Setting this	bit will place	e the CIP-5	1 in Stop m	ode. This b	it will alway	s be read	as 0.			
Bit0:	1: CPU goes IDLE: Idle M Setting this I 1: CPU goes Ports, and A	s into Stop r lode Select. bit will place s into Idle m analog Perip	mode (turns e the CIP-5 node (shuts oherals are	s off interna 1 in Idle mc off clock to still active).	l oscillator) ode. This bi CPU, but	t will always clock to Tim	s be read a hers, Inter	as 0. rupts, Serial			

SFR Definition 8.12. PCON: Power Control

11. Oscillators

C8051F300/1/2/3/4/5 devices include a programmable internal oscillator and an external oscillator drive circuit. The internal oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers, as shown in Figure 11.1. The system clock can be sourced by the external oscillator circuit, the internal oscillator, or a scaled version of the internal oscillator. The internal oscillator's electrical specifications are given in Table 11.1 on page 99.

Figure 11.1. Oscillator Diagram

11.1. Programmable Internal Oscillator

All C8051F300/1/2/3/4/5 devices include a programmable internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be adjusted via the OSCICL register as defined by SFR Definition 11.1. On C8051F300/1 devices, OSCICL is factory calibrated to obtain a 24.5 MHz frequency. On C8051F302/3/4/5 devices, the oscillator frequency is a nominal 20 MHz and may vary $\pm 20\%$ from device-to-device.

Electrical specifications for the precision internal oscillator are given in Table 11.1 on page 99. The programmed internal oscillator frequency must not exceed 25 MHz. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

SFR Definition 11.3. OSCXCN: External Oscillator Control

R	R/W	R/W	R/W	R	R/W	R/W	R/W	Reset Value		
XTLVLD	XOSCMD2	XOSCMD1	XOSCMD0		XFCN2	XFCN1	XFCN0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xB1		
Bit7: XTLVLD: Crystal Oscillator Valid Flag.										
(Read only when XOSCMD = 11x.) 0: Crystal Oscillator is unused or not yet stable.										
										1: Crystal Oscillator is running and stable.
BIIS0-4:	AUSCIVID2-U): External C	scillator Moc	le Bits.						
	00X. Externa	I CMOS CIO	ck Mode							
	011: Externa		ck Mode with	n divide bv	2 stage.					
	100: RC Osc	illator Mode	with divide b	by 2 stage.	_ 010.901					
	101: Capacit	or Oscillator	Mode with d	livide by 2	stage.					
	110: Crystal	Oscillator Mo	ode.	-	-					
	111: Crystal	Oscillator Mo	ode with divid	de by 2 sta	ge.					
Bit3:	RESERVED	. Read = 0, \	Write = don't	care.						
Bits2–0:	XFCN2-0: E	xternal Oscil	lator Frequer	ncy Contro	l Bits.					
	000-111: See				000145		() (O O O I I D			
	XECN	Crystal (XC	DSCMD = 11	x) RC (X	OSCMD =	10x) C		0 = 10x		
	000	:≥†	32 KHZ	1	$1 \le 25 \text{ kHz}$		K Factor =	0.87		
	001	32 KHZ <	$< f \le 84 \text{ KHZ}$	25 KF	$1Z < I \leq 50$	KHZ	K Factor =	= 2.6		
	010	84 KHZ <	$1 \le 225 \text{ KHZ}$	50 KH	$Z < I \le 100$		K Factor =	= 1.1		
	100	223 KHZ <	$\leq 1 \geq 590 \text{ KHz}$	200 kF	$\frac{12 < 1 > 200}{17 < f < 400}$		K Factor	= 22		
	100	1 5 MHz	$< 1 \le 1.5$ WHZ < f < 1 MHZ	200 KI	$12 < 1 \le 400$ 17 < f < 800		K Factor -	- 180		
	101	4 MHz <	f < 10 MHz	800 kF	$\frac{12}{17} < f < 1.6$	MHz	K Factor =	664		
	110	10 MHz <	< f < 30 MHz	1.6 MF	$\frac{12}{17} < f < 3.2$	MHz	K Factor =	1590		
		10 10112		1.0 101	12 <1 20.2			1000		
CRYSTAL	- MODE (Circ	cuit from Fig	ure 11.1, Opt	ion 1; XOS	SCMD = 11	x)				
	Choose XFC	IN value to n	natch crystal	frequency.						
	Circuit fron	n Figure 11 1	Ontion 2.	(OSCMD -	- 10x)					
	Choose XFC	N value to n	natch freque	ncv range:	- 10,					
	$f = 1.23(10^3)$	$(\mathbf{R} \times \mathbf{C})$ w	here							
	f = frequency	of oscillatio	n in MHz							
	C = capacito	r value in pF								
	R = Pull-up r	esistor value	e in kΩ							
0 11005			Ontine O. MC							
C MODE	Circuit from		Option 3; XC	SCMD = 2	IUX) av de aire d					
		\mathbf{V}_{-}	r the oscillation	on frequen	cy desired:					
	f = from concerned	• DDJ, WILER	, n in M⊔-,							
	r = rrequeric)	r value the Y	(TΔI 2 nin in	nF						
	$C = capacitor value the XTAL2 pin in prV_{$									

