

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	8
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	11-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f304-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

13.4.Using the SMBus	115
13.4.1.SMBus Configuration Register	
13.4.2.SMB0CN Control Register	
13.4.3.Data Register	
13.5.SMBus Transfer Modes	
13.5.1.Master Transmitter Mode	
13.5.2.Master Receiver Mode	
13.5.3.Slave Receiver Mode	
13.5.4.Slave Transmitter Mode	
13.6.SMBus Status Decoding	
14.1.Enhanced Baud Rate Generation	
14.2.Operational Modes 14.2.1.8-Bit UART	
14.2.1.о-ын UART 14.2.2.9-Bit UART	
14.2.2.9-Bit OART	
•	
15.1.Timer 0 and Timer 1	
15.1.1.Mode 0: 13-bit Counter/Timer	
15.1.2.Mode 1: 16-bit Counter/Timer	
15.1.3.Mode 2: 8-bit Counter/Timer with Auto-Reload	
15.1.4.Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	
15.2.Timer 2 15.2.1.16-bit Timer with Auto-Reload	
15.2.2.8-bit Timers with Auto-Reload	
16. Programmable Counter Array	
16.1.PCA Counter/Timer	
16.2.Capture/Compare Modules	
16.2.1.Edge-triggered Capture Mode	
16.2.2.Software Timer (Compare) Mode	
16.2.3. High Speed Output Mode	
16.2.4. Frequency Output Mode	101
16.2.5.8-Bit Pulse Width Modulator Mode	
16.2.6.16-Bit Pulse Width Modulator Mode	
16.3.Watchdog Timer Mode	
16.3.1.Watchdog Timer Operation	
16.3.2.Watchdog Timer Usage	
16.4.Register Descriptions for PCA	
17.C2 Interface	
17.1.C2 Interface Registers	
17.2.C2 Pin Sharing	
Document Change List	
Contact Information	178

List of Figures

1.	System Overview	
	Figure 1.1. C8051F300/2 Block Diagram	15
	Figure 1.2. C8051F301/3/4/5 Block Diagram	15
	Figure 1.3. Comparison of Peak MCU Execution Speeds	16
	Figure 1.4. On-Chip Clock and Reset	17
	Figure 1.5. On-chip Memory Map (C8051F300/1/2/3 Shown)	18
	Figure 1.6. Development/In-System Debug Diagram	19
	Figure 1.7. Digital Crossbar Diagram	20
	Figure 1.8. PCA Block Diagram	21
	Figure 1.9. PCA Block Diagram	
	Figure 1.10. 8-Bit ADC Block Diagram	
	Figure 1.11. Comparator Block Diagram	23
2.	Absolute Maximum Ratings	
	Global Electrical Characteristics	
4.	Pinout and Package Definitions	
	Figure 4.1. QFN-11 Pinout Diagram (Top View)	
	Figure 4.2. QFN-11 Package Drawing	
	Figure 4.3. Typical QFN-11 Solder Paste Mask	
	Figure 4.4. Typical QFN-11 Landing Diagram	31
	Figure 4.5. SOIC-14 Pinout Diagram (Top View)	
	Figure 4.6. SOIC-14 Package Drawing	
_	Figure 4.7. SOIC-14 PCB Land Pattern	34
5.	ADC0 (8-Bit ADC, C8051F300/2)	
	Figure 5.1. ADC0 Functional Block Diagram	
	Figure 5.2. Typical Temperature Sensor Transfer Function	
	Figure 5.3. Temperature Sensor Error with 1-Point Calibration (VREF = 2.40 V)	
	Figure 5.4. 8-Bit ADC Track and Conversion Example Timing	
	Figure 5.5. ADC0 Equivalent Input Circuits	
	Figure 5.6. ADC Window Compare Examples, Single-Ended Mode	
~	Figure 5.7. ADC Window Compare Examples, Differential Mode	46
6.	Voltage Reference (C8051F300/2)	40
-	Figure 6.1. Voltage Reference Functional Block Diagram	49
1.	Comparator0	Г 4
	Figure 7.1. Comparator0 Functional Block Diagram	
•	Figure 7.2. Comparator Hysteresis Plot	52
8.	CIP-51 Microcontroller	57
	Figure 8.1. CIP-51 Block Diagram	
	Figure 8.2. Program Memory Maps	
•	Figure 8.3. Data Memory Map	04
9.	Reset Sources	റ
	Figure 9.1. Reset Sources	
	Figure 9.2. Power-On and VDD Monitor Reset Timing	04

C8051F300/1/2/3/4/5

Ordering Part Number	MIPS (Peak)	Flash Memory	RAM	Calibrated Internal Oscillator	SMBus/I ² C	UART	Timers (16-bit)	Programmable Counter Array	Digital Port I/Os	8-bit 500ksps ADC	Temperature Sensor	Analog Comparators	Lead-free (RoHS compliant)	Package
C8051F300-GM	25	8 k	256	\checkmark	\checkmark	\checkmark	3	~	8	\checkmark	\checkmark	1	~	QFN-11
C8051F300-GS	25	8 k	256	\checkmark	\checkmark	\checkmark	3	~	8	~	\checkmark	1	~	SOIC-14
C8051F301-GM	25	8 k	256	\checkmark	\checkmark	\checkmark	3	\checkmark	8	—		1	\checkmark	QFN-11
C8051F301-GS	25	8 k	256	\checkmark	\checkmark	\checkmark	3	~	8			1	~	SOIC-14
C8051F302-GM	25	8 k	256		\checkmark	\checkmark	3	~	8	\checkmark	\checkmark	1	~	QFN-11
C8051F302-GS	25	8 k	256		\checkmark	\checkmark	3	~	8	\checkmark	\checkmark	1	~	SOIC-14
C8051F303-GM	25	8 k	256		\checkmark	\checkmark	3	~	8			1	~	QFN-11
C8051F303-GS	25	8 k	256		~	\checkmark	3	~	8			1	~	SOIC-14
C8051F304-GM	25	4 k	256		\checkmark	\checkmark	3	~	8	—		1	~	QFN-11
C8051F304-GS	25	4 k	256		\checkmark	\checkmark	3	~	8	—	_	1	~	SOIC-14
C8051F305-GM	25	2 k	256		\checkmark	\checkmark	3	~	8			1	~	QFN-11
C8051F305-GS	25	2 k	256		\checkmark	\checkmark	3	\checkmark	8			1	\checkmark	SOIC-14

 Table 1.1. Product Selection Guide

C8051F300/1/2/3/4/5

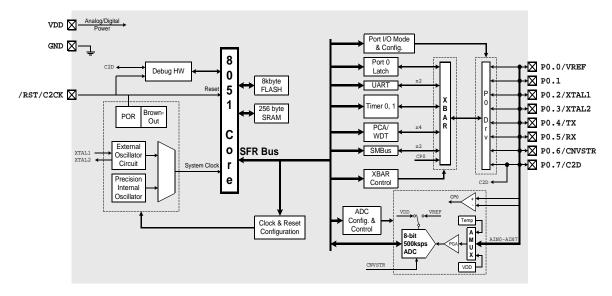


Figure 1.1. C8051F300/2 Block Diagram

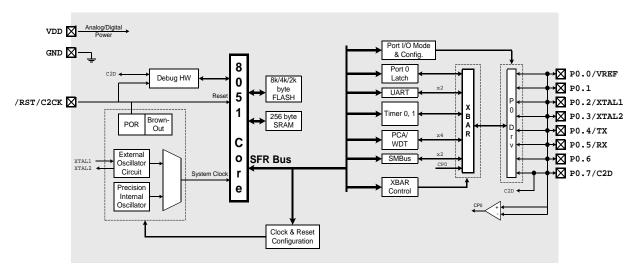


Figure 1.2. C8051F301/3/4/5 Block Diagram

1.2. On-Chip Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

The C8051F300/1/2/3 includes 8k bytes of Flash program memory (the C8051F304 includes 4k bytes; the C8051F305 includes 2k bytes). This memory may be reprogrammed in-system in 512 byte sectors, and requires no special off-chip programming voltage. See Figure 1.5 for the C8051F300/1/2/3 system memory map.

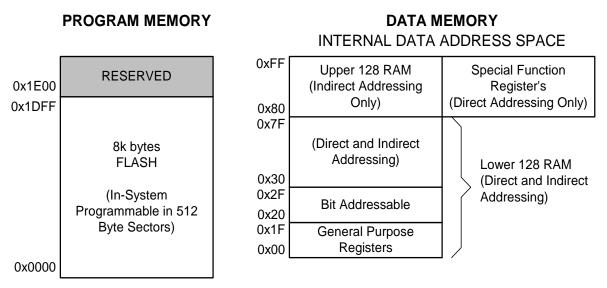


Figure 1.5. On-chip Memory Map (C8051F300/1/2/3 Shown)

Table 3.1. Global Electrical Characteristics (Continued)

-40 to +85 °C, 25 MHz system clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
I _{DD} Supply Sensitivity (Note 3)	F = 25 MHz	_	47	_	%/V
	F = 1 MHz	—	59	—	%/V
I _{DD} Frequency Sensitivity	V _{DD} = 3.0 V, F <= 1 MHz, T = 25 °C	_	0.27		mA/MHz
(Note 3, Note 5)	V _{DD} = 3.0 V, F > 1 MHz, T = 25 °C	_	0.10	_	mA/MHz
	V _{DD} = 3.6 V, F <= 1 MHz, T = 25 ℃	—	0.35	—	mA/MHz
	V _{DD} = 3.6 V, F > 1 MHz, T = 25 °C	—	0.12	_	mA/MHz
Digital Supply Current (Stop Mode, shutdown)	Oscillator not running, V _{DD} Monitor Disabled	—	< 0.1	—	μA

Notes:

- 1. Given in Table 9.2 on page 86.
- 2. SYSCLK must be at least 32 kHz to enable debugging.
- 3. Based on device characterization data; Not production tested.
- 4. Normal IDD can be estimated for frequencies <= 15 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} for >15 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number.

For example: V_{DD} = 3.0 V; F = 20 MHz, I_{DD} = 6.6 mA – (25 MHz – 20 MHz) x 0.16 mA/MHz = 5.8 mA.

5. Idle IDD can be estimated for frequencies <= 1 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle I_{DD} for >1 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number.

For example: V_{DD} = 3.0 V; F = 5 MHz, Idle I_{DD} = 3.3 mA – (25 MHz – 5 MHz) x 0.10 mA/MHz = 1.3 mA.

C8051F300/1/2/3/4/5

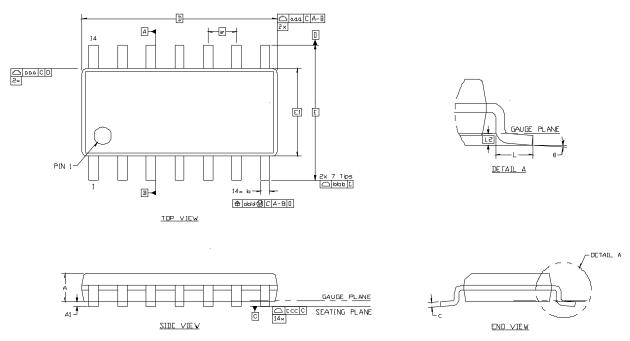


Figure 4.6. SOIC-14 Package Drawing

Dimension	Min	Max	Dimension	Min	Max	
А		1.75	L	0.40	1.27	
A1	0.10	0.25	L2	0.25	BSC	
b	0.33	0.51	Q	0 °	8 °	
С	0.17	0.25	aaa	0.	10	
D	8.65	BSC	bbb	0.20		
E	6.00	BSC	CCC	0.10		
E1	3.90	BSC	ddd	0.25		
е	1.27	BSC	LL			
lotes:						

Table 4.4. SOIC-14 Package Dimensions

1. All dimensions shown are in millimeters (mm).

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS012, variation AB.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

5. ADC0 (8-Bit ADC, C8051F300/2)

The ADC0 subsystem for the C8051F300/2 consists of two analog multiplexers (referred to collectively as AMUX0) with 11 total input selections, a differential programmable gain amplifier (PGA), and a 500 ksps, 8-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector (see block diagram in Figure 5.1). The AMUX0, PGA, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shown in Figure 5.1. ADC0 operates in both Single-ended and Differential modes, and may be configured to measure any Port pin, the Temperature Sensor output, or V_{DD} with respect to any Port pin or GND. The ADC0 subsystem is enabled only when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1. The ADC0 subsystem is in low power shutdown when this bit is logic 0.

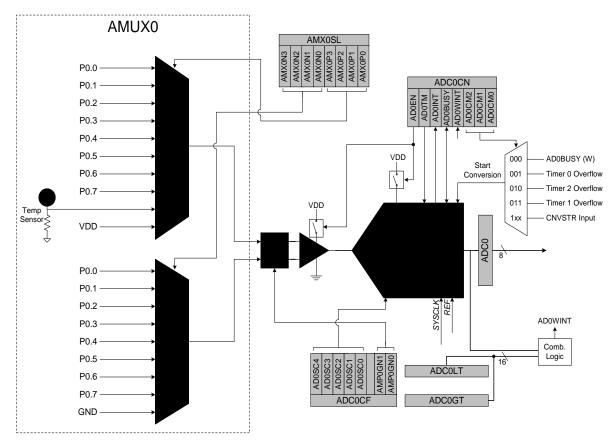


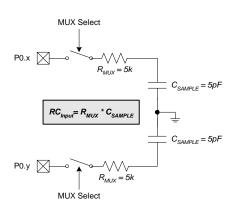
Figure 5.1. ADC0 Functional Block Diagram

5.3.3. Settling Time Requirements

When the ADC0 input configuration is changed (i.e., a different AMUX0 or PGA selection is made), a minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion. Note that in low-power tracking mode, three SAR clocks are used for tracking at the start of every conversion. For most applications, these three SAR clocks will meet the minimum tracking time requirements.

Figure 5.5 shows the equivalent ADC0 input circuits for both Differential and Single-ended modes. Notice that the equivalent time constant for both input circuits is the same. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 5.1. When measuring the Temperature Sensor output or V_{DD} with respect to GND, R_{TOTAL} reduces to R_{MUX} . See Table 5.1 for ADC0 minimum settling time (track/hold time) requirements.

$$t = \ln\left(\frac{2^n}{SA}\right) \times R_{TOTAL} C_{SAMPLE}$$


Equation 5.1. ADC0 Settling Time Requirements

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds


 R_{TOTAL} is the sum of the AMUX0 resistance and any external source resistance.

n is the ADC resolution in bits (8).

Differential Mode

Note: When the PGA gain is set to 0.5, $C_{SAMPLE} = 3pF$

Figure 5.5. ADC0 Equivalent Input Circuits

Table 5.1. ADC0 Electrical Characteristics

 V_{DD} = 3.0 V, VREF = 2.40 V (REFSL = 0), PGA Gain = 1, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units
DC Accuracy					
Resolution			8		bits
Integral Nonlinearity		—	±0.5	±1	LSB
Differential Nonlinearity	Guaranteed Monotonic	—	±0.5	±1	LSB
Offset Error		-5.0	0.5	5.0	LSB
Full Scale Error	Differential mode	-5.0	-1	5.0	LSB
Dynamic Performance (10 kHz	Sine-wave Differential Input, 1	dB belo	w Full Sc	ale, 500	ksps)
Signal-to-Noise Plus Distortion		45	48	—	dB
Total Harmonic Distortion	Up to the 5 th harmonic		-56	—	dB
Spurious-Free Dynamic Range			58	—	dB
Conversion Rate					
SAR Conversion Clock		—		6	MHz
Conversion Time in SAR Clocks		11		—	clocks
Track/Hold Acquisition Time		300		—	ns
Throughput Rate		—	—	500	ksps
Analog Inputs			1		
Input Voltage Range		0	—	VREF	V
Input Capacitance		—	5	—	pF
Temperature Sensor		—	_	—	
Linearity ^{1,2,3}		—	±0.5	—	°C
Gain ^{1,2,3}		—	3350	—	μV / °C
Gain ^{1,2,3}			±110		
Offset ^{1,2,3}	(Temp = 0 °C)		897±31	—	mV
Power Specifications					
Power Supply Current (V _{DD} supplied to ADC0)	Operating Mode, 500 ksps	—	400	900	μA
Power Supply Rejection		—	±0.3	—	mV/V
 Notes: 1. Represents one standard devi 2. Measured with PGA Gain = 2. 3. Includes ADC offset, gain, and 					

8. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51[™] instruction set; standard 803x/805x assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. Included are three 16-bit counter/timers (see description in **Section 15**), an enhanced full-duplex UART (see description in **Section 14**), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space (**Section 8.2.6**), and one byte-wide I/O Port (see description in **Section 12**). The CIP-51 also includes on-chip debug hardware (see description in **Section 17**), and interfaces directly with the analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 8.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput with 25 MHz Clock
- 0 to 25 MHz Clock Frequency
- 256 Bytes of Internal RAM
- Byte-Wide I/O Port

- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security

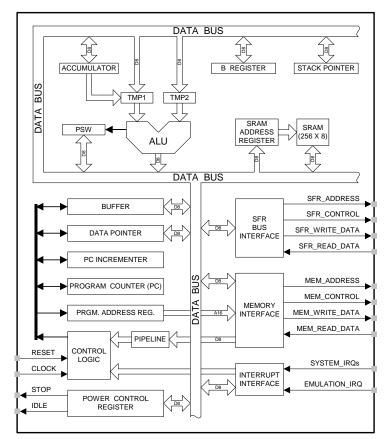


Figure 8.1. CIP-51 Block Diagram

8.2. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The CIP-51 memory organization is shown in Figure 8.2 and Figure 8.3.

8.2.1. Program Memory

The CIP-51 core has a 64k-byte program memory space. The C8051F300/1/2/3 implements 8192 bytes of this program memory space as in-system, reprogrammable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x1FFF. Note: 512 bytes (0x1E00 - 0x1FFF) of this memory are reserved for factory use and are not available for user program storage. The C8051F304 implements 4096 bytes of reprogrammable Flash program memory space; the C8051F305 implements 2048 bytes of reprogrammable Flash program memory space. Figure 8.2 shows the program memory maps for C8051F300/1/2/3/4/5 devices.



Figure 8.2. Program Memory Maps

Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to **Section "10. Flash Memory" on page 89** for further details.

8.3.2. External Interrupts

The /INT0 and /INT1 external interrupt sources are configurable as active high or low, edge or level sensitive. The IN0PL (/INT0 Polarity) and IN1PL (/INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (**Section "15.1. Timer 0 and Timer 1" on page 143**) select level or edge sensitive. The table below lists the possible configurations.

IT0	IN0PL	/INT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

/INT0 and /INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 8.11). Note that /INT0 and /INT0 Port pin assignments are independent of any Crossbar assignments. /INT0 and /INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to /INT0 and/or /INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBR0 (see **Section** "**12.1. Priority Crossbar Decoder**" on page **104** for complete details on configuring the Crossbar).

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the /INT0 and /INT1 external interrupts, respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

8.3.3. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP1) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 8.4.

8.3.4. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag	Bit addressable?	Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (/INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (/INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y	N	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	N	ET2 (IE.5)	PT2 (IP.5)
SMBus Interface	0x0033	6	SI (SMB0CN.0)	Y	N	ESMB0 (EIE1.0)	PSMB0 (EIP1.0)
ADC0 Window Compare	0x003B	7	AD0WINT (ADC0CN.3)	Y	N	EWADC0 (EIE1.1)	PWADC0 (EIP1.1)
ADC0 Conversion Com- plete	0x0043	8	AD0INT (ADC0CN.5)	Y	N	EADC0C (EIE1.2)	PADC0C (EIP1.2)
Programmable Counter Array	0x004B	9	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y	N	EPCA0 (EIE1.3)	PPCA0 (EIP1.3)
Comparator0 Falling Edge	0x0053	10	CP0FIF (CPT0CN.4)	N	N	ECP0F (EIE1.4)	PCP0F (EIP1.4)
Comparator0 Rising Edge	0x005B	11	CP0RIF (CPT0CN.5)	N	N	ECP0R (EIE1.5)	PCP0R (EIP1.5)

Table 8.4. Interrupt Summary

SFR Definition 9.1. RSTSRC: Reset Source

R	R	R/W	R/W	R	R/W	R/W	R	Reset Value					
	FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	Variable					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:					
								0xEF					
(Nata: D	a natura raa	l modify yr	ita anaratio		NIL) on this	ragiotar)							
(Note: D	o not use read	a-modily-wr	ite operatio	ons (ORL, A	INL) ON this	register)							
Bit7:	UNUSED. R	ead = 0. W	rite = don't	care.									
Bit6:	FERROR: Flash Error Indicator. 0: Source of last reset was not a Flash read/write/erase error.												
D	1: Source of												
Bit5:	CORSEF: Co Write	omparatoru	Reset Ena	able and Fla	ıg.								
	0: Comparat	or0 is not a	reset sou	rce									
	1: Comparat												
	Read			()									
	0: Source of			•									
5.4	1: Source of												
Bit4:	SWRSF: So	ftware Rese	et Force ar	nd Flag.									
	Write 0: No Effect.												
	1: Forces a		et.										
	Read												
	0: Source of												
Dire	1: Source of				it.								
Bit3:	WDTRSF: W 0: Source of	-		-	+								
	1: Source of				ι.								
Bit2:	MCDRSF: M												
	Write:	0		0									
	0: Missing C												
	1: Missing C	lock Detect	or enabled	l; triggers a	reset if a mi	ssing clock	condition i	s detected.					
	Read:	lost react y	vaa nat a N	liaging Clas	k Dotootor t	imaaut							
	0: Source of 1: Source of												
Bit1:	PORSF: Pov			-		000.							
	This bit is se			•	s. This may	be due to a	a true power	-on reset or					
	a V _{DD} monit	or reset. In	either case	e, data men	nory should l	be conside	red indeterr	ninate fol-					
	lowing the re	eset. Writing	g this bit er	nables/disab	oles the V _{DD}	monitor.							
	Write:												
	0: V _{DD} moni												
	1: V _{DD} moni	tor enabled	•										
	Read:				10								
	0: Last reset		-			an 1000 (1)	ب ا د ا د ا	in at-					
D:40-	1: Last reset	-		DD monitor	reset; all oth	er reset fla	igs indetern	imate.					
Bit0:	PINRSF: HV 0: Source of												
	1: Source of			•									
	1: Source of	iast reset v	vas KST p	in.									

12.1. Priority Crossbar Decoder

The Priority Crossbar Decoder (Figure 12.3) assigns a priority to each I/O function, starting at the top with UART0. When a digital resource is selected, the least significant unassigned Port pin is assigned to that resource (excluding UART0, which is always at pins 4 and 5). If a Port pin is assigned, the Crossbar skips that pin when assigning the next selected resource. Additionally, the Crossbar will skip Port pins whose associated bits in the XBR0 register are set. The XBR0 register allows software to skip Port pins that are to be used for analog input or GPIO.

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding XBR0 bit should be set. This applies to P0.0 if VREF is enabled, P0.3 and/or P0.2 if the external oscillator circuit is enabled, P0.6 if the ADC is configured to use the external conversion start signal (CNVSTR), and any selected ADC or Comparator inputs. The Crossbar skips selected pins as if they were already assigned, and moves to the next unassigned pin. Figure 12.3 shows the Crossbar Decoder priority with no Port pins skipped (XBR0 = 0x00); Figure 12.4 shows the Crossbar Decoder priority with pins 6 and 2 skipped (XBR0 = 0x44).

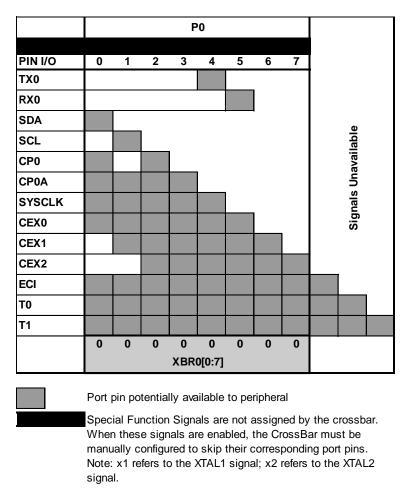


Figure 12.3. Crossbar Priority Decoder with XBR0 = 0x00

13.5.2. Master Receiver Mode

Serial data is received on SDA while the serial clock is output on SCL. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data. After each byte is received, ACKRQ is set to '1' and an interrupt is generated. Software must write the ACK bit (SMB0CN.1) to define the outgoing acknowledge value (Note: writing a '1' to the ACK bit generates an ACK; writing a '0' generates a NACK). Software should write a '0' to the ACK bit after the last byte is received, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. Note that the interface will switch to Master Transmitter Mode if SMB0DAT is written while an active Master Receiver. Figure 13.6 shows a typical Master Receiver sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur **before** the ACK cycle in this mode.

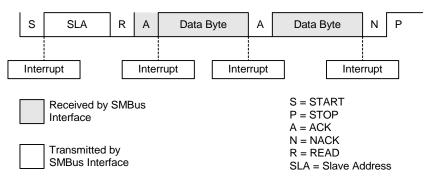


Figure 13.6. Typical Master Receiver Sequence

124

13.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. In the table below, STATUS VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. Note that the shown response options are only the typical responses; application-specific procedures are allowed as long as they conform with the SMBus specification. Highlighted responses are allowed but do not conform to the SMBus specification.

	Values Read		k	Current SMbus State	Typical Response Options	Values Written			
Mode	Status Vector	ACKRQ	ARBLOST	ACK			STA	STO	ACK
	1110	0	0	Х	A master START was generated.	Load slave address + R/W into SMB0DAT.	0	0	Х
	1100	0	0	0	A master data or address byte	Set STA to restart transfer.	1	0	Х
ter					was transmitted; NACK received.	Abort transfer.	0	1	Х
nsmit		0	0	1	A master data or address byte was transmitted; ACK received.	Load next data byte into SMB0DAT	0	0	Х
Irai						End transfer with STOP	0	1	Х
Master Transmitter						End transfer with STOP and start another transfer.	1	1	Х
Ř						Send repeated START	1	0	Х
						Switch to Master Receiver Mode (clear SI without writ- ing new data to SMB0DAT).	0	0	X

Table 13.4. SMBus Status Decoding

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
SOMODE		MCE0	REN0	TB80	RB80	TI0	RI0	01000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
						(bit	addressable	e) 0x98			
	SOMODE: S										
	This bit sele				1						
	0: Mode 0: 8										
D:40.	1: Mode 1: 9				te						
	UNUSED. R				_						
	MCE0: Mult					Onaration N	lada				
	The functior Mode 0: Ch			nt on the Se	enal Port 0	Operation	vioue.				
			of stop bit is	ignored							
			be activate		is logic low	ol 1					
	Mode 1: Mu				•						
			of ninth bit is								
			id an interru		ated only w	hen the nin	th hit is lo	aic 1			
Bit4:	REN0: Rece			ipt is gener				gio i.			
Dit i.				T receiver							
	This bit enables/disables the UART receiver. 0: UART0 reception disabled.										
	1: UARTO reception enabled.										
Bit3:	TB80: Ninth Transmission Bit.										
	The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode. It										
	is not used i			•							
	RB80: Ninth				,						
	RB80 is ass	igned the v	alue of the	STOP bit ir	Mode 0; it	is assigned	d the value	e of the 9th			
	data bit in N	•				Ũ					
Bit1:	TI0: Transm	it Interrupt	Flag.								
	Set by hard	ware when	a byte of da	ata has bee	n transmitte	ed by UART	Γ0 (after th	ne 8th bit in 8			
	bit UART M	ode, or at th	ne beginning	g of the ST	OP bit in 9-l	bit UART M	ode). Whe	en the UART			
	interrupt is e	enabled, se	tting this bit	causes the	CPU to ve	ctor to the l	JART0 int	errupt servic			
	routine. This	s bit must b	e cleared m	nanually by	software						
Bit0:	RI0: Receiv	e Interrupt	Flag.								
								t the STOP b			
								uses the CP			
	to vector to	the UART0	interrupt se	ervice routir	ne. This bit	must be cle	eared man	ually by soft-			
	ware.										

SFR Definition 14.1. SCON0: Serial Port 0 Control

Table 14.1. Timer Settings for Standard Baud Rates Using The Internal 24.5 MHzOscillator

	Frequency: 24.5 MHz									
	Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)			
SYSCLK from Internal Osc.	230400	-0.32%	106	SYSCLK	XX ²	1	0xCB			
	115200	-0.32%	212	SYSCLK	XX ²	1	0x96			
	57600	0.15%	426	SYSCLK	XX ²	1	0x2B			
	28800	-0.32%	848	SYSCLK / 4	01	0	0x96			
	14400	0.15%	1704	SYSCLK / 12	00	0	0xB9			
	9600	-0.32%	2544	SYSCLK / 12	00	0	0x96			
	2400	-0.32%	10176	SYSCLK / 48	10	0	0x96			
	1200	0.15%	20448	SYSCLK / 48	10	0	0x2B			
 Notes: 1. SCA1-SCA0 and T1M bit definitions can be found in Section 15.1. 										

2. X = Don't care.

Table 14.2. Timer Settings for Standard Baud Rates Using an External 25 MHzOscillator

	Frequency: 25.0 MHz									
	Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)			
SYSCLK from External Osc.	230400	-0.47%	108	SYSCLK	XX ²	1	0xCA			
	115200	0.45%	218	SYSCLK	XX ²	1	0x93			
	57600	-0.01%	434	SYSCLK	XX ²	1	0x27			
	28800	0.45%	872	SYSCLK / 4	01	0	0x93			
	14400	-0.01%	1736	SYSCLK / 4	01	0	0x27			
	9600	0.15%	2608	EXTCLK / 8	11	0	0x5D			
	2400	0.45%	10464	SYSCLK / 48	10	0	0x93			
	1200	-0.01%	20832	SYSCLK / 48	10	0	0x27			
SYSCLK from Internal Osc.	57600	-0.47%	432	EXTCLK / 8	11	0	0xE5			
	28800	-0.47%	864	EXTCLK / 8	11	0	0xCA			
	14400	0.45%	1744	EXTCLK / 8	11	0	0x93			
	9600	0.15%	2608	EXTCLK / 8	11	0	0x5D			

Notes:

1. SCA1–SCA0 and T1M bit definitions can be found in **Section 15.1**.

2. X = Don't care

