

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	8
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	11-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f303

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	System Overview	13
	1.1. CIP-51 [™] Microcontroller Core	16
	1.1.1. Fully 8051 Compatible	16
	1.1.2. Improved Throughput	16
	1.1.3. Additional Features	17
	1.2. On-Chip Memory	18
	1.3. On-Chip Debug Circuitry	19
	1.4. Programmable Digital I/O and Crossbar	19
	1.5. Serial Ports	20
	1.6. Programmable Counter Array	21
	1.7. 8-Bit Analog to Digital Converter (C8051F300/2 Only)	22
	1.8. Comparator	23
2.	Absolute Maximum Ratings	24
3.	Global Electrical Characteristics	25
4.	Pinout and Package Definitions	27
5.	ADC0 (8-Bit ADC, C8051F300/2)	35
	5.1. Analog Multiplexer and PGA	36
	5.2. Temperature Sensor	36
	5.3. Modes of Operation	39
	5.3.1. Starting a Conversion	39
	5.3.2. Tracking Modes	40
	5.3.3. Settling Time Requirements	41
	5.4. Programmable Window Detector	45
	5.4.1. Window Detector In Single-Ended Mode	45
	5.4.2. Window Detector In Differential Mode	46
6.	Voltage Reference (C8051F300/2)	49
7.	Comparator0	51
8.	CIP-51 Microcontroller	57
	8.1. Instruction Set	58
	8.1.1. Instruction and CPU Timing	58
	8.1.2. MOVX Instruction and Program Memory	59
	8.2. Memory Organization	63
	8.2.1. Program Memory	63
	8.2.2. Data Memory	64
	8.2.3. General Purpose Registers	64
	8.2.4. Bit Addressable Locations	65
	8.2.5. Stack	65
	8.2.6. Special Function Registers	65
	8.2.7. Register Descriptions	68
	8.3. Interrupt Handler	72
	8.3.1. MCU Interrupt Sources and Vectors	72
	8.3.2. External Interrupts	73
	8.3.3. Interrupt Priorities	73

List of Figures

1.	System Overview	
	Figure 1.1. C8051F300/2 Block Diagram	15
	Figure 1.2. C8051F301/3/4/5 Block Diagram	15
	Figure 1.3. Comparison of Peak MCU Execution Speeds	16
	Figure 1.4. On-Chip Clock and Reset	17
	Figure 1.5. On-chip Memory Map (C8051F300/1/2/3 Shown)	18
	Figure 1.6. Development/In-System Debug Diagram	19
	Figure 1.7. Digital Crossbar Diagram	20
	Figure 1.8. PCA Block Diagram	21
	Figure 1.9. PCA Block Diagram	21
	Figure 1.10. 8-Bit ADC Block Diagram	22
	Figure 1.11. Comparator Block Diagram	23
2.	Absolute Maximum Ratings	
3.	Global Electrical Characteristics	
4.	Pinout and Package Definitions	
	Figure 4.1. QFN-11 Pinout Diagram (Top View)	28
	Figure 4.2. QFN-11 Package Drawing	29
	Figure 4.3. Typical QFN-11 Solder Paste Mask	30
	Figure 4.4. Typical QFN-11 Landing Diagram	31
	Figure 4.5. SOIC-14 Pinout Diagram (Top View)	32
	Figure 4.6. SOIC-14 Package Drawing	33
	Figure 4.7. SOIC-14 PCB Land Pattern	34
5.	ADC0 (8-Bit ADC, C8051F300/2)	
	Figure 5.1. ADC0 Functional Block Diagram	35
	Figure 5.2. Typical Temperature Sensor Transfer Function	37
	Figure 5.3. Temperature Sensor Error with 1-Point Calibration (VREF = 2.40 V)	38
	Figure 5.4. 8-Bit ADC Track and Conversion Example Timing	40
	Figure 5.5. ADC0 Equivalent Input Circuits	41
	Figure 5.6. ADC Window Compare Examples, Single-Ended Mode	45
•	Figure 5.7. ADC Window Compare Examples, Differential Mode	46
6.	Voltage Reference (C8051F300/2)	40
-	Figure 6.1. Voltage Reference Functional Block Diagram	49
1.	Comparatoru	- 4
	Figure 7.1. Comparatoru Functional Block Diagram	51
~	Figure 7.2. Comparator Hysteresis Plot	52
8.	CIP-51 Microcontroller	
	Figure 8.1. CIP-51 Block Diagram	57
	Figure 8.2. Program Memory Maps	63
~	Figure 8.3. Data Memory Map	64
9.		00
	Figure 9.1. Keset Sources	83
	Figure 9.2. Power-On and VDD Monitor Reset Timing	84

2. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings*

Parameter	Conditions	Min	Тур	Max	Units
Ambient temperature under bias		-55	_	125	°C
Storage Temperature		-65	_	150	°C
Voltage on any Port I/O Pin or \overline{RST} with respect to GND		-0.3	_	5.8	V
Voltage on V_{DD} with respect to GND		-0.3	_	4.2	V
Maximum Total current through V _{DD} and GND		_	_	500	mA
Maximum output current sunk by RST or any Port pin		_	_	100	mA
*Noto: Strassas above these listed under "Absolute Maximu	m Potings" mov		manant da	maga to th	o dovico

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

SFR Definition 8.2. DPH: Data Pointer High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
D'17	Dite	Dite	Dita	D'io	D'io	Ditt	Dito	
Bit7	Bitb	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x83
Bits7–0:	DPH: Data	Pointer Hig	h.					
	The DPH re addressed I	gister is the lash memo	e high byte ory.	of the 16-b	it DPTR. D	PTR is use	d to acces	ss indirectly

SFR Definition 8.3. SP: Stack Pointer

	SFR Demition 6.5. Acc. Accumulator										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
	(bit addressable) 0xE0										
Bits7–0: /	ACC: Accur This registe	nulator. r is the acc	umulator fo	r arithmetic	operations	i.					

SFR Definition 8.5. ACC: Accumulator

SFR Definition 8.6. B: B Register

R/W B.7	R/W B.6	R/W B.5	R/W B.4	R/W B.3	R/W B.2	R/W B.1	R/W B.0	Reset Value 00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1 (bit	Bit0 addressable)	SFR Address: 0xF0		
Bits7–0:	Bits7–0: B: B Register. This register serves as a second accumulator for certain arithmetic operations.									

8.3.2. External Interrupts

The /INT0 and /INT1 external interrupt sources are configurable as active high or low, edge or level sensitive. The IN0PL (/INT0 Polarity) and IN1PL (/INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (**Section "15.1. Timer 0 and Timer 1" on page 143**) select level or edge sensitive. The table below lists the possible configurations.

IT0	IN0PL	/INT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

/INT0 and /INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 8.11). Note that /INT0 and /INT0 Port pin assignments are independent of any Crossbar assignments. /INT0 and /INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to /INT0 and/or /INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBR0 (see **Section "12.1. Priority Crossbar Decoder" on page 104** for complete details on configuring the Crossbar).

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the /INT0 and /INT1 external interrupts, respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

8.3.3. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP1) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 8.4.

8.3.4. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

SFR Definition 8.9. EIE1: Extended Interrupt Enable 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
	_	ECP0R	ECP0F	EPCA0	EADC0C	EWADC0	ESMB0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
	0xE											
Bits7–6:	UNUSED. Read = 00b. Write = don't care.											
Bit5:	ECPOR: Ena	able Compa	arator0 (CP	0) Rising E	dge Interru	ot.						
	I his bit sets	the maskin	ig of the CI		age interrup	Dt.						
	1: Enable in	PU RISING E	zage intern	Jpt. atod by the								
Bit4.	FCP0F: Ena	able Compa	rator0 (CP	0) Falling F	dae Interru	iy. nt						
Dit i.	This bit sets	the maskir	a of the CF	P0 Falling E	dae interru	pt. pt.						
	0: Disable C	P0 Falling	Edge interr	upt.	-9-	F ••						
	1: Enable in	terrupt requ	iests gener	ated by the	CP0FIF fla	ıg.						
Bit3:	EPCA0: Ena	able Progra	mmable Co	ounter Array	/ (PCA0) In	terrupt.						
	This bit sets	the maskir	ig of the PC	CA0 interrup	ots.							
	0: Disable a	II PCA0 inte	errupts.									
D'IO	1: Enable in	terrupt requ	iests gener	ated by PC	A0.							
Bit2:	EADCOC: E	hable ADC		on Complet	e Interrupt.	loto intorrur	.+					
			ig of the AL	nlete interri	ision Comp	iele interrup	Л.					
	1: Enable in	terrunt regi	lests dener	ated by the	AD0INT fla	n						
Bit1:	EWADC0: E	Enable Wind	low Compa	rison ADC) Interrupt.	.g.						
	This bit sets	the maskir	g of ADC0	Window C	omparison i	nterrupt.						
	0: Disable A	DC0 Windo	w Compar	ison interru	pt.							
	1: Enable in	terrupt requ	iests gener	ated by AD	C0 Window	Compare f	flag.					
Bit0:	ESMB0: En	able SMBus	s Interrupt.									
	This bit sets	the maskir	ig of the SN	/Bus interro	upt.							
	U: Disable a	II SMBus in	terrupts.	منمما امبينا م	Clfler							
	T: Enable in	terrupt requ	iests gener	ated by the	Si flag.							

