

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	8
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	11-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f303-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F300/1/2/3/4/5

Perhaps the most unique Port I/O enhancement is the Digital Crossbar. This is essentially a digital switching network that allows mapping of internal digital system resources to Port I/O pins (See Figure 1.7). Onchip counter/timers, serial buses, HW interrupts, comparator output, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and digital resources needed for the particular application.

Figure 1.7. Digital Crossbar Diagram

1.5. Serial Ports

The C8051F300/1/2/3/4/5 Family includes an SMBus/I²C interface and a full-duplex UART with enhanced baud rate configuration. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little CPU intervention.

5.3.3. Settling Time Requirements

When the ADC0 input configuration is changed (i.e., a different AMUX0 or PGA selection is made), a minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion. Note that in low-power tracking mode, three SAR clocks are used for tracking at the start of every conversion. For most applications, these three SAR clocks will meet the minimum tracking time requirements.

Figure 5.5 shows the equivalent ADC0 input circuits for both Differential and Single-ended modes. Notice that the equivalent time constant for both input circuits is the same. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 5.1. When measuring the Temperature Sensor output or V_{DD} with respect to GND, R_{TOTAL} reduces to R_{MUX} . See Table 5.1 for ADC0 minimum settling time (track/hold time) requirements.

$$t = \ln\left(\frac{2^n}{SA}\right) \times R_{TOTAL} C_{SAMPLE}$$

Equation 5.1. ADC0 Settling Time Requirements

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 R_{TOTAL} is the sum of the AMUX0 resistance and any external source resistance.

n is the ADC resolution in bits (8).

Differential Mode

Note: When the PGA gain is set to 0.5, $C_{SAMPLE} = 3pF$

Figure 5.5. ADC0 Equivalent Input Circuits

SFR Definition 5.4. ADC0CN: ADC0 Control (C8051F300/2)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
AD0EN	AD0TM	AD0INT	AD0BUSY	ADOWINT	AD0CM2	AD0CM1	AD0CM0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
						(bi	t addressable	⇒) 0xE8				
Bit7:	AD0EN: AD	C0 Enable	Bit.									
	0: ADC0 Dis	abled. ADC	C0 is in low-	power shutc	lown.							
BHA	1: ADC0 Ena	abled. ADC	0 is active a	and ready fo	r data conv	versions.						
Bit6:	AD0TM: ADC0 Track Mode Bit.											
		ack mode:	when ADC	U is enabled	a, tracking is	s continuou	s uniess a	conversion				
	1: Low power	S. ar Trock Mc	do: Trockin	a Dofined by		0 hite (coo	holow)					
Rit5.		CO Conver	sion Comple	ate Interrunt	Flag		DelOw).					
Dito.	0: ADC0 has	s not compl	leted a data	conversion	since the la	ast time AD)INT was o	cleared.				
	1: ADC0 has	s completed	d a data cor	version.								
Bit4:	AD0BUSY: A	ADC0 ['] Busy	/ Bit.									
	Read: Unus	ed.										
	Write:											
	0: No Effect.											
	1: Initiates A	DC0 Conv	ersion if AD	0CM2-0 = 0	00b							
Bit3:	ADOWINT: A	DC0 Wind	ow Compar	e Interrupt F	lag.		0					
	0: ADC0 Wir	ndow Comp	Darison Data	a match has	not occurre	ed since this	s flag was	last cleared.				
Bite2_0.		ADC0 Star	t of Convers	a maich nas sion Mode S	occurred.							
DII32-0.	When AD0T	M = 0										
	000: ADC0 d	conversion	initiated on	everv write	of '1' to AD	0BUSY.						
	001: ADC0 d	conversion	initiated on	overflow of	Timer 0.							
	010: ADC0 o	conversion	initiated on	overflow of	Timer 2.							
	011: ADC0 c	conversion	initiated on	overflow of	Timer 1.							
	1xx: ADC0 c	conversion	initiated on	rising edge	of external	CNVSTR.						
	When AD0T	M = 1:			o.,							
	000: Trackin	g initiated of	on write of "	I' to ADUBU	SY and las	ts 3 SAR cl	OCKS, follo	wed by con-				
	Version.	a initiated (on overflow	of Timor 0 a	and lacto 2.9		followed	by convor				
	sion	y millaleu (JII OVEIIIOW		110 10515 5	SAN CIUCKS	, ionoweu i	Jy conver-				
	010: Trackin	a initiated a	on overflow	of Timer 2 a	ind lasts 3 S	SAR clocks	followed I	ov conver-				
	sion.	9						.,				
	011: Trackin	g initiated o	on overflow	of Timer 1 a	nd lasts 3 S	SAR clocks,	followed b	by conver-				
	sion.	-						-				
	1xx: ADC0 t	racks only	when CNVS	STR input is	logic low; c	onversion s	tarts on ris	sing				
	CNVSTR ed	ge.										

5.4.2. Window Detector In Differential Mode

Figure 5.7 shows two example window comparisons for differential mode, with ADC0LT = 0x10 (+16d) and ADC0GT = 0xFF (-1d). Notice that in Differential mode, the codes vary from –VREF to VREF x (127/128) and are represented as 8-bit 2's complement signed integers. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0L) is within the range defined by ADC0GT and ADC0LT (if 0xFF (-1d) < ADC0 < 0x10 (16d)). In the right example, an AD0WINT interrupt will be generated if ADC0 is outside of the range defined by ADC0GT and ADC0LT (if ADC0 < 0xFF (-1d) or ADC0 > 0x10 (+16d)).

Figure 5.7. ADC Window Compare Examples, Differential Mode

SFR Definition 5.5. ADC0GT: ADC0 Greater-Than Data Byte (C8051F300/2)

SFR Definition 5.6. ADC0LT: ADC0 Less-Than Data Byte (C8051F300/2)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
	—		_	REFSL	TEMPE	BIASE	_	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xD1
Bits7–3:	UNUSED. R	lead = 0000	00b; Write =	don't care.				
Bit3:	REFSL: Volt	tage Refere	ence Select.					
	This bit sele	cts the sou	rce for the i	nternal volta	ige referenc	ce.		
	0: VREF inp	ut pin used	as voltage	reference.				
	1: V _{DD} used	as voltage	reference.					
Bit2:	TEMPE: Ter	mperature S	Sensor Enal	ole Bit.				
	0: Internal Te	emperature	Sensor off.					
	1: Internal Te	emperature	Sensor on					
Bit1:	BIASE: Inter	rnal Analog	Bias Gene	rator Enable	e Bit. (Must	be '1' if usir	ng ADC).	
	0: Internal B	ias Genera	tor off.					
	1: Internal B	ias Genera	tor on.					
Bit0:	UNUSED. R	lead = 0b. \	Nrite = don'	t care.				

SFR Definition 6.1. REF0CN: Reference Control Register

Table 6.1. External Voltage Reference Circuit Electrical Characteristics $V_{DD} = 3.0 \text{ V}$; -40 to +85°C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Input Voltage Range		0	—	V _{DD}	V
Input Current	Sample Rate = 500 ksps; VREF = 3.0 V	—	12		μA

Mnemonic	Description	Bytes	Clock Cycles
ANL direct, A	AND A to direct byte	2	2
ANL direct, #data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR indirect RAM to A	1	2
ORL A, #data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2
ORL direct, #data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, #data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
	Data Transfer		·
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, #data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri. #data	Move immediate to indirect RAM	2	2

Table 8.1. CIP-51 Instruction Set Summary (Continued)

3

3

3

1

Load DPTR with 16-bit constant

Move code byte relative DPTR to A

MOV DPTR, #data16

MOVC A, @A+DPTR

8.2.4. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from 0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit 7 of the byte at 0x20 has bit address 0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destination).

The MCS-51[™] assembly language allows an alternate notation for bit addressing of the form XX.B where XX is the byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22.3h

moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.

8.2.5. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

8.2.6. Special Function Registers

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFRs). The SFRs provide control and data exchange with the CIP-51's resources and peripherals. The CIP-51 duplicates the SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access the subsystems unique to the MCU. This allows the addition of new functionality while retaining compatibility with the MCS-51[™] instruction set. Table 8.2 lists the SFRs implemented in the CIP-51 System Controller.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, SCON0, IE, etc.) are bit-addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the datasheet, as indicated in Table 8.3, for a detailed description of each register.

SFR Definition 8.9. EIE1: Extended Interrupt Enable 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
	_	ECP0R	ECP0F	EPCA0	EADC0C	EWADC0	ESMB0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xE6				
	UNUSED Bood Och Write den't core											
Bits7–6:	UNUSED. Read = 00b. Write = don't care.											
Bit5:	ECP0R: Enable Comparator0 (CP0) Rising Edge Interrupt.											
	I his bit sets	the maskin	ig of the CI		age interrup	Dt.						
	1: Enable in	PU RISING E	zage intern	Jpt. atod by the								
Bit4.	FCP0F: Ena	able Compa	rator0 (CP	0) Falling F	dae Interru	iy. nt						
Dit i.	This bit sets	the maskir	a of the CF	P0 Falling E	dae interru	pt. pt.						
	0: Disable C	P0 Falling	Edge interr	upt.	-9-	F ••						
	1: Enable in	terrupt requ	iests gener	ated by the	CP0FIF fla	ıg.						
Bit3:	EPCA0: Ena	able Progra	mmable Co	ounter Array	/ (PCA0) In	terrupt.						
	This bit sets	the maskir	ig of the PC	CA0 interrup	ots.							
	0: Disable a	II PCA0 inte	errupts.									
D'IO	1: Enable in	terrupt requ	iests gener	ated by PC	A0.							
Bit2:	EADCOC: E	hable ADC		on Complet	e Interrupt.	loto intorrur	.+					
			ig of the AL	nlete interri	ision Comp	iele interrup	Л.					
	1: Enable in	terrunt regi	lests dener	ated by the	AD0INT fla	n						
Bit1:	EWADC0: E	Enable Wind	low Compa	rison ADC) Interrupt.	.g.						
	This bit sets	the maskir	g of ADC0	Window C	omparison i	nterrupt.						
	0: Disable A	DC0 Windo	w Compar	ison interru	pt.							
	1: Enable in	terrupt requ	iests gener	ated by AD	C0 Window	Compare f	flag.					
Bit0:	ESMB0: Enable SMBus Interrupt.											
	This bit sets the masking of the SMBus interrupt.											
	0: Disable all SMBus interrupts.											
	T: Enable in	terrupt requ	iests gener	ated by the	Si flag.							

9. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the \overrightarrow{RST} pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. Refer to **Section "11. Oscillators" on page 97** for information on selecting and configuring the system clock source. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source (**Section "16.3. Watchdog Timer Mode" on page 164** details the use of the Watchdog Timer). Once the system clock source is stable, program execution begins at location 0x0000.

Figure 9.1. Reset Sources

SFR Definition 11.1. OSCICL: Internal Oscillator Calibration

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
								variable		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xB3		
Bit7: UNUSED. Read = 0. Write = don't care. Bits 6–0: OSCICL: Internal Oscillator Calibration Register.										
This register calibrates the internal oscillator period. The reset value for OSCICL defines the internal oscillator base frequency. On C8051F300/1 devices, the reset value is factory calibrated to generate an internal oscillator frequency of 24.5 MHz.										

SFR Definition 11.2. OSCICN: Internal Oscillator Control

R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	Reset Value					
		_	IFRDY	CLKSL	IOSCEN	IFCN1	IFCN0	00010100					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:					
								0xB2					
Bits7–5: Bit4: Bit3:	 '-5: UNUSED. Read = 000b, Write = don't care. IFRDY: Internal Oscillator Frequency Ready Flag. 0: Internal Oscillator is not running at programmed frequency. 1: Internal Oscillator is running at programmed frequency. CLKSL: System Clock Source Select Bit. 0: SYSCLK derived from the Internal Oscillator, and scaled as per the IFCN bits. 												
Bit2:	0: SYSCLK derived from the Internal Oscillator, and scaled as per the IFCN bits. 1: SYSCLK derived from the External Oscillator circuit. IOSCEN: Internal Oscillator Enable Bit. 0: Internal Oscillator Disabled												
Bits1–0:	1: Internal C IFCN1-0: In 00: SYSCLH 01: SYSCLH 10: SYSCLH 11: SYSCLH	Descillator E ternal Osci C derived fr C derived fr C derived fr C derived fr	nabled. Ilator Frequ rom Interna rom Interna rom Interna	uency Cont I Oscillator I Oscillator I Oscillator I Oscillator	rol Bits. divided by divided by divided by divided by	8. 4. 2. 1.							

11.4. External Crystal Example

If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 11.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crystal column of the table in SFR Definition 11.3 (OSCXCN register). For example, an 11.0592 MHz crystal requires an XFCN setting of 111b.

When the crystal oscillator is first enabled, the oscillator amplitude detection circuit requires a settling time to achieve proper bias. Introducing a delay of 1 ms between enabling the oscillator and checking the XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recommended procedure is:

- Step 1. Force the XTAL1 and XTAL2 pins low by writing 0's to the port latch.
- Step 2. Configure XTAL1 and XTAL2 as analog inputs.
- Step 3. Enable the external oscillator.
- Step 4. Wait at least 1 ms.
- Step 5. Poll for XTLVLD => '1'.
- Step 6. Switch the system clock to the external oscillator.

Note: Tuning-fork crystals may require additional settling time before XTLVLD returns a valid result.

The capacitors shown in the external crystal configuration provide the load capacitance required by the crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal data sheet when completing these calculations.

For example, a tuning-fork crystal of 32.768 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 12.1, Option 1. The total value of the capacitors and the stray capacitance of the XTAL pins should equal 25 pF. With a stray capacitance of 3 pF per pin, the 22 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 11.2.

Figure 11.2. 32.768 kHz External Crystal Example

12.1. Priority Crossbar Decoder

The Priority Crossbar Decoder (Figure 12.3) assigns a priority to each I/O function, starting at the top with UART0. When a digital resource is selected, the least significant unassigned Port pin is assigned to that resource (excluding UART0, which is always at pins 4 and 5). If a Port pin is assigned, the Crossbar skips that pin when assigning the next selected resource. Additionally, the Crossbar will skip Port pins whose associated bits in the XBR0 register are set. The XBR0 register allows software to skip Port pins that are to be used for analog input or GPIO.

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding XBR0 bit should be set. This applies to P0.0 if VREF is enabled, P0.3 and/or P0.2 if the external oscillator circuit is enabled, P0.6 if the ADC is configured to use the external conversion start signal (CNVSTR), and any selected ADC or Comparator inputs. The Crossbar skips selected pins as if they were already assigned, and moves to the next unassigned pin. Figure 12.3 shows the Crossbar Decoder priority with no Port pins skipped (XBR0 = 0x00); Figure 12.4 shows the Crossbar Decoder priority with pins 6 and 2 skipped (XBR0 = 0x44).

Figure 12.3. Crossbar Priority Decoder with XBR0 = 0x00

12.2. Port I/O Initialization

Port I/O initialization consists of the following steps:

- Step 1. Select the input mode (analog or digital) for all Port pins, using the Port0 Input Mode register (P0MDIN).
- Step 2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port0 Output Mode register (P0MDOUT).
- Step 3. Set XBR0 to skip any pins selected as analog inputs or special functions.
- Step 4. Assign Port pins to desired peripherals.
- Step 5. Enable the Crossbar.

All Port pins must be configured as either analog or digital inputs. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pull-up, digital driver, and digital receiver is disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in XBR0). Port input mode is set in the P0MDIN register, where a '1' indicates a digital input, and a '0' indicates an analog input. All pins default to digital inputs on reset. See SFR Definition 12.5 for the P0MDIN register details.

The output driver characteristics of the I/O pins are defined using the Port0 Output Mode register P0MD-OUT (see SFR Definition 12.6). Each Port Output driver can be configured as either open drain or pushpull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the P0MDOUT settings. When the WEAKPUD bit in XBR2 is '0', a weak pull-up is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pull-up is turned off on an open-drain output that is driving a '0' to avoid unnecessary power dissipation.

Registers XBR0, XBR1 and XBR2 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR2 to '1' enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard digital inputs (output drivers disabled) regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table; as an alternative, the Configuration Wizard utility of the Silicon Labs IDE software will determine the Port I/O pin assignments based on the XBRn Register settings.

I								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
WEAKP	UD XBARE	—		—	T1E	T0E	ECIE	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE3
Bit7:	WEAKPUD: F	Port I/O We	ak Pull-up l	Disable.				
	0: Weak Pull-	ups enable	d (except fo	or Ports who	ose I/O are	configured	as push-p	bull).
	1: Weak Pull-	ups disable	ed.					
Bit6:	XBARE: Cros	ssbar Enabl	e.					
	0: Crossbar d	lisabled.						
	1: Crossbar e	enabled.						
Bits5–3:	UNUSED: Re	ad = 000b.	Write = do	n't care.				
Bit2:	T1E: T1 Enat	ole.	_					
	0: T1 unavaila	able at Port	pin.					
D 144	1: T1 routed t	o Port pin.						
Bit1:	10E: 10 Enat	ole.						
	0: 10 unavaila	able at Port	pin.					
D:40.		o Port pin.	ut Enchlo					
BITU:		Counter Inp	out Enable.					
	0. ECI unava	to Dort nin	n pin.					
		to Fort pin						

SFR Definition 12.3. XBR2: Port I/O Crossbar Register 2

12.3. General Purpose Port I/O

Port pins that remain unassigned by the Crossbar and are not used by analog peripherals can be used for general purpose I/O. Port0 is accessed through a corresponding special function register (SFR) that is both byte addressable and bit addressable. When writing to a Port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O pin). The exception to this is the execution of the read-modify-write instructions. The read-modify-write instructions when operating on a Port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SET, when the destination is an individual bit in a Port SFR. For these instructions, the value of the register (not the pin) is read, modified, and written back to the SFR.

13.4.3. Data Register

The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been received. Software may safely read or write to the data register when the SI flag is set. Software should not attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag is cleared to logic 0, as the interface may be in the process of shifting a byte of data into or out of the register.

Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously being shifted in. SMB0DAT always contains the last data byte present on the bus. In the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data or address in SMB0DAT.

SFR Definition 13.3. SMB0DAT: SMBus Data

14.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB80 (SCON0.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB80 (SCON0.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to '1'. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: (1) RI0 must be logic 0, and (2) if MCE0 is logic 1, the 9th bit must be logic 1 (when MCE0 is logic 0, the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF0, the ninth bit is stored in RB80, and the RI0 flag is set to '1'. A UART0 interrupt will occur if enabled when either TI0 or RI0 is set to '1'.

Figure 14.5. 9-Bit UART Timing Diagram

14.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE0 bit (SCON.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic one (RB80 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 14.6. UART Multi-Processor Mode Interconnect Diagram

			Frequ	ency: 22.1184	MHz		
	Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)
	230400	0.00%	96	SYSCLK	XX ²	1	0xD0
	115200	0.00%	192	SYSCLK	XX ²	1	0xA0
rom Dsc.	57600	0.00%	384	SYSCLK	XX ²	1	0x40
LK f	28800	0.00%	768	SYSCLK / 12	00	0	0xE0
SCI	14400	0.00%	1536	SYSCLK / 12	00	0	0xC0
SY Ex	9600	0.00%	2304	SYSCLK / 12	00	0	0xA0
	2400	0.00%	9216	SYSCLK / 48	10	0	0xA0
	1200	0.00%	18432	SYSCLK / 48	10	0	0x40
	230400	0.00%	96	EXTCLK / 8	11	0	0xFA
om sc.	115200	0.00%	192	EXTCLK / 8	11	0	0xF4
A fr	57600	0.00%	384	EXTCLK / 8	11	0	0xE8
SCL	28800	0.00%	768	EXTCLK / 8	11	0	0xD0
SΥ; Int	14400	0.00%	1536	EXTCLK / 8	11	0	0xA0
	9600	0.00%	2304	EXTCLK / 8	11	0	0x70

Table 14.3. Timer Settings for Standard Baud Rates Using an External 22.1184 MHzOscillator

Notes:

1. SCA1–SCA0 and T1M bit definitions can be found in **Section 15.1**.

2. X = Don't care.

R/W	R/W	R/W	R/W	/ R/W	R/W	R/W	R/W	Reset Value			
CIDL	WDTE	WDLC	<	CPS2	CPS1	CPS0	ECF	01000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xD9			
Bit7:	CIDL: PCA Specifies F 0: PCA cor	Counter/ CA behavintinues to	Timer Idle vior when function	e Control. CPU is in Idle normally while	Mode. the system	controller is	s in Idle M	lode.			
Bit6:	1: PCA ope WDTE: Wa If this bit is 0: Watchdo	eration is s atchdog Ti set, PCA og Timer d odule 2 en	suspende mer Enal Module 2 lisabled.	ed while the sys ole 2 is used as the Watchdog Time	etem contro Watchdog	iller is in Idle Timer.	e Mode.				
Bit5:	WDLCK: W This bit loc Timer may 0: Watchdo	Vatchdog ks/unlocks not be dis og Timer E	Timer Loo s the Wat sabled un Enable un	tchdog Timer E ttil the next syst locked.	nable. Whe tem reset.	en WDLCK i	s set, the	Watchdog			
Bit4: Bits3–1:	1: Watchdog Timer Enable locked. UNUSED. Read = 0b, Write = don't care. CPS2–CPS0: PCA Counter/Timer Pulse Select. These bits select the clock source for the PCA counter										
	CPS2	CPS1	CPS0			Timebase					
	0	0	0	System clock	divided by	12					
	0	0	1	System clock	divided by	4					
	0	1	0	Timer 0 overfl	ow						
	0	1	1	High-to-low tra divided by 4)	ansitions or	n ECI (max	rate = sys	stem clock			
	1	0	0	System clock							
	1	0	1	External clock	divided by	' 8 [*]					
	1	1	0	Reserved							
	1	1	1	Reserved							
Bit0:	*Note: Ext ECF: PCA This bit set 0: Disable 1: Enable a	ernal oscilla Counter/T ts the mas the CF int a PCA Cou	ator sourc Timer Ove king of th errupt. unter/Tim	e divided by 8 is erflow Interrupt ne PCA Counte ner Overflow int	synchronize Enable. r/Timer Ove errupt whe	d with the sy erflow (CF) n CF (PCA0	stem clock interrupt.)CN.7) is	set.			
Note: Wł ontents o	nen the WD f the PCA0	TE bit is a MD regist	set to '1' ter, the V	, the PCA0MD Vatchdog Time	register c er must firs	annot be m st be disabl	odified. led.	To change the			

SFR Definition 16.2. PCA0MD: PCA Mode

SFR Definition 16.3. PCA0CPMn: PCA Capture/Compare Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PWM16	n ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xDA, 0xDB, 0xDC
PCA0CPI	In Address:	PCA0	CPM0 = 0x	DA (n = 0)				
		PCA0	CPM1 = 0x	DB (n = 1)				
		PCA0	CPM2 = 0x	DC (n = 2)				
D:+7.			\/;dth \/adv	Jotion Enak				
DIL7.	This hit solo	o-bil Puise	voluti iviout ode when l	Duleo Width	Modulation	n mode is e	nahlad (P\M	(Mn – 1)
	0. 8-bit PW	A selected						win = 1).
	1: 16-bit PW	/M selected						
Bit6:	ECOMn: Co	mparator F	unction Ena	able.				
	This bit ena	bles/disable	es the comp	arator funct	ion for PCA	Module n.		
	0: Disabled.							
	1: Enabled.							
Bit5:	CAPPn: Ca	pture Positi	ve Function	Enable.				
	I his bit enal	bles/disable	es the positi	ve edge ca	oture for PC	A Module r	۱.	
	1. Enabled							
Bit4.	CAPNn: Ca	pture Nega	tive Functio	n Enable				
Dit i.	This bit ena	bles/disable	es the negat	ive edae ca	apture for P	CA Module	n.	
	0: Disabled.		.		1			
	1: Enabled.							
Bit3:	MATn: Matc	h Function	Enable.					
	This bit ena	bles/disable	es the match	n function fo	or PCA Mod	ule n. Whei	n enabled, r	matches of the
	PCA counte	r with a mo	dule's captu	ire/compare	e register ca	use the CC	Fn bit in PC	CA0MD register
	to be set to	logic 1.						
	1. Enabled							
Bit2:	TOGn: Togo	le Function	Enable.					
	This bit enal	bles/disable	es the toggle	e function fo	or PCA Mod	ule n. Whei	n enabled, r	matches of the
	PCA counte	r with a mo	dule's captu	ire/compare	e register ca	use the log	ic level on t	the CEXn pin to
	toggle. If the	e PWMn bit	is also set t	o logic 1, th	ne module o	perates in I	Frequency (Output Mode.
	0: Disabled.							
D:44.	1: Enabled.	a Width M	dulation M	ada Enabla				
BILT:	This bit onal	bloc/disable	boulation ivio	function fo	r DCA Modu	ilo n Whon	onablad a	pulso width
	modulated s	signal is out	nut on the (EXn nin 8	-hit PWM is	used if PM	/M16n is cle	ared: 16-bit
	mode is use	d if PWM16	Sn is set to l	oaic 1. If th	e TOGn bit	is also set.	the module	operates in Fre-
	quency Out	put Mode.		0		,		
	0: Disabled.							
	1: Enabled.							
Bit0:	ECCFn: Ca	pture/Comp	are Flag Int	errupt Enal	ole.			
	I his bit sets	the maskir	ig of the Ca	pture/Comp	oare ⊢lag (C	CFn) interr	upt.	
		Capture/Co	ipis. Impare Floc	interrupt r	auget what	n CCEn is s	ot	
			mpare i lag	, menupi le	Squest wild	10011133		