SFR Definition 12.1. XBR0: Port I/O Crossbar Register 0

R/W	R/W XSKP6	R/W XSKP5	R/W XSKP4	R/W XSKP3	R/W XSKP2	R/W XSKP1	R/W XSKP0	Reset Value		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xE1		
Bit7:	UNUSED. R	lead = 0b; \	Write = don	't care.						
Bits6–0:	XSKP[6:0]: (Crossbar S	kip Enable	Bits		r Dooodor	Dort nine u			
	log inputs (fo	or ADC or C	Comparator) or used as	s special fui	r Decoder. nctions (VR	EF input. e	sed as ana- external oscil-		
	lator circuit, CNVSTR input) should be skipped by the Crossbar.									
	0: Correspon	nding P0.n	pin is not sl nin is skinn	kipped by the C	he Crossba Crossbar	r.				
	r. Correspon				1033041.					

SFR Definition 12.2. XBR1: Port I/O Crossbar Register 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PC	AOME	CP0AOEN	CP00EN	SYSCKE	SMB0OEN	URX0EN	UTX0EN	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE2
Bits7–6:	PCA0ME: P	CA Module	I/0 Enable	Bits				
	00: All PCA	I/O unavaila	ble at Port	pins.				
	01: CEX0 rc	outed to Port	pin.					
	10: CEX0, C	CEX1 routed	to Port pin	s.				
	11: CEX0, C	CEX1, CEX2	routed to F	Port pins.				
Bit5:	CP0AOEN:	Comparator	0 Asynchro	onous Outp	ut Enable			
	0: Asynchro	nous CP0 u	navailable a	at Port pin.				
	1: Asynchro	nous CP0 ro	outed to Po	rt pin.				
Bit4:	CP0OEN: C	comparator0	Output Ena	able				
	0: CP0 una	vailable at Po	ort pin.					
B 1/0	1: CP0 route	ed to Port pil	ר. <u>ר</u>					
Bit3:	SYSCRE: /S	SYSCLK Out	put Enable					
		unavailable	at Port pin	l. 				
D:40.			ed to Port p	oin.				
BILZ:	SMBUUEN:	SIVIBUS I/O	Enable	ina				
			e al Fuit pi	1115.				
Bit1 ·	LIPYOENI LI		on pins. ablo					
Dit i.		(A unavailah	le at Port n	in				
		(0 routed to	Port nin P0	5				
Bit0 [.]		ART TX Out	nut Enable	.0.				
Dito.	0. UART TX	0 unavailab	e at Port pi	in				
	1: UART TX	0 routed to I	Port pin P0	.4.				

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xA4
 Bits7–0: Output Configuration Bits for P0.7–P0.0 (respectively): ignored if corresponding bit in register P0MDIN is logic 0. 0: Corresponding P0.n Output is open-drain. 1: Corresponding P0.n Output is push-pull. 								
	(Note: When SDA and SCL appear on any of the Port I/O, each are open-drain regardless of the value of P0MDOUT).							

Table 12.1. Port I/O DC Electrical Characteristics

Parameters	Conditions	Min	Тур	Max	Units
Output High Voltage	I _{OH} = –3 mA, Port I/O push-pull	$V_{DD} - 0.7$			V
	I _{OH} = –10 μA, Port I/O push-pull	V _{DD} – 0.1			
	I _{OH} = –10 mA, Port I/O push-pull		V _{DD} -0.8		
Output Low Voltage	I _{OL} = 8.5 mA		_	0.6	
	I _{OL} = 10 μA	—	—	0.1	V
	$I_{OL} = 25 \text{ mA}$	—	1.0	—	
Input High Voltage		2.0	_		V
Input Low Voltage		—		0.8	V
Input Leakage Current	Weak Pull-up Off			±1	μA
	Weak Pull-up On, V _{IN} = 0 V		25	40	

 V_{DD} = 2.7 to 3.6 V, -40 to +85 °C unless otherwise specified.

13. SMBus

The SMBus I/O interface is a two-wire bidirectional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus interface autonomously controlling the serial transfer of the data. Data can be transferred at up to 1/20th of the system clock operating as master or slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.

The SMBus interface may operate as a master and/or slave, and may function on a bus with multiple masters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and START/STOP control and generation. Three SFRs are associated with the SMBus: SMB0CF configures the SMBus; SMB0CN controls the status of the SMBus; and SMB0DAT is the data register, used for both transmitting and receiving SMBus data and slave addresses.

Figure 13.1. SMBus Block Diagram

13.3.2. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I²C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

13.3.3. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMB0CF is set, Timer 2 is used to detect SCL low timeouts. Timer 2 is forced to reload when SCL is high, and allowed to count when SCL is low. With Timer 2 enabled and configured to overflow after 25 ms (and SMBTOE set), the Timer 2 interrupt service routine can be used to reset (disable and reenable) the SMBus in the event of an SCL low timeout. Timer 2 configuration details can be found in **Section "15.2. Timer 2" on page 151**.

13.3.4. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 µs, the bus is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods. If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. Note that a clock source is required for free timeout detection, even in a slave-only implementation.

NOTES:

15. Timers

Each MCU includes 3 counter/timers: two are 16-bit counter/timers compatible with those found in the standard 8051, and one is a 16-bit auto-reload timer for use with the ADC, SMBus, or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 offers 16-bit and split 8-bit timer functionality with auto-reload.

Timer 0 and Timer 1 Modes:	Timer 2 Modes:			
13-bit counter/timer	16-bit timer with auto-reload			
16-bit counter/timer				
8-bit counter/timer with auto-reload	Two 8-bit timers with auto-reload			
Two 8-bit counter/timers (Timer 0 only)	Î			

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M–T0M) and the Clock Scale bits (SCA1–SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked (See SFR Definition 15.3 for pre-scaled clock selection).

Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock. Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided by 8.

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin. Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it should be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

15.1. Timer 0 and Timer 1

Each timer is implemented as 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate their status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register (Section "8.3.5. Interrupt Register Descriptions" on page 75); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (Section 8.3.5). Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1–T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

15.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4-TL0.0. The three upper bits of TL0 (TL0.7-TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

15.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

Figure 15.3. T0 Mode 3 Block Diagram

SFR Definition 15.9. TMR2RLL: Timer 2 Reload Register Low Byte

SFR Definition 15.10. TMR2RLH: Timer 2 Reload Register High Byte

SFR Definition 15.11. TMR2L: Timer 2 Low Byte

SFR Definition 15.12. TMR2H Timer 2 High Byte

SFR Definition 16.4. PCA0L: PCA Counter/Timer Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
								00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
								0xF9	
Bits 7–0: PCA0L: PCA Counter/Timer Low Byte. The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.									

SFR Definition 16.5. PCA0H: PCA Counter/Timer High Byte

170

17. C2 Interface

C8051F300/1/2/3/4/5 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface operates using only two pins: a bi-directional data signal (C2D) and a clock input (C2CK). See the C2 Interface Specification for details on the C2 protocol.

17.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 17.1. C2ADD: C2 Address

C2 Register Definition 17.2. DEVICEID: C2 Device ID

