

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Last Time Buy
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	8
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f302-gs

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 14.3. Timer Settings for Standard Baud Rates
Using an External 22.1184 MHz Oscillator 139
Table 14.4. Timer Settings for Standard Baud Rates
Using an External 18.432 MHz Oscillator 140
Table 14.5. Timer Settings for Standard Baud Rates
Using an External 11.0592 MHz Oscillator 141
Table 14.6. Timer Settings for Standard Baud Rates
Using an External 3.6864 MHZ Oscillator 142
15. Timers
16. Programmable Counter Array
Table 16.1. PCA Timebase Input Options 156
Table 16.2. PCA0CPM Register Settings for PCA Capture/Compare Modules 157
Table 16.3. Watchdog Timer Timeout Intervals 166
17.C2 Interface

List of Registers

SFR Definition 5.1. AMX0SL: AMUX0 Channel Select (C8051F300/2)	42
SFR Definition 5.2. ADC0CF: ADC0 Configuration (C8051F300/2)	43
SFR Definition 5.3. ADC0: ADC0 Data Word (C8051F300/2)	43
SFR Definition 5.4. ADC0CN: ADC0 Control (C8051F300/2)	44
SFR Definition 5.5. ADC0GT: ADC0 Greater-Than Data Byte (C8051F300/2)	46
SFR Definition 5.6. ADC0LT: ADC0 Less-Than Data Byte (C8051F300/2)	46
SFR Definition 6.1. REF0CN: Reference Control Register	50
SFR Definition 7.1. CPT0CN: Comparator0 Control	
SFR Definition 7.2. CPT0MX: Comparator0 MUX Selection	54
SFR Definition 7.3. CPT0MD: Comparator0 Mode Selection	54
SFR Definition 8.1. DPL: Data Pointer Low Byte	
SFR Definition 8.2. DPH: Data Pointer High Byte	69
SFR Definition 8.3. SP: Stack Pointer	69
SFR Definition 8.4. PSW: Program Status Word	70
SFR Definition 8.5. ACC: Accumulator	71
SFR Definition 8.6. B: B Register	71
SFR Definition 8.7. IE: Interrupt Enable	75
SFR Definition 8.8. IP: Interrupt Priority	76
SFR Definition 8.9. EIE1: Extended Interrupt Enable 1	77
SFR Definition 8.10. EIP1: Extended Interrupt Priority 1	78
SFR Definition 8.11. IT01CF: INT0/INT1 Configuration	
SFR Definition 8.12. PCON: Power Control	
SFR Definition 9.1. RSTSRC: Reset Source	87
SFR Definition 10.1. PSCTL: Program Store R/W Control	92
SFR Definition 10.2. FLKEY: Flash Lock and Key	
SFR Definition 10.3. FLSCL: Flash Scale	
SFR Definition 11.1. OSCICL: Internal Oscillator Calibration	98
SFR Definition 11.2. OSCICN: Internal Oscillator Control	
SFR Definition 11.3. OSCXCN: External Oscillator Control	100
SFR Definition 12.1. XBR0: Port I/O Crossbar Register 0	
SFR Definition 12.2. XBR1: Port I/O Crossbar Register 1	
SFR Definition 12.3. XBR2: Port I/O Crossbar Register 2	108
SFR Definition 12.4. P0: Port0 Register	
SFR Definition 12.5. P0MDIN: Port0 Input Mode	
SFR Definition 12.6. P0MDOUT: Port0 Output Mode	
SFR Definition 13.1. SMB0CF: SMBus Clock/Configuration	118
SFR Definition 13.2. SMB0CN: SMBus Control	
SFR Definition 13.3. SMB0DAT: SMBus Data	
SFR Definition 14.1. SCON0: Serial Port 0 Control	
SFR Definition 14.2. SBUF0: Serial (UART0) Port Data Buffer	
SFR Definition 15.1. TCON: Timer Control	
SFR Definition 15.2. TMOD: Timer Mode	
SFR Definition 15.3. CKCON: Clock Control	149

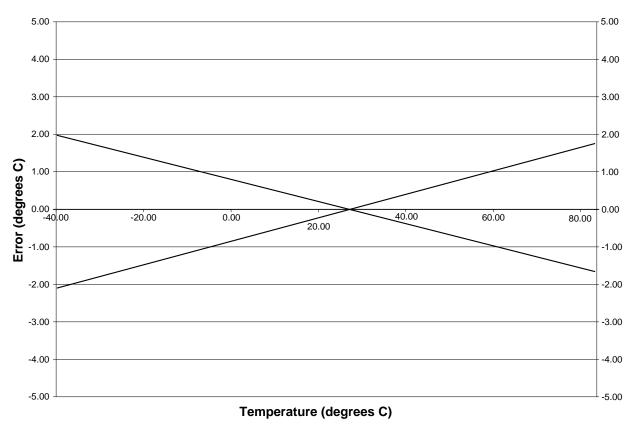
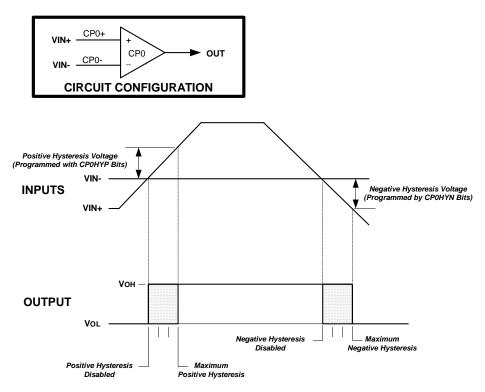
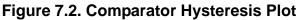


Figure 5.3. Temperature Sensor Error with 1-Point Calibration (VREF = 2.40 V)

Table 5.1. ADC0 Electrical Characteristics


 V_{DD} = 3.0 V, VREF = 2.40 V (REFSL = 0), PGA Gain = 1, -40 to +85 °C unless otherwise specified.


Parameter	Conditions	Min	Тур	Мах	Units				
DC Accuracy									
Resolution			8		bits				
Integral Nonlinearity		—	±0.5	±1	LSB				
Differential Nonlinearity	Guaranteed Monotonic	—	±0.5	±1	LSB				
Offset Error		-5.0	0.5	5.0	LSB				
Full Scale Error	Differential mode	-5.0	-1	5.0	LSB				
Dynamic Performance (10 kHz Sine-wave Differential Input, 1 dB below Full Scale, 500 ksps)									
Signal-to-Noise Plus Distortion		45	48	—	dB				
Total Harmonic Distortion	Up to the 5 th harmonic		-56	—	dB				
Spurious-Free Dynamic Range			58	—	dB				
Conversion Rate									
SAR Conversion Clock		—		6	MHz				
Conversion Time in SAR Clocks		11	_	—	clocks				
Track/Hold Acquisition Time		300	_	—	ns				
Throughput Rate		—	—	500	ksps				
Analog Inputs			1						
Input Voltage Range		0	—	VREF	V				
Input Capacitance		—	5	—	pF				
Temperature Sensor		—	_	—					
Linearity ^{1,2,3}		—	±0.5	—	°C				
Gain ^{1,2,3}		—	3350	—	μV / °C				
Gain ^{1,2,3}			±110						
Offset ^{1,2,3}	(Temp = 0 °C)		897±31	—	mV				
Power Specifications									
Power Supply Current (V _{DD} supplied to ADC0)	Operating Mode, 500 ksps	—	400	900	μA				
Power Supply Rejection		—	±0.3	—	mV/V				
 Notes: 1. Represents one standard devi 2. Measured with PGA Gain = 2. 3. Includes ADC offset, gain, and 									

The output of Comparator0 can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, the Comparator0 output is available asynchronous or synchronous to the system clock; the asynchronous output is available even in STOP mode (with no system clock active). When disabled, the Comparator0 output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and its supply current falls to less than 100 nA. See **Section "12.1. Priority Crossbar Decoder" on page 104** for details on configuring the Comparator0 output via the digital Crossbar. Comparator0 inputs can be externally driven from -0.25 to (V_{DD}) + 0.25 V without damage or upset. The complete electrical specifications for Comparator0 are given in Table 7.1.