NOTES:

Accessing Flash from user firmware executing from an unlocked page:

- 1. Any unlocked page except the page containing the Lock Byte may be read, written, or erased.
- 2. Locked pages cannot be read, written, or erased. An erase attempt on the page containing the Lock Byte will result in a Flash Error device reset.
- 3. The page containing the Lock Byte cannot be erased. It may be read or written only if it is unlocked. An erase attempt on the page containing the Lock Byte will result in a Flash Error device reset.
- 4. Reading the contents of the Lock Byte is always permitted.
- 5. Locking additional pages (changing '1's to '0's in the Lock Byte) is not permitted.
- 6. Unlocking Flash pages (changing '0's to '1's in the Lock Byte) is not permitted.
- 7. The Reserved Area cannot be read, written, or erased. Any attempt to access the reserved area, or any other locked page, will result in a Flash Error device reset.

Accessing Flash from user firmware executing from a locked page:

- 1. Any unlocked page except the page containing the Lock Byte may be read, written, or erased.
- 2. Any locked page except the page containing the Lock Byte may be read, written, or erased. An erase attempt on the page containing the Lock Byte will result in a Flash Error device reset.
- 3. The page containing the Lock Byte cannot be erased. It may only be read or written. An erase attempt on the page containing the Lock Byte will result in a Flash Error device reset.
- 4. Reading the contents of the Lock Byte is always permitted.
- 5. Locking additional pages (changing '1's to '0's in the Lock Byte) is not permitted.
- 6. Unlocking Flash pages (changing '0's to '1's in the Lock Byte) is not permitted.
- 7. The Reserved Area cannot be read, written, or erased. Any attempt to access the reserved area, or any other locked page, will result in a Flash Error device reset.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
—	_		—	—	—	PSEE	PSWE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x8F
Bits7–2: Bit1: Bit0:	UNUSED: R PSEE: Prog Setting this k to be erased Flash memo tion address 0: Flash prog 1: Flash prog PSWE: Prog Setting this k instruction. 1 0: Writes to 1	ead = 0000 ram Store E bit (in comb I. If this bit i rry using the ed by the N gram memo gram Store 1 bit allows w The Flash lo Flash progr Flash progr	000b, Write Erase Enab ination with s logic 1 ar e MOVX instru- ory erasure ory erasure Write Enab riting a byte ocation sho am memor	= don't car le PSWE) all d Flash wr struction wil uction. The disabled. e nabled. le e of data to uld be eras y disabled. y enabled;	e. ows an enti ites are ena I erase the value of the the Flash p ed before w the MOVX i	re page of F bled (PSW entire page a data byte rogram me rriting data. nstruction t	Flash prog E is logic 1 that conta written doe mory using argets Flas	ram memory), a write to ins the loca- es not matter. g the MOVX sh memory.

SFR Definition 10.1. PSCTL: Program Store R/W Control

SFR Definition 10.2. FLKEY: Flash Lock and Key

SFR Definition 10.3. FLSCL: Flash Scale

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
FOSE	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	1000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xB6
Bits7: Bits6–0:	FOSE: Flas This bit ena Flash sense 0: Flash one 1: Flash one RESERVED	h One-shot bles the 50 amps are e-shot disal e-shot enat 0. Read = 0	t Enable) ns Flash r enabled fo bled. bled.). Must Writ	ead one-sh r a full cloc re 0.	ot. When th k cycle duri	he Flash on ing Flash re	ie-shot disa eads.	abled, the

11.5. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 11.1, Option 2. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100 kHz, let R = 246 k Ω and C = 50 pF:

 $f = 1.23(10^3) / RC = 1.23(10^3) / [246 \times 50] = 0.1 MHz = 100 kHz$

Referring to the table in SFR Definition 11.3, the required XFCN setting is 010b.

11.6. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 11.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation from the equations below. Assume $V_{DD} = 3.0$ V and f = 150 kHz:

 $f = KF / (C \times VDD)$

0.150 MHz = KF / (C x 3.0)

Since the frequency of roughly 150 kHz is desired, select the K Factor from the table in SFR Definition 11.3 as KF = 22:

0.150 MHz = 22 / (C x 3.0)

C x 3.0 = 22 / 0.150 MHz

C = 146.6 / 3.0 pF = 48.8 pF

Therefore, the XFCN value to use in this example is 011b and C = 50 pF.

SFR Definition 12.1. XBR0: Port I/O Crossbar Register 0

R/W	R/W XSKP6	R/W XSKP5	R/W XSKP4	R/W XSKP3	R/W XSKP2	R/W XSKP1	R/W XSKP0	Reset Value			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xE1			
Bit7:	UNUSED. Read = 0b; Write = don't care.										
Bits6–0:	XSKP[6:0]: (Crossbar S	kip Enable	Bits		r Dooodor	Dort nine u				
	log inputs (fo	or ADC or C	Comparator) or used as	s special fui	r Decoder. nctions (VR	EF input. e	sed as ana- external oscil-			
	lator circuit, CNVSTR input) should be skipped by the Crossbar.										
	0: Corresponding P0.n pin is not skipped by the Crossbar.										
	r. Correspor				1033041.						

SFR Definition 12.2. XBR1: Port I/O Crossbar Register 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
PC	AOME	CP0AOEN	CP00EN	SYSCKE	SMB0OEN	URX0EN	UTX0EN	00000000			
Bit7	Bit6	Bit5	Bit1	Bit0	SFR Address:						
								0xE2			
Bits7–6:	PCA0ME: P	CA Module	I/0 Enable	Bits							
	00: All PCA I/O unavailable at Port pins.										
	01: CEX0 rc	outed to Port	pin.								
	10: CEX0, C	CEX1 routed	to Port pin	s.							
	11: CEX0, C	CEX1, CEX2	routed to F	Port pins.							
Bit5:	CP0AOEN:	Comparator	0 Asynchro	onous Outp	ut Enable						
	0: Asynchro	nous CP0 u	navailable a	at Port pin.							
	1: Asynchro	nous CP0 ro	outed to Po	rt pin.							
Bit4:	CP0OEN: C	comparator0	Output Ena	able							
	0: CP0 una	vailable at Po	ort pin.								
B 1/0	1: CP0 route	ed to Port pil	ר. <u>ר</u>								
Bit3:	SYSCRE: /S	SYSCLK Out	put Enable								
		unavailable	at Port pin	l. 							
D:40.			ed to Port p	oin.							
BILZ:	SMBUUEN:	SIVIBUS I/O	Enable	ina							
			e al Fuit pi	1115.							
Bit1 ·	LIDYOEN LI		on pins. ablo								
Dit i.		(A unavailah	le at Port n	in							
	1. LIART RX0 routed to Port nin P0.5										
Bit0 [.]		ART TX Out	nut Enable	.0.							
Dito.	0. UART TX	0 unavailab	e at Port pi	in							
	1: UART TX	0 routed to I	Port pin P0	.4.							

13.4. Using the SMBus

The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following application-independent features:

- Byte-wise serial data transfers
- Clock signal generation on SCL (Master Mode only) and SDA data synchronization
- Timeout/bus error recognition, as defined by the SMB0CF configuration register
- START/STOP timing, detection, and generation
- Bus arbitration
- Interrupt generation
- Status information

SMBus interrupts are generated for each data byte or slave address that is transferred. When transmitting, this interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data, this interrupt is generated before the ACK cycle so that software may define the outgoing ACK value. See **Section "13.5. SMBus Transfer Modes" on page 123** for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end of a transfer when a slave (STOP detected). Software should read the SMB0CN (SMBus Control register) to find the cause of the SMBus interrupt. The SMB0CN register is described in **Section "13.4.2. SMB0CN Control Register" on page 119**; Table 13.4 provides a quick SMB0CN decoding reference.

SMBus configuration options include:

- Timeout detection (SCL Low Timeout and/or Bus Free Timeout)
- SDA setup and hold time extensions
- Slave event enable/disable
- Clock source selection

These options are selected in the SMB0CF register, as described in **Section "13.4.1. SMBus Configura**tion Register" on page 116.

SFR Definition	13.2.	SMB0CN:	SMBus	Control
----------------	-------	---------	--------------	---------

R	R	R/W	R/W	R	R	R/W	R/W	Reset Value					
MASTE	R TXMODE	STA	STO	ACKRQ	ARBLOST	ACK	SI	00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:					
						(bit	addressable	e) 0xC0					
Bit7:	MASTER: SI	MBus Mas	ster/Slave I	ndicator.									
	This read-on	ly bit indic	ates when	the SMBus	s is operating	as a mast	er.						
	0: SMBus op	perating in	Slave Mod	le.									
Bito	1: SMBus operating in Master Mode.												
BIt6:	TXMODE: SMBus Transmit Mode Indicator.												
	This read-on	Boooivor	ates when	the SMBus	s is operating	as a trans	mitter.						
	1. SMBus in	Transmitte	ar Mode										
Bit5.	STA: SMBus	Start Flag	n moue.										
Dito.	Write:	otart r lag	9.										
	0: No Start g	enerated.											
	1: When ope	rating as a	a master, a	START co	ndition is tran	smitted if t	he bus is i	free (If the bus					
	is not free, th	ne START	is transmit	ted after a	STOP is rece	ived or a fr	ee timeou	ut is detected).					
	If STA is set	by softwa	re as an ac	tive Master	r, a repeated	START wil	l be gene	rated after the					
	next ACK cy	cle.											
	Read:			oto d									
	1: Start or re	n repeated	ant detector										
Bit4 [.]	STO: SMBus	s Ston Flag	an ueleciel n	J.									
DRT.	Write:		9.										
	As a master,	setting th	is bit to '1'	causes a S	TOP condition	on to be tra	nsmitted a	after the next					
	ACK cycle. S	STO is clea	ared to '0' b	by hardwar	e when the S	TOP is ge	nerated.						
	As a slave, s	oftware m	anages thi	s bit when	switching from	m Slave Re	eceiver to	Slave Trans-					
	mitter mode.	See Sect	ion 13.5.4	for details.									
	Read:	م ممانات مر	ata ata d										
	1: Stop cond	lition detec	elected. Stad (if in St	ave Mode)	or ponding (if in Masta	r Mode)						
Bit3		Bus Ackn	owledge Re	ave woue) equest	or pending (II III Maste	r widde).						
Bito.	This read-on	lv bit is se	t to logic 1	when the S	SMBus has re	eceived a b	ovte and n	eeds the ACK					
	bit to be writ	ten with th	e correct A	CK respon	se value.		,						
Bit2:	ARBLOST: S	SMBus Arb	bitration Los	st Indicator	•								
	This read-on	ly bit is se	t to logic 1	when the S	SMBus loses	arbitration	while ope	erating as a					
	transmitter. A	A lost arbit	ration while	e a slave in	dicates a bus	s error con	dition.						
Bit1:	ACK: SMBus	s Acknowl	edge Flag.					1. 1.1					
	I his bit defin	ies the out	Igoing ACK	level and	records incor	ning ACK I	evels. It s	nould be writ-					
	0. A "not ack	e a Dyte is nowledge	" has heen		f in Transmitt	au allei ea	CH Dyte is	transmitted (if					
	in Receiver	Mode)						transmitted (ii					
	1: An "ackno	wledge" h	as been re	ceived (if ir	n Transmitter	Mode) OR	will be tra	ansmitted (if in					
	Receiver Mo	de).				/-		(
Bit0:	SI: SMBus Ir	nterrupt Fl	ag.										
	This bit is se	t by hardw	vare under	the condition	ons listed in T	Table 13.3.	SI must b	be cleared by					
	software. Wh	nile SI is s	et, SCL is ł	neld low an	d the SMBus	is stalled.							

13.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames; however, note that the interrupt is generated before the ACK cycle when operating as a receiver, and after the ACK cycle when operating as a transmitter.

13.5.1. Master Transmitter Mode

Serial data is transmitted on SDA while the serial clock is output on SCL. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt. Figure 13.5 shows a typical Master Transmitter sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that the 'data byte transferred' interrupts occur **after** the ACK cycle in this mode.

Figure 13.5. Typical Master Transmitter Sequence

	Values Read		t	Current SMbus State	Typical Response Options	Values Written			
Mode	Status Vector	ACKRQ	ARBLOST	ACK			STA	STO	ACK
	0010	1	0	X	A slave address was received; ACK requested.	Acknowledge received address (received slave address match, R/W bit = READ).	0	0	1
						Do not acknowledge received address.	0	0	0
						Acknowledge received address, and switch to trans- mitter mode (received slave address match, R/W bit = WRITE); see Section 13.5.4 for procedure.	0	0	1
		1	1	X	Lost arbitration as master; slave address received; ACK requested.	Acknowledge received address (received slave address match, R/W bit = READ).	0	0	1
						Do not acknowledge received address.	0	0	0
AVE RECEIVER						Acknowledge received address, and switch to trans- mitter mode (received slave address match, R/W bit = WRITE); see Section 13.5.4 for procedure.	0	0	1
SL						Reschedule failed transfer; do not acknowledge received address	1	0	0
	0010	0	1	Х	Lost arbitration while attempting a	Abort failed transfer.	0	0	Х
	0004			X	repeated START.	Reschedule failed transfer.	1	0	X
	0001	1	1	X	STOP.	No action required (transfer complete/aborted).	0	0	0
		0	0	X	A STOP was detected while addressed as a Slave Transmitter or Slave Receiver.	Clear STO.	0	0	X
		0	1	Х	Lost arbitration due to a detected	Abort transfer.	0	0	Х
						Reschedule failed transfer.	1	0	Х
	0000	1	0	X	A slave byte was received; ACK requested.	Acknowledge received byte; Read SMB0DAT.		0	1
						Do not acknowledge received byte.	0	0	0
		1	1	Х	Lost arbitration while transmitting a data byte as master.	Abort failed transfer. Reschedule failed transfer.	0 1	0 0	0 0

Table 13.4. SMBus Status Decoding (Continued)

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to **Section** "**12.1. Priority Crossbar Decoder**" **on page 104** for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the T0M bit (CKCON.3). When T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 15.3).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal /INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 8.11). Setting GATE0 to '1' allows the timer to be controlled by the external input signal /INT0 (see Section "8.3.5. Interrupt Register Descriptions" on page 75), facilitating pulse width measurements.

TR0	GATE0	/INT0	Counter/Timer
0	Х*	Х*	Disabled
1	0	X*	Enabled
1	1	0	Disabled
1	1	1	Enabled

*Note:	X =	Don't	Care
--------	-----	-------	------

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal /INT1 is used with Timer 1; the /INT1 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 8.11).

Figure 15.1. T0 Mode 0 Block Diagram

16.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-bit Pulse Width Modulator, or 16-bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 16.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1. See Figure 16.3 for details on the PCA interrupt configuration.

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
X*	X*	1	0	0	0	0	Х*	Capture triggered by positive edge on CEXn
X*	Х*	0	1	0	0	0	X*	Capture triggered by negative edge on CEXn
X*	Х*	1	1	0	0	0	X*	Capture triggered by transition on CEXn
X*	1	0	0	1	0	0	X*	Software Timer
X*	1	0	0	1	1	0	X*	High Speed Output
X*	1	0	0	Х*	1	1	X*	Frequency Output
0	1	0	0	X*	0	1	X*	8-bit Pulse Width Modulator
1	1	0	0	Х*	0	1	Х*	16-bit Pulse Width Modulator

Table 16.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

*Note: X = Don't Care

C2 Register Definition 17.3. REVID: C2 Revision ID

C2 Register Definition 17.4. FPCTL: C2 Flash Programming Control

C2 Register Definition 17.5. FPDAT: C2 Flash Programming Data

								Reset Value			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Bits7–0:	Bits7–0: FPDAT: C2 Flash Programming Data Register This register is used to pass Flash commands, addresses, and data during C2 Flash accesses. Valid commands are listed below.										
	Code		Com	mand							
	0x06		Flash Bl	ock Read							
	0x07		Flash Bl	ock Write							
	0x08		Flash Pa	age Erase							
	0x03		Device	e Erase							
	L	• 				J					

NOTES:

