

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	8
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f302-gsr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

13.4.Using the SMBus	115
13.4.1.SMBus Configuration Register	
13.4.2.SMB0CN Control Register	
13.4.3.Data Register	
13.5.SMBus Transfer Modes	
13.5.1.Master Transmitter Mode	
13.5.2.Master Receiver Mode	
13.5.3.Slave Receiver Mode	
13.5.4.Slave Transmitter Mode	
13.6.SMBus Status Decoding	
14.1.Enhanced Baud Rate Generation	
14.2.Operational Modes 14.2.1.8-Bit UART	
14.2.1.о-ын UART 14.2.2.9-Bit UART	
14.2.2.9-Bit OART	
•	
15.1.Timer 0 and Timer 1	
15.1.1.Mode 0: 13-bit Counter/Timer	
15.1.2.Mode 1: 16-bit Counter/Timer	
15.1.3.Mode 2: 8-bit Counter/Timer with Auto-Reload	
15.1.4.Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	
15.2.Timer 2 15.2.1.16-bit Timer with Auto-Reload	
15.2.2.8-bit Timers with Auto-Reload	
16. Programmable Counter Array	
16.1.PCA Counter/Timer	
16.2.Capture/Compare Modules	
16.2.1.Edge-triggered Capture Mode	
16.2.2.Software Timer (Compare) Mode	
16.2.3. High Speed Output Mode	
16.2.4. Frequency Output Mode	101
16.2.5.8-Bit Pulse Width Modulator Mode	
16.2.6.16-Bit Pulse Width Modulator Mode	
16.3.Watchdog Timer Mode	
16.3.1.Watchdog Timer Operation	
16.3.2.Watchdog Timer Usage	
16.4.Register Descriptions for PCA	
17.C2 Interface	
17.1.C2 Interface Registers	
17.2.C2 Pin Sharing	
Document Change List	
Contact Information	178

Table 14.3. Timer Settings for Standard Baud Rates
Using an External 22.1184 MHz Oscillator 139
Table 14.4. Timer Settings for Standard Baud Rates
Using an External 18.432 MHz Oscillator 140
Table 14.5. Timer Settings for Standard Baud Rates
Using an External 11.0592 MHz Oscillator 141
Table 14.6. Timer Settings for Standard Baud Rates
Using an External 3.6864 MHZ Oscillator 142
15. Timers
16. Programmable Counter Array
Table 16.1. PCA Timebase Input Options 156
Table 16.2. PCA0CPM Register Settings for PCA Capture/Compare Modules 157
Table 16.3. Watchdog Timer Timeout Intervals 166
17.C2 Interface

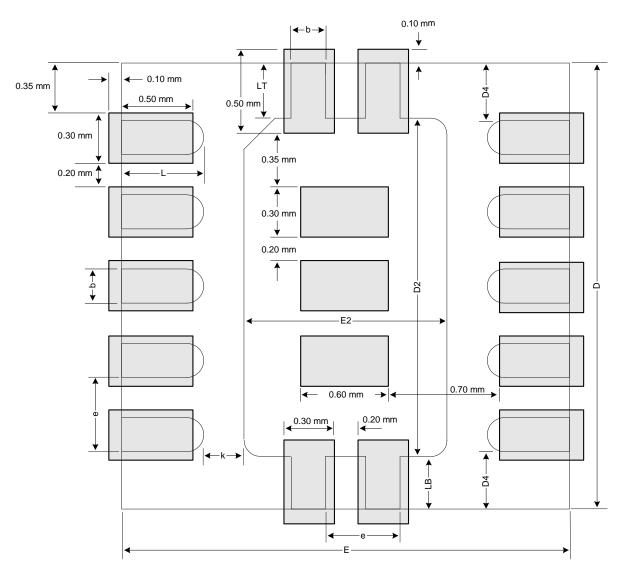


Figure 4.3. Typical QFN-11 Solder Paste Mask

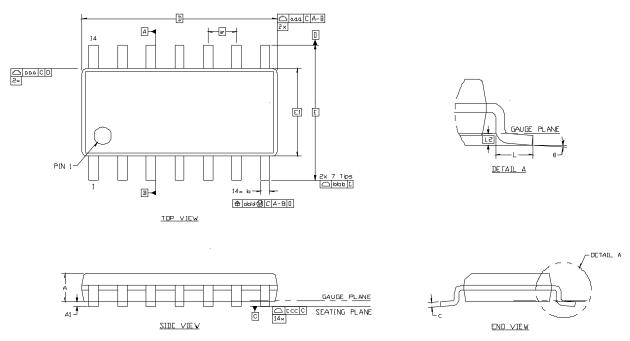


Figure 4.6. SOIC-14 Package Drawing

Dimension	Min	Max	Dimension	Min	Max
А		1.75	L	0.40	1.27
A1	0.10 0.25		L2	0.25	BSC
b	0.33	0.51	Q	0 °	8 °
С	0.17 0.25		aaa	0.10	
D	8.65 BSC		bbb	0.:	20
E	6.00 BSC		CCC	0.	10
E1	3.90 BSC		ddd	0.:	25
е	1.27	BSC	LL		
lotes:					

Table 4.4. SOIC-14 Package Dimensions

1. All dimensions shown are in millimeters (mm).

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS012, variation AB.

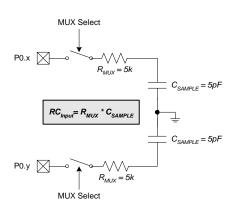
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

5.3.3. Settling Time Requirements

When the ADC0 input configuration is changed (i.e., a different AMUX0 or PGA selection is made), a minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion. Note that in low-power tracking mode, three SAR clocks are used for tracking at the start of every conversion. For most applications, these three SAR clocks will meet the minimum tracking time requirements.

Figure 5.5 shows the equivalent ADC0 input circuits for both Differential and Single-ended modes. Notice that the equivalent time constant for both input circuits is the same. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 5.1. When measuring the Temperature Sensor output or V_{DD} with respect to GND, R_{TOTAL} reduces to R_{MUX} . See Table 5.1 for ADC0 minimum settling time (track/hold time) requirements.

$$t = \ln\left(\frac{2^n}{SA}\right) \times R_{TOTAL} C_{SAMPLE}$$


Equation 5.1. ADC0 Settling Time Requirements

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds


 R_{TOTAL} is the sum of the AMUX0 resistance and any external source resistance.

n is the ADC resolution in bits (8).

Differential Mode

Note: When the PGA gain is set to 0.5, $C_{SAMPLE} = 3pF$

Figure 5.5. ADC0 Equivalent Input Circuits

5.4.2. Window Detector In Differential Mode

Figure 5.7 shows two example window comparisons for differential mode, with ADC0LT = 0x10 (+16d) and ADC0GT = 0xFF (-1d). Notice that in Differential mode, the codes vary from –VREF to VREF x (127/128) and are represented as 8-bit 2's complement signed integers. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0L) is within the range defined by ADC0GT and ADC0LT (if 0xFF (-1d) < ADC0 < 0x10 (16d)). In the right example, an AD0WINT interrupt will be generated if ADC0 is outside of the range defined by ADC0GT and ADC0LT (if ADC0 < 0xFF (-1d) or ADC0 > 0x10 (+16d)).

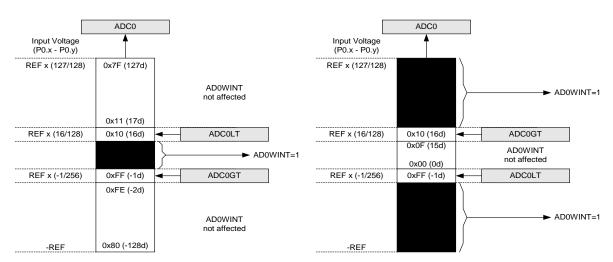
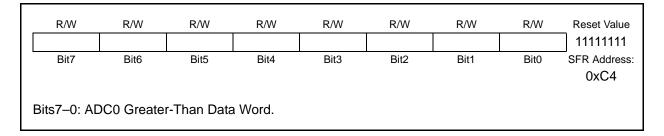
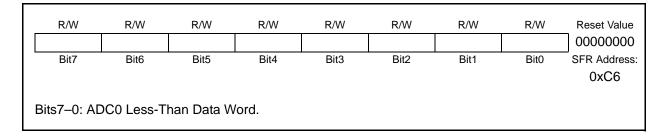




Figure 5.7. ADC Window Compare Examples, Differential Mode

SFR Definition 5.5. ADC0GT: ADC0 Greater-Than Data Byte (C8051F300/2)

SFR Definition 5.6. ADC0LT: ADC0 Less-Than Data Byte (C8051F300/2)

Table 7.1. Comparator0 Electrical Characteristics V_{DD} = 3.0 V, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Response Time:	CP0+ - CP0- = 100 mV		100	—	ns
Mode 0, Vcm* = 1.5 V	CP0+ - CP0- = -100 mV		250	—	ns
Response Time:	CP0+ - CP0- = 100 mV	_	175	—	ns
Mode 1, Vcm* = 1.5 V	CP0+ - CP0- = -100 mV	_	500	—	ns
Response Time:	CP0+ - CP0- = 100 mV	_	320	—	ns
Mode 2, Vcm* = 1.5 V	CP0+ - CP0- = -100 mV		1100	—	ns
Response Time:	CP0+ - CP0- = 100 mV		1050	—	ns
Mode 3, Vcm* = 1.5 V	CP0+ - CP0- = -100 mV		5200	—	ns
Common-Mode Rejection Ratio		—	1.5	4	mV/V
Positive Hysteresis 1	CP0HYP1-0 = 00	_	0	1	mV
Positive Hysteresis 2	CP0HYP1-0 = 01	3	5	7	mV
Positive Hysteresis 3	CP0HYP1-0 = 10	7	10	15	mV
Positive Hysteresis 4	CP0HYP1-0 = 11	15	20	25	mV
Negative Hysteresis 1	CP0HYN1-0 = 00		0	1	mV
Negative Hysteresis 2	CP0HYN1-0 = 01	3	5	7	mV
Negative Hysteresis 3	CP0HYN1-0 = 10	7	10	15	mV
Negative Hysteresis 4	CP0HYN1–0 = 11	15	20	25	mV
Inverting or Non-Inverting Input Voltage Range		-0.25		V _{DD} + 0.25	V
Input Capacitance		—	7	—	pF
Input Bias Current		-5	0.001	+5	nA
Input Offset Voltage		-5	—	+5	mV
	Power Supply	I			
Power Supply Rejection			0.1	1	mV/V
Power-up Time		—	10	—	μs
	Mode 0	—	7.6	—	μA
Supply Current at DC	Mode 1	—	3.2	—	μA
	Mode 2	—	1.3	—	μA
	Mode 3	—	0.4	—	μA
*Note: Vcm is the common-mo	de voltage on CP0+ and CP0	1			

NOTES:

Mnemonic	Description	Bytes	Clock Cycles
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/4

Compare immediate to indirect and jump if not

Decrement Register and jump if not zero

Decrement direct byte and jump if not zero

3

2

3

1

4/5

2/3

3/4

1

Table 8.1. CIP-51 Instruction Set Summary (Continued)

Notes on Registers, Operands and Addressing Modes:

equal

Rn - Register R0-R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through R0 or R1.

No operation

rel - 8-bit, signed (two's complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00-0x7F) or an SFR (0x80-0xFF).

#data - 8-bit constant

CJNE @Ri, #data, rel

DJNZ Rn, rel

NOP

DJNZ direct, rel

#data16 - 16-bit constant

bit - Direct-accessed bit in Data RAM or SFR

addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2K-byte page of program memory as the first byte of the following instruction.

addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 8K-byte program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

8.2. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The CIP-51 memory organization is shown in Figure 8.2 and Figure 8.3.

8.2.1. Program Memory

The CIP-51 core has a 64k-byte program memory space. The C8051F300/1/2/3 implements 8192 bytes of this program memory space as in-system, reprogrammable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x1FFF. Note: 512 bytes (0x1E00 - 0x1FFF) of this memory are reserved for factory use and are not available for user program storage. The C8051F304 implements 4096 bytes of reprogrammable Flash program memory space; the C8051F305 implements 2048 bytes of reprogrammable Flash program memory space. Figure 8.2 shows the program memory maps for C8051F300/1/2/3/4/5 devices.

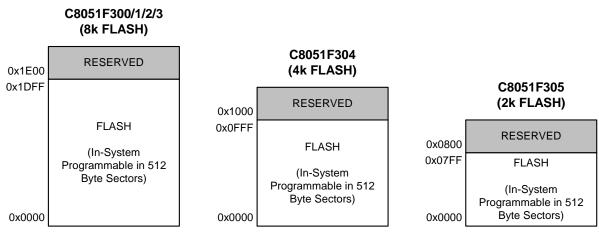


Figure 8.2. Program Memory Maps


Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to **Section "10. Flash Memory" on page 89** for further details.

Register Address		Address Description				
TH1	0x8D	Timer/Counter 1 High	150			
TL0	0x8A	Timer/Counter 0 Low	150			
TL1	0x8B	Timer/Counter 1 Low	150			
TMOD	0x89	Timer/Counter Mode	148			
TMR2RLH	0xCB	Timer/Counter 2 Reload High	154			
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	154			
TMR2H	0xCD	Timer/Counter 2 High	154			
TMR2L	0xCC	Timer/Counter 2 Low	154			
XBR0	0xE1	Port I/O Crossbar Control 0	107			
XBR1	0xE2	Port I/O Crossbar Control 1	107			
XBR2	0xE3	Port I/O Crossbar Control 2	108			
0x97, 0xAE, (0xB6, 0xBF, (0xD3, 0xD4, (0xD7, 0xDD, 0xF5	0xCE, 0xD2, 0xD5, 0xD6,	Reserved				
*Note: SFRs a	are listed in alpha	betical order. All undefined SFR locations are reserved				

8.2.7. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic I. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

SFR Definition 8.1. DPL: Data Pointer Low Byte

			Definition	10.5. AO	O. Accu	Indiator		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bit	addressable	e) 0xE0
	ACC: Accur		umulator fo	r arithmetic	operations			

SFR Definition 8.5. ACC: Accumulator

SFR Definition 8.6. B: B Register

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	0000000
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(bi	t addressable)	0xF0
Bi	ts7–0:	B: B Registe This register		a second a	ccumulator	for certain a	arithmetic o	operations.	

8.3.5. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
EA	IEGF0	ET2	ES0	ET1	EX1	ET0	EX0	00000000			
Bit7	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Addre							SFR Address:			
						(bi	t addressable	e) 0xA8			
Bit7:	EA: Enable All Interrupts.										
	This bit globally enables/disables all interrupts. It overrides the individual interrupt mask set-										
	tings.										
	0: Disable a			1. 10. 1. P. 1							
D'10	1: Enable ea			to its indivi	dual mask	setting.					
Bit6:	IEGF0: Gen	•	•		-	440					
Bit5:	This is a ger ET2: Enable			use under s	onware con	III OI.					
DIG.	This bit sets			mor 2 interr	unt						
	0: Disable T				սբւ.						
	1: Enable in			ated by the	TE2L or TE	2H flags					
Bit4:	ES0: Enable		•			Linago					
2	This bit sets			ART0 interro	upt.						
	0: Disable U		•								
	1: Enable U		•								
Bit3:	ET1: Enable	Timer 1 In	terrupt.								
	This bit sets			ner 1 interr	upt.						
	0: Disable a										
	1: Enable in		•	ated by the	TF1 flag.						
Bit2:	EX1: Enable		•								
	This bit sets			al interrupt	1.						
	0: Disable e										
Bit1:	1: Enable in			ated by the		[.					
DILI.	ET0: Enable This bit sets		•	nor () intorr	unt						
					սբւ.						
		0: Disable all Timer 0 interrupt.1: Enable interrupt requests generated by the TF0 flag.									
Bit0:	EX0: Enable		•		n o nag.						
2.101	This bit sets		•	al interrupt	0.						
	0: Disable e		•								
	1: Enable in			ated by the	/INT0 input	t.					

SFR Definition 8.7. IE: Interrupt Enable

9. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the \overrightarrow{RST} pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. Refer to **Section "11. Oscillators" on page 97** for information on selecting and configuring the system clock source. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source (**Section "16.3. Watchdog Timer Mode" on page 164** details the use of the Watchdog Timer). Once the system clock source is stable, program execution begins at location 0x0000.

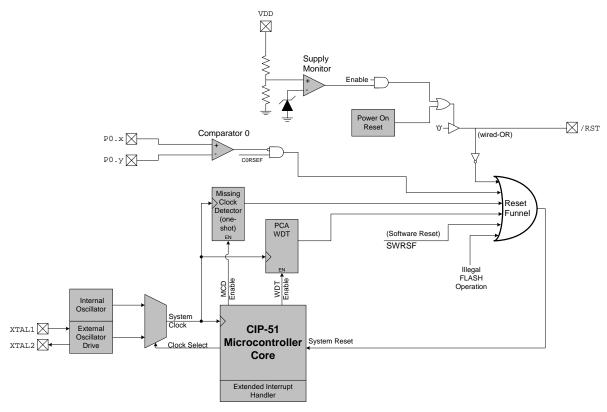


Figure 9.1. Reset Sources

9.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to '1' and a MOVX operation is attempted above the user code space address limit.
- A Flash read is attempted above user code space. This occurs when a MOVC operation is attempted above the user code space address limit.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above the user code space address limit.

Device	User Code Space Address Limit
C8051F300/1/2/3	0x1DFF
C8051F304	0x0FFF
C8051F305	0x07FF

Table 9.1. User Code Space Address Limits

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the \overline{RST} pin is unaffected by this reset.

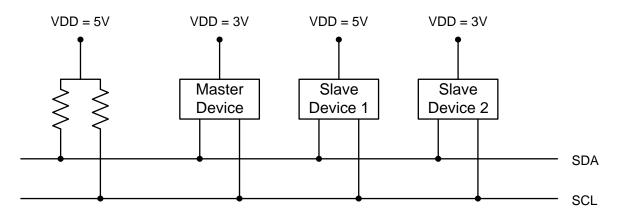
9.8. Software Reset

Software may force a reset by writing a '1' to the SWRSF bit (RSTSRC.4). The SWRSF bit will read '1' following a software forced reset. The state of the RST pin is unaffected by this reset.

Table 9.2. Reset Electrical Characteristics

-40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
RST Output Low Voltage	$I_{OL} = 8.5 \text{ mA}, V_{DD} = 2.7 \text{ V to}$ 3.6 V	—	_	0.6	V
RST Input High Voltage		$0.7 ext{ x V}_{ ext{DD}}$		_	V
RST Input Low Voltage		_		$0.3 \times V_{DD}$	
RST Input Leakage Current	RST = 0.0 V	—	25	40	μA
V_{DD} Monitor Threshold (V_{RST})		2.40	2.55	2.70	V
Missing Clock Detector Timeout	Time from last system clock ris- ing edge to reset initiation	100	220	500	μs
Reset Time Delay	Delay between release of any reset source and code execution at location 0x0000	5.0	_	_	μs
Minimum RST Low Time to Generate a System Reset		15	_	—	μs
V _{DD} Ramp Time	$V_{DD} = 0$ to V_{RST}			1	ms


13.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

- 1. The I²C-Bus and How to Use It (including specifications), Philips Semiconductor.
- 2. The I²C-Bus Specification Version 2.0, Philips Semiconductor.
- 3. System Management Bus Specification Version 1.1, SBS Implementers Forum.

13.2. SMBus Configuration

Figure 13.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 3.0 and 5.0 V; different devices on the bus may operate at different voltage levels. The bidirectional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pull-up resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 1000 ns, respectively.

Figure 13.2. Typical SMBus Configuration

13.3. SMBus Operation

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ). The master device initiates both types of data transfers and provides the serial clock pulses on SCL. The SMBus interface may operate as a master or a slave, and multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration. Note that it is not necessary to specify one device as the Master in a system; any device that transmits a START and a slave address becomes the master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7–1: 7-bit slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Each byte that is received (by a master or slave) must be acknowledged (ACK) with a low SDA during a high SCL (see Figure 13.3). If the receiving device does not ACK, the transmitting device will read a NACK (not acknowledge), which is a high SDA during a high SCL.

13.4. Using the SMBus

The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following application-independent features:

- Byte-wise serial data transfers
- Clock signal generation on SCL (Master Mode only) and SDA data synchronization
- Timeout/bus error recognition, as defined by the SMB0CF configuration register
- START/STOP timing, detection, and generation
- Bus arbitration
- Interrupt generation
- Status information

SMBus interrupts are generated for each data byte or slave address that is transferred. When transmitting, this interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data, this interrupt is generated before the ACK cycle so that software may define the outgoing ACK value. See **Section "13.5. SMBus Transfer Modes" on page 123** for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end of a transfer when a slave (STOP detected). Software should read the SMB0CN (SMBus Control register) to find the cause of the SMBus interrupt. The SMB0CN register is described in **Section "13.4.2. SMB0CN Control Register" on page 119**; Table 13.4 provides a quick SMB0CN decoding reference.

SMBus configuration options include:

- Timeout detection (SCL Low Timeout and/or Bus Free Timeout)
- SDA setup and hold time extensions
- Slave event enable/disable
- Clock source selection

These options are selected in the SMB0CF register, as described in **Section "13.4.1. SMBus Configura**tion Register" on page 116.

Frequency: 11.0592 MHz						
Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)
230400	0.00%	48	SYSCLK	XX ²	1	0xE8
115200	0.00%	96	SYSCLK	XX ²	1	0xD0
57600	0.00%	192	SYSCLK	XX ²	1	0xA0
28800	0.00%	384	SYSCLK	XX ²	1	0x40
14400	0.00%	768	SYSCLK / 12	00	0	0xE0
9600	0.00%	1152	SYSCLK / 12	00	0	0xD0
2400	0.00%	4608	SYSCLK / 12	00	0	0x40
1200	0.00%	9216	SYSCLK / 48	10	0	0xA0
230400	0.00%	48	EXTCLK / 8	11	0	0xFD
115200	0.00%	96	EXTCLK / 8	11	0	0xFA
57600	0.00%	192	EXTCLK / 8	11	0	0xF4
28800	0.00%	384	EXTCLK / 8	11	0	0xE8
14400	0.00%	768	EXTCLK / 8	11	0	0xD0
9600	0.00%	1152	EXTCLK / 8	11	0	0xB8
	Baud Rate (bps) 230400 115200 57600 28800 14400 9600 2400 1200 230400 1200 230400 145200 145200 145200 145200 145200 145200 145200 14400	Baud Rate (bps)% Error2304000.00%1152000.00%576000.00%288000.00%144000.00%96000.00%24000.00%12000.00%1152000.00%576000.00%288000.00%144000.00%	Baud Rate (bps)% Error FactorDivide Factor2304000.00%481152000.00%96576000.00%192288000.00%384144000.00%76896000.00%115224000.00%460812000.00%92162304000.00%481152000.00%192288000.00%384144000.00%384144000.00%768	Baud Rate (bps) % Error Divide Factor Source 230400 0.00% 48 SYSCLK 115200 0.00% 96 SYSCLK 57600 0.00% 192 SYSCLK 28800 0.00% 384 SYSCLK 14400 0.00% 768 SYSCLK / 12 9600 0.00% 1152 SYSCLK / 12 2400 0.00% 4608 SYSCLK / 12 1200 0.00% 4608 SYSCLK / 12 1200 0.00% 9216 SYSCLK / 48 230400 0.00% 48 EXTCLK / 8 115200 0.00% 192 EXTCLK / 8 28800 0.00% 192 EXTCLK / 8 28800 0.00% 384 EXTCLK / 8 14400 0.00% 768 EXTCLK / 8	Baud Rate (bps) % Error Divide Factor Source (pre-scale select) ¹ 230400 0.00% 48 SYSCLK XX ² 115200 0.00% 96 SYSCLK XX ² 57600 0.00% 192 SYSCLK XX ² 28800 0.00% 384 SYSCLK XX ² 28800 0.00% 768 SYSCLK / 12 00 9600 0.00% 1152 SYSCLK / 12 00 9600 0.00% 4608 SYSCLK / 12 00 2400 0.00% 9216 SYSCLK / 48 10 230400 0.00% 488 EXTCLK / 8 11 115200 0.00% 96 EXTCLK / 8 11 157600 0.00% 192 EXTCLK / 8 11 28800 0.00% 384 EXTCLK / 8 11 28800 0.00% 384 EXTCLK / 8 11 14400 0.00% 768 EXTCLK / 8 11 <	Baud Rate (bps) % Error Divide Factor Source (pre-scale select)1 Image: constraint of the select) 230400 0.00% 48 SYSCLK XX ² 1 115200 0.00% 96 SYSCLK XX ² 1 57600 0.00% 192 SYSCLK XX ² 1 28800 0.00% 384 SYSCLK XX ² 1 14400 0.00% 768 SYSCLK / 12 00 0 9600 0.00% 1152 SYSCLK / 12 00 0 2400 0.00% 4608 SYSCLK / 12 00 0 230400 0.00% 4608 SYSCLK / 48 10 0 230400 0.00% 48 EXTCLK / 8 11 0 115200 0.00% 192 EXTCLK / 8 11 0 57600 0.00% 384 EXTCLK / 8 11 0 28800 0.00% 384 EXTCLK / 8 11 0 </th

Table 14.5. Timer Settings for Standard Baud Rates Using an External 11.0592 MHzOscillator

Notes:

1. SCA1–SCA0 and T1M bit definitions can be found in **Section 15.1**.

2. X = Don't care

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to **Section** "**12.1. Priority Crossbar Decoder**" **on page 104** for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the T0M bit (CKCON.3). When T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 15.3).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal /INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 8.11). Setting GATE0 to '1' allows the timer to be controlled by the external input signal /INT0 (see Section "8.3.5. Interrupt Register Descriptions" on page 75), facilitating pulse width measurements.

TR0	GATE0	/INT0	Counter/Timer
0	X*	Х*	Disabled
1	0	X*	Enabled
1	1	0	Disabled
1	1	1	Enabled

*Note:	X = Don't Care
--------	----------------

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal /INT1 is used with Timer 1; the /INT1 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 8.11).

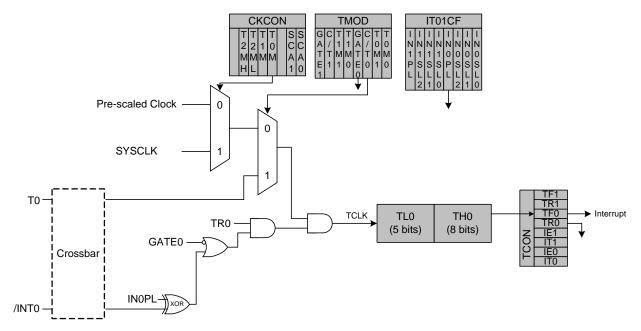


Figure 15.1. T0 Mode 0 Block Diagram

16.2.3. High Speed Output Mode

In High Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn) Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

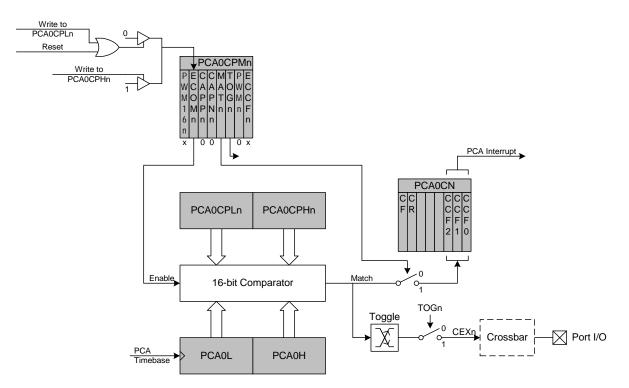


Figure 16.6. PCA High Speed Output Mode Diagram