The Comparator0 response time may be configured in software via the CP0MD1-0 bits in register CPT0MD (see SFR Definition 7.3). Selecting a longer response time reduces the amount of power consumed by Comparator0. See Table 7.1 for complete timing and power consumption specifications.

The hysteresis of Comparator0 is software-programmable via its Comparator0 Control register (CPT0CN). The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator0 hysteresis is programmed using Bits3–0 in the Comparator0 Control Register CPT0CN (shown in SFR Definition 7.1). The amount of negative hysteresis voltage is determined by the settings of the CP0HYN bits. As shown in Figure 7.2, settings of 20, 10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CP0HYP bits.

Mnemonic	Description	Bytes	Clock Cycles
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2
	Boolean Manipulation	ŀ	
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
	Program Branching		
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3

Table 8.1. CIP-51 Instruction Set Summary (Continued)

Register	Address	Description	Page No.
FLSCL	0xB6	Flash Scale	93
IE	0xA8	Interrupt Enable	75
IP	0xB8	Interrupt Priority	76
IT01CF	0xE4	INT0/INT1 Configuration Register	79
OSCICL	0xB3	Internal Oscillator Calibration	98
OSCICN	0xB2	Internal Oscillator Control	98
OSCXCN	0xB1	External Oscillator Control	100
P0	0x80	Port 0 Latch	109
POMDIN	0xF1	Port 0 Input Mode Configuration	109
POMDOUT	0xA4	Port 0 Output Mode Configuration	110
PCA0CN	0xD8	PCA Control	167
PCA0MD	0xD9	PCA Mode	168
PCA0CPH0	0xFC	PCA Capture 0 High	171
PCA0CPH1	0xEA	PCA Capture 1 High	171
PCA0CPH2	0xEC	PCA Capture 2 High	171
PCA0CPL0	0xFB	PCA Capture 0 Low	171
PCA0CPL1	0xE9	PCA Capture 1 Low	171
PCA0CPL2	0xEB	PCA Capture 2 Low	171
PCA0CPM0	0xDA	PCA Module 0 Mode Register	169
PCA0CPM1	0xDB	PCA Module 1 Mode Register	169
PCA0CPM2	0xDC	PCA Module 2 Mode Register	169
PCA0H	0xFA	PCA Counter High	170
PCA0L	0xF9	PCA Counter Low	170
PCON	0x87	Power Control	81
PSCTL	0x8F	Program Store R/W Control	92
PSW	0xD0	Program Status Word	70
REF0CN	0xD1	Voltage Reference Control	49
RSTSRC	0xEF	Reset Source Configuration/Status	87
SBUF0	0x99	UART 0 Data Buffer	137
SCON0	0x98	UART 0 Control	136
SMB0CF	0xC1	SMBus Configuration	118
SMB0CN	0xC0	SMBus Control	120
SMB0DAT	0xC2	SMBus Data	122
SP	0x81	Stack Pointer	69
TMR2CN	0xC8	Timer/Counter 2 Control	154
TCON	0x88	Timer/Counter Control	147
TH0	0x8C	Timer/Counter 0 High	150
*Note: SFRs a	re listed in aloha	abetical order. All undefined SFR locations are reserved	I

Table 8.3. Special Function Registers* (Continued)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	Reset Value
CY	AC	F0	RS1	RS0	OV	F1	PARITY	0000000
Bit7	Bit6	Bit5	Bit4	Bit3 Bit2		Bit1	Bit0	SFR Address:
						(bi	t addressable)	0xD0
Bit7:	CY: Carry	•						
			he last arithmet					or a borrow
B HA			eared to logic 0 t	by all ot	ner arithme	tic operatio	ns.	
Bit6:	AC: Auxilia							
			he last arithmetic					
	tions.	raction) th	e high order nib					nmetic opera-
Bit5:	F0: User F	lag 0						
Dito.		0	able, general pu	irpose fl	ad for use i	under softw	are control	_
Bits4–3:			Bank Select.					
			ich register ban	k is use	d during reg	gister acces	sses.	
			0					
	RS1	RS0	Register Bank	Ad	dress			
	0	0	0	0x0	0–0x07			
	0	1	1	0x0	8–0x0F			
	1	0	2	0x1	0–0x17			
	1	1	3	0x1	8–0x1F			
D:40	O(k) O(k)							
Bit2:	OV: Overf	•	der the following		etancoc:			
			or SUBB instruct			change ove	rflow	
			results in an ov		•	•		
			causes a divide-					
			d to 0 by the AD			/IUL, and D	IV instruction	ons in all other
	cases.		2		. ,			
Bit1:	F1: User F	lag 1.						
			able, general pu	irpose fl	ag for use ι	under softw	are control	
Bit0:	PARITY: F							
		-	1 if the sum of t	he eight	bits in the a	accumulato	or is odd an	d cleared if the
	sum is eve	en.						

SFR Definition 8.4. PSW: Program Status Word

8.3. Interrupt Handler

The CIP-51 includes an extended interrupt system supporting a total of 12 interrupt sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies according to the specific version of the device. Each interrupt source has one or more associated interruptpending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-less of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in an SFR (IE-EIE1). However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings.

Note: Any instruction that clears the EA bit should be immediately followed by an instruction that has two or more opcode bytes. For example:

// in 'C': EA = 0; // clear EA bit EA = 0; // ... followed by another 2-byte opcode ; in assembly: CLR EA ; clear EA bit CLR EA ; ... followed by another 2-byte opcode

If an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears the EA bit), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. However, a read of the EA bit will return a '0' inside the interrupt service routine. When the "CLR EA" opcode is followed by a multi-cycle instruction, the interrupt will not be taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will reenter the ISR after the completion of the next instruction.

8.3.1. MCU Interrupt Sources and Vectors

The MCUs support 12 interrupt sources. Software can simulate an interrupt by setting any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order and control bits are summarized in Table 8.4 on page 74. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

Parameter	Conditions	Min	Тур	Max	Units				
Calibrated Internal Oscillator	C8051F300/1 devices -40 to +85 °C	24	24.5	25	MHz				
Frequency	C8051F300/1 devices 0 to +70 °C	24.3	24.7	25	MHz				
Uncalibrated Internal Oscillator Frequency	C8051F302/3/4/5 devices	16	20	24	MHz				
Internal Oscillator Supply Current (from V _{DD})	OSCICN.2 = 1		450		μA				

Table 11.1. Internal Oscillator Electrical Characteristics

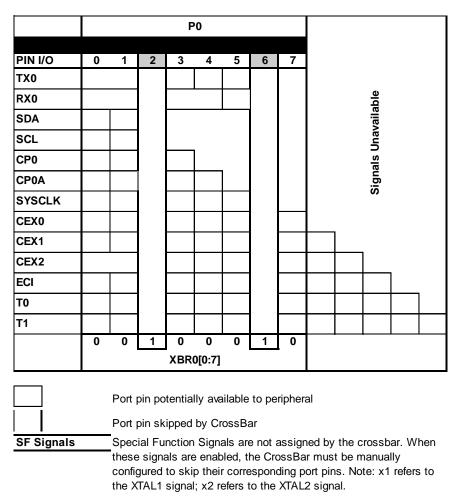
11.2. External Oscillator Drive Circuit

-40 to +85 °C unless otherwise specified

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 11.1. A 10 M Ω resistor also must be wired across the XTAL2 and XTAL1 pins for the crystal/resonator configuration. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as shown in Option 2, 3, or 4 of Figure 11.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 11.3).

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins P0.2 and P0.3 are occupied as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P0.3 is occupied as XTAL2. The Port I/O Crossbar should be configured to skip the occupied Port pins; see **Section "12.1. Priority Crossbar Decoder" on page 104** for Crossbar configuration. Additionally, when using the external oscillator circuit in crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as **analog inputs**. In CMOS clock mode, the associated pin should be configured as a **digital input**. See **Section "12.2. Port I/O Initialization" on page 106** for details on Port input mode selection.

11.3. System Clock Selection


The CLKSL bit in register OSCICN selects which oscillator is used as the system clock. CLKSL must be set to '1' for the system clock to run from the external oscillator; however the external oscillator may still clock peripherals (timers, PCA) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal and external oscillator, so long as the selected oscillator is enabled and has settled. The internal oscillator requires little start-up time and may be enabled and selected as the system clock in the same write to OSCICN. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use as the system clock. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to '1' by hardware when the external oscillator is settled. To avoid reading a false XTLVLD, in crystal mode software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD. RC and C modes typically require no start-up time.

SFR Definition 11.3. OSCXCN: External Oscillator Control

	D 444	5 444	544	-	5 4 4	5 4 4	5 ***	5
		R/W XOSCMD1		R	R/W XFCN2	R/W XFCN1	R/W XFCN0	Reset Value
Bit7	Bit6	Bit5	Bit4		Bit2		Bit0	00000000
BIT	BIto	BItS	BIt4	Bit3	BItZ	Bit1	Bitu	SFR Address: 0xB1
								UXDI
Bit7:		ustal Oscillat	or Valid Flag.					
Ditr.	(Read only w							
	· ·		used or not ye	t stable.				
	•		nning and stab					
Bits6-4:	XOSCMD2-0	0: External C	scillator Mode	Bits.				
	00x: Externa	l Oscillator c	ircuit off.					
	010: Externa							
			ck Mode with o	•	-			
			with divide by	-				
	•		Mode with div	ide by 2	stage.			
	110: Crystal			by 2 of				
Bit3:	•		ode with divide Vrite = don't ca	•	ige.			
Bits2–0:			ator Frequenc		l Rits			
B102 0.	000-111: See		•					
	XFCN	Crystal (XC	OSCMD = 11x)	RC ()	(OSCMD =	10x) C	(XOSCMD	= 10x)
	000	f ≤ 3	32 kHz		f≤25 kHz		K Factor =	0.87
	001	32 kHz <	< f ≤ 84 kHz	25 k	Hz < f ≤ 50	kHz	K Factor =	= 2.6
	010	84 kHz <	f ≤ 225 kHz	50 kł	Hz < f ≤ 100	kHz	K Factor =	= 7.7
	011	225 kHz «	< f ≤ 590 kHz	100 k	$Hz < f \le 200$) kHz	K Factor =	= 22
	100	590 kHz <	< f ≤ 1.5 MHz	200 k	$Hz < f \le 400$) kHz	K Factor =	= 65
	101	1.5 MHz	$< f \le 4 MHz$	400 k	$Hz < f \le 800$) kHz	K Factor =	180
	110	4 MHz <	$f \le 10 \text{ MHz}$	800 k	Hz < f ≤ 1.6	MHz	K Factor =	664
	111	10 MHz «	< f ≤ 30 MHz	1.6 M	Hz < f ≤ 3.2	MHz	K Factor =	1590
CRYSTA		cuit from Fig	ure 11.1, Optio	n 1· XO	SCMD - 11	x)		
GRIGIA			natch crystal fr			~)		
				- 40.0110)				
RC MOD	E (Circuit fror	n Figure 11.1	, Option 2; XC	SCMD	= 10x)			
			natch frequend					
	$f = 1.23(10^3)$)/(R x C), w	here					
	f = frequency							
	C = capacito	or value in pF						
	R = Pull-up i	esistor value	e in kΩ					
C MODE	(Circuit from	Figure 11.1,	Option 3; XOS	SCMD =	10x)			
	•	•	the oscillation		,	:		
	f = KF / (C x	V _{DD}), where)		-			
	f = frequency	y of oscillatio	n in MHz					
			TAL2 pin in pl	=				
	$V_{DD} = Powe$	r Supply on I	MCU in volts					

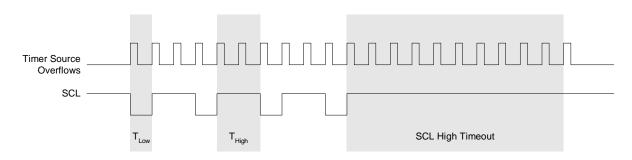


Figure 12.4. Crossbar Priority Decoder with XBR0 = 0x44

Registers XBR1 and XBR2 are used to assign the digital I/O resources to the physical I/O Port pins. Note that when the SMBus is selected, the Crossbar assigns both pins associated with the SMBus (SDA and SCL). Either or both of the UART signals may be selected by the Crossbar. UART0 pin assignments are fixed for bootloading purposes: when UART TX0 is selected, it is always assigned to P0.4; when UART RX0 is selected, it is always assigned to P0.5. Standard Port I/Os appear contiguously after the prioritized functions have been assigned. For example, if assigned functions that take the first 3 Port I/O (P0.[2:0]), 5 Port I/O are left for analog or GPIO use.

Figure 13.4. Typical SMBus SCL Generation

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns, respectively. Table 13.2 shows the minimum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz.

EXTHOLD	Minimum SDA Setup Time	Minimum SDA Hold Time
0	T _{low} – 4 system clocks OR 1 system clock + s/w delay [*]	3 system clocks
1	11 system clocks	12 system clocks

Table 13.2. Minimum SDA Setup and Hold Times

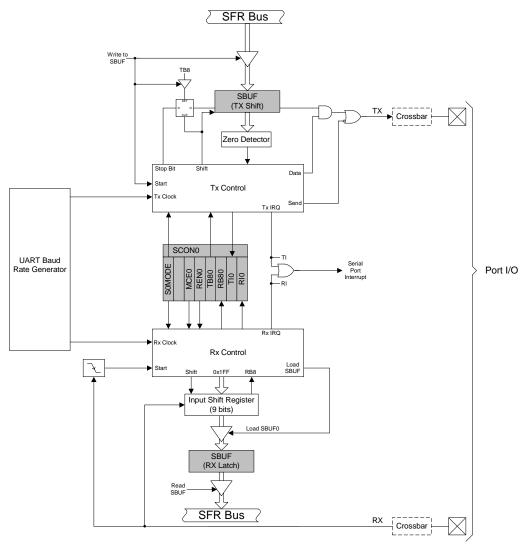
*Note: Setup Time for ACK bit transmissions and the MSB of all data transfers. The s/w delay occurs between the time SMB0DAT or ACK is written and when SI is cleared. Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w delay is zero.

With the SMBTOE bit set, Timer 2 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see **Section "13.3.3. SCL Low Timeout" on page 114**). The SMBus interface will force Timer 2 to reload while SCL is high, and allow Timer 2 to count when SCL is low. The Timer 2 interrupt service routine should be used to reset SMBus communication by disabling and reenabling the SMBus. Timer 2 configuration is described in **Section "15.2. Timer 2" on page 151**.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 13.4). When a Free Timeout is detected, the interface will respond as if a STOP was detected (an interrupt will be generated, and STO will be set).

	Valu	ies	Read	b	Current SMbus State	Typical Response Options		/alue Vritte	
Mode	Status Vector	ACKRQ	ARBLOST	ACK			STA	STO	ACK
	0010	0010 1 0 X A slave address was received; Acknowledge received address (received slav address match, R/W b READ).					0	0	1
	Don					Do not acknowledge received address.	0	0	0
						Acknowledge received address, and switch to trans- mitter mode (received slave address match, R/W bit = WRITE); see Section 13.5.4 for procedure.	0	0	1
	1 1 X Lost arbitration as master; slav address received; ACK requested.		Acknowledge received address (received slave address match, R/W bit = READ).	0	0	1			
						Do not acknowledge received address.	0	0	0
SLAVE RECEIVER					Acknowledge received address, and switch to trans- mitter mode (received slave address match, R/W bit = WRITE); see Section 13.5.4 for procedure.	0	0	1	
SL/						Reschedule failed transfer; do not acknowledge received address	1	0	0
	0010	0	1	Х	Lost arbitration while attempting a	Abort failed transfer.	0	0	Х
	0001			V	repeated START.	Reschedule failed transfer.	1	0	X
	0001	1	1		Lost arbitration while attempting a STOP.	complete/aborted).	0	0	0
		0	0		A STOP was detected while addressed as a Slave Transmitter or Slave Receiver.	Clear STO.	0	0	X
		0	1	Х		Abort transfer.	0	0	Х
					STOP.	Reschedule failed transfer.	1	0	X
	0000	1	0	X	A slave byte was received; ACK requested.	Acknowledge received byte; Read SMB0DAT.	0	0	1
						Do not acknowledge received byte.	0	0	0
		1	1	х	Lost arbitration while transmitting	Abort failed transfer.	0	0	0
					a data byte as master.	Reschedule failed transfer.	1	0	0

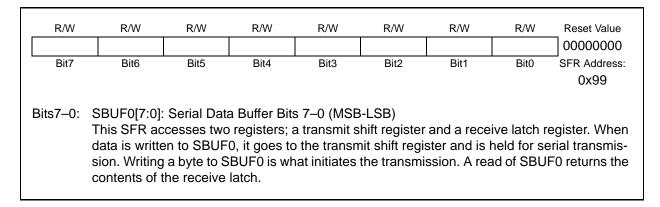
Table 13.4. SMBus Status Decoding (Continued)



14. UART0

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in **Section "14.1. Enhanced Baud Rate Generation" on page 132**). Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

UARTO has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0). The single SBUF0 location provides access to both transmit and receive registers. Reading SBUF0 accesses the buffered Receive register; writing SBUF0 accesses the Transmit register.


With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete).

SFR Definition 14.2. SBUF0: Serial (UART0) Port Data Buffer

15.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

15.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal /INT0 is active as defined by bit IN0PL in register IT01CF (see **Section "8.3.2. External Interrupts" on page 73** for details on the external input signals /INT0 and /INT1).

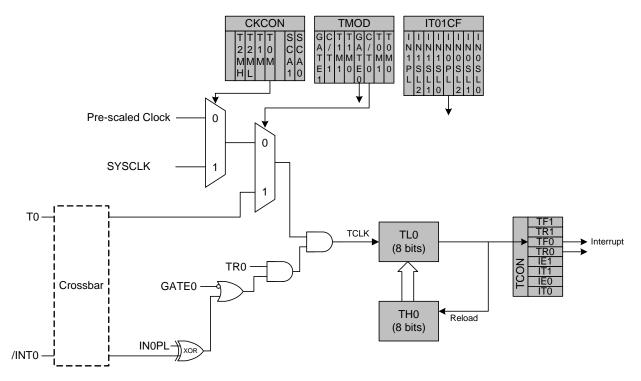


Figure 15.2. T0 Mode 2 Block Diagram

15.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

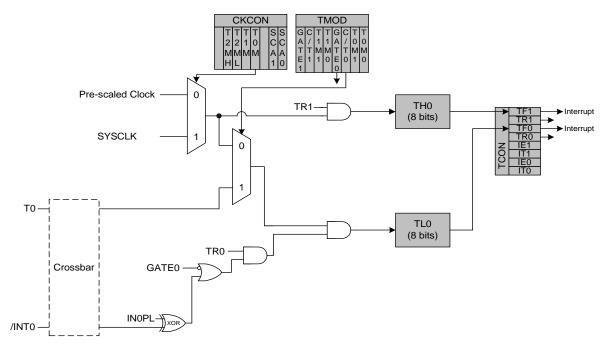


Figure 15.3. T0 Mode 3 Block Diagram

16.2.3. High Speed Output Mode

In High Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn) Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

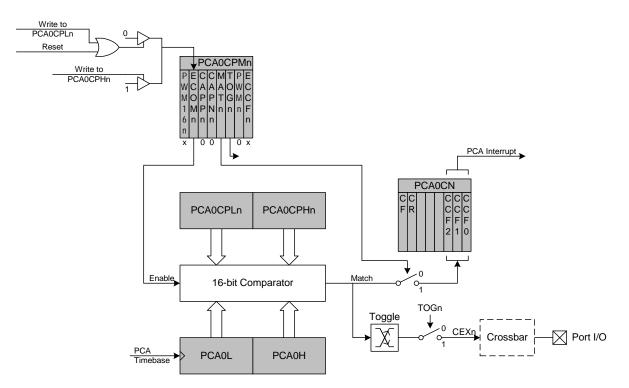


Figure 16.6. PCA High Speed Output Mode Diagram

NOTES:

