

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	8
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	10-VFDFN Exposed Pad
Supplier Device Package	11-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f304

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	System Overview	13
	1.1. CIP-51 [™] Microcontroller Core	16
	1.1.1. Fully 8051 Compatible	
	1.1.2. Improved Throughput	16
	1.1.3. Additional Features	
	1.2. On-Chip Memory	18
	1.3. On-Chip Debug Circuitry	19
	1.4. Programmable Digital I/O and Crossbar	19
	1.5. Serial Ports	
	1.6. Programmable Counter Array	21
	1.7. 8-Bit Analog to Digital Converter (C8051F300/2 Only)	22
	1.8. Comparator	23
2.	Absolute Maximum Ratings	
3.	Global Electrical Characteristics	25
4.	Pinout and Package Definitions	27
5.	ADC0 (8-Bit ADC, C8051F300/2)	35
	5.1. Analog Multiplexer and PGA	36
	5.2. Temperature Sensor	36
	5.3. Modes of Operation	39
	5.3.1. Starting a Conversion	39
	5.3.2. Tracking Modes	40
	5.3.3. Settling Time Requirements	41
	5.4. Programmable Window Detector	45
	5.4.1. Window Detector In Single-Ended Mode	45
	5.4.2. Window Detector In Differential Mode	
6.	Voltage Reference (C8051F300/2)	49
7.		
8.	•••••••••••••••••••••••••••••••••••••••	
	8.1. Instruction Set	
	8.1.1. Instruction and CPU Timing	
	8.1.2. MOVX Instruction and Program Memory	
	8.2. Memory Organization	
	8.2.1. Program Memory	
	8.2.2. Data Memory	64
	8.2.3. General Purpose Registers	
	8.2.4. Bit Addressable Locations	
	8.2.5. Stack	
	8.2.6. Special Function Registers	
	8.2.7. Register Descriptions	68
	8.3. Interrupt Handler	
	8.3.1. MCU Interrupt Sources and Vectors	
	8.3.2. External Interrupts	
	8.3.3. Interrupt Priorities	73

Table 5.1. ADC0 Electrical Characteristics

 V_{DD} = 3.0 V, VREF = 2.40 V (REFSL = 0), PGA Gain = 1, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units
DC Accuracy					
Resolution			8		bits
Integral Nonlinearity		—	±0.5	±1	LSB
Differential Nonlinearity	Guaranteed Monotonic	—	±0.5	±1	LSB
Offset Error		-5.0	0.5	5.0	LSB
Full Scale Error	Differential mode	-5.0	-1	5.0	LSB
Dynamic Performance (10 kHz	Sine-wave Differential Input, 1	dB belo	w Full Sc	ale, 500	ksps)
Signal-to-Noise Plus Distortion		45	48	—	dB
Total Harmonic Distortion	Up to the 5 th harmonic		-56	—	dB
Spurious-Free Dynamic Range			58	—	dB
Conversion Rate					
SAR Conversion Clock		—		6	MHz
Conversion Time in SAR Clocks		11		—	clocks
Track/Hold Acquisition Time		300		—	ns
Throughput Rate		—	—	500	ksps
Analog Inputs			1		
Input Voltage Range		0	—	VREF	V
Input Capacitance		—	5	—	pF
Temperature Sensor		—	_	—	
Linearity ^{1,2,3}		—	±0.5	—	°C
Gain ^{1,2,3}		—	3350	—	μV / °C
Gain ^{1,2,3}			±110		
Offset ^{1,2,3}	(Temp = 0 °C)		897±31	—	mV
Power Specifications					
Power Supply Current (V _{DD} supplied to ADC0)	Operating Mode, 500 ksps	—	400	900	μA
Power Supply Rejection		—	±0.3	—	mV/V
 Notes: 1. Represents one standard devi 2. Measured with PGA Gain = 2. 3. Includes ADC offset, gain, and 					

NOTES:

Mnemonic	Description	Bytes	Clock Cycles
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/4

Compare immediate to indirect and jump if not

Decrement Register and jump if not zero

Decrement direct byte and jump if not zero

3

2

3

1

4/5

2/3

3/4

1

Table 8.1. CIP-51 Instruction Set Summary (Continued)

Notes on Registers, Operands and Addressing Modes:

equal

Rn - Register R0-R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through R0 or R1.

No operation

rel - 8-bit, signed (two's complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00-0x7F) or an SFR (0x80-0xFF).

#data - 8-bit constant

CJNE @Ri, #data, rel

DJNZ Rn, rel

NOP

DJNZ direct, rel

#data16 - 16-bit constant

bit - Direct-accessed bit in Data RAM or SFR

addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2K-byte page of program memory as the first byte of the following instruction.

addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 8K-byte program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	Reset Value
CY	AC	F0	RS1	RS0	OV	F1	PARITY	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bi	t addressable)	0xD0
Bit7:	CY: Carry	•						
			he last arithmet					or a borrow
B HA			eared to logic 0 l	by all oth	ner arithme	tic operatio	ns.	
Bit6:	AC: Auxilia							
			he last arithmetic					
	tions.	raction) th	e high order nib					nmetic opera-
Bit5:	F0: User F	lag 0						
Dito.		0	able, general pu	irpose fl	ad for use i	under softw	are control	
Bits4–3:			Bank Select.					
			ich register ban	k is used	d during reg	gister acces	sses.	
			C C					
	RS1	RS0	Register Bank	Ad	dress			
	0	0	0	0x0	0–0x07			
	0	1	1	0x0	8–0x0F			
	1	0	2	0x1	0–0x17			
	1	1	3	0x1	8–0x1F			
D:40	O(k) O(k)							
Bit2:	OV: Overf	•	der the followin		etancoc:			
			or SUBB instruct			change ove	rflow	
			results in an ov		•	•		
			causes a divide-					
			d to 0 by the AD			/IUL, and D	IV instruction	ons in all other
	cases.		-		,	·		
Bit1:	F1: User F	•						
			able, general pu	irpose fl	ag for use ι	under softw	are control	
Bit0:	PARITY: F							
		-	: 1 if the sum of t	he eight	bits in the a	accumulato	or is odd an	d cleared if the
	sum is eve	en.						

SFR Definition 8.4. PSW: Program Status Word

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag	Bit addressable?	Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (/INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (/INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y	N	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	N	ET2 (IE.5)	PT2 (IP.5)
SMBus Interface	0x0033	6	SI (SMB0CN.0)	Y	N	ESMB0 (EIE1.0)	PSMB0 (EIP1.0)
ADC0 Window Compare	0x003B	7	AD0WINT (ADC0CN.3)	Y	N	EWADC0 (EIE1.1)	PWADC0 (EIP1.1)
ADC0 Conversion Com- plete	0x0043	8	AD0INT (ADC0CN.5)	Y	N	EADC0C (EIE1.2)	PADC0C (EIP1.2)
Programmable Counter Array	0x004B	9	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y	N	EPCA0 (EIE1.3)	PPCA0 (EIP1.3)
Comparator0 Falling Edge	0x0053	10	CP0FIF (CPT0CN.4)	N	N	ECP0F (EIE1.4)	PCP0F (EIP1.4)
Comparator0 Rising Edge	0x005B	11	CP0RIF (CPT0CN.5)	N	N	ECP0R (EIE1.5)	PCP0R (EIP1.5)

Table 8.4. Interrupt Summary

8.4.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout of 100 μ sec.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
GF5	GF4	GF3	GF2	GF1	GF0	STOP	IDLE	0000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0x87				
Bits7–2: GF5–GF0: General Purpose Flags 5-0. These are general purpose flags for use under software control.												
Bit1:	STOP: Stop		•	or use unde	er sontware	control.						
Ditt.	Setting this			1 in Stop m	ode. This b	oit will alway	s be read	as 0.				
	1: CPU goes											
Bit0:	IDLE: Idle M	ode Select										
	Setting this bit will place the CIP-51 in Idle mode. This bit will always be read as 0.											
	•	•										
	1: CPU goes Ports, and A	s into Idle n	node (shuts	off clock to	CPU, but							

SFR Definition 8.12. PCON: Power Control

12. Port Input/Output

Digital and analog resources are available through a byte-wide digital I/O Port, Port0. Each of the Port pins can be defined as general-purpose I/O (GPIO), analog input, or assigned to one of the internal digital resources as shown in Figure 12.3. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 12.3 and Figure 12.4). The registers XBR0, XBR1, and XBR2, defined in SFR Definition 12.1, SFR Definition 12.2, and SFR Definition 12.3 are used to select internal digital functions.

All Port I/Os are 5 V tolerant (refer to Figure 12.2 for the Port cell circuit). The Port I/O cells are configured as either push-pull or open-drain in the Port0 Output Mode register (P0MDOUT). Complete Electrical Specifications for Port I/O are given in Table 12.1 on page 110.

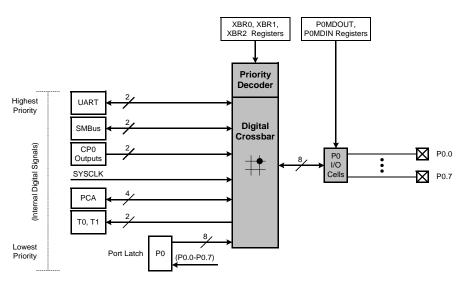


Figure 12.1. Port I/O Functional Block Diagram

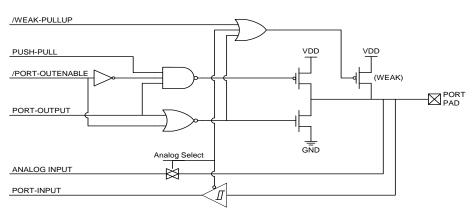


Figure 12.2. Port I/O Cell Block Diagram

The direction bit (R/W) occupies the least significant bit position of the address byte. The direction bit is set to logic 1 to indicate a "READ" operation and cleared to logic 0 to indicate a "WRITE" operation.

All transactions are initiated by a master, with one or more addressed slave devices as the target. The master generates the START condition and then transmits the slave address and direction bit. If the transaction is a WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to terminate the transaction and free the bus. Figure 13.3 illustrates a typical SMBus transaction.

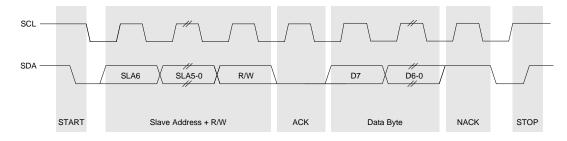


Figure 13.3. SMBus Transaction

13.3.1. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and SDA lines remain high for a specified time (see **Section "13.3.4. SCL High (SMBus Free) Timeout" on page 114**). In the event that two or more devices attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning master continues its transmission without interruption; the losing master becomes a slave and receives the rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and no data is lost.

SFR Definition 13.1. SMB0CF: SMBus	Clock/Configuration
------------------------------------	---------------------

R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	Reset Value			
ENSMB	INH	BUSY	EXTHOLD	SMBTOE	SMBFTE	SMBCS1	SMBCS0	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addres			
								0xC1			
Bit7:	ENSMB: SM	IBus Enabl	۵								
	This bit enal		-	is interface.	When ena	bled, the in	terface con	stantly mo			
	itors the SD							otantiy mo			
	0: SMBus in		-								
	1: SMBus in										
Bit6:	INH: SMBus										
	When this b	it is set to lo	ogic 1, the S	MBus does	s not genera	ate an inter	rupt when s	lave even			
	occur. This e										
	not affected	•						•			
	0: SMBus S	lave Mode	enabled.								
	1: SMBus S	lave Mode	inhibited.								
Bit5:	BUSY: SMB	us Busy In	dicator.								
	This bit is se	et to logic 1	by hardwar	e when a tr	ansfer is in	progress. I	t is cleared	to logic 0			
	when a STC	P or free ti	meout is sei	nsed.							
Bit4:	EXTHOLD:	SMBus Set	up and Hold	d Time Exte	nsion Enab	ole.					
	This bit cont		•		-	to Table 13	3.2.				
	0: SDA Extended Setup and Hold Times disabled.										
	1: SDA Exte										
Bit3:	SMBTOE: S										
	This bit enal										
	reload while										
	figured in sp	•									
	SCL is high.						t 25 ms, an	d the Time			
	2 interrupt s					ation.					
Bit2:	SMBFTE: S										
	When this b				onsidered fro	ee if SCL a	nd SDA ren	hain high fo			
	more than 1										
Bits1–0:	SMBCS1-SI										
	These two b					•		VIBUS bit			
	rate. The se	lected devi	ce snould be	e configure	a according	to Equatio	n 13.1.				
	SMBCS1	SMBCS0	SM	Bus Clock	Source						
	0	0		Fimer 0 Ove							
	0	4		Fimer 1 Ove	rflow						
	ů,	1									
	1	1 0	Timer	2 High Byte 2 Low Byte	e Overflow						

	Values Read				Current SMbus State	Typical Response Options		/alue Vritte	
Mode	Mode Status Vector ACKRQ ARBLOST ACK				STA	STO	ACK		
	0010	1	0	X	A slave address was received; ACK requested.	Acknowledge received address (received slave address match, R/W bit = READ).	0	0	1
						Do not acknowledge received address.	0	0	0
						Acknowledge received address, and switch to trans- mitter mode (received slave address match, R/W bit = WRITE); see Section 13.5.4 for procedure.	0	0	1
		1	1	X	Lost arbitration as master; slave address received; ACK requested.	Acknowledge received address (received slave address match, R/W bit = READ).	0	0	1
						Do not acknowledge received address.	0	0	0
SLAVE RECEIVER						Acknowledge received address, and switch to trans- mitter mode (received slave address match, R/W bit = WRITE); see Section 13.5.4 for procedure.	0	0	1
SL/						Reschedule failed transfer; do not acknowledge received address	1	0	0
	0010	0	1	Х	Lost arbitration while attempting a	Abort failed transfer.	0	0	Х
	0001			V	repeated START.	Reschedule failed transfer.	1	0	X
	0001	1	1		Lost arbitration while attempting a STOP.	complete/aborted).	0	0	0
		0	0		A STOP was detected while addressed as a Slave Transmitter or Slave Receiver.	Clear STO.	0	0	X
		0	1	Х		Abort transfer.	0	0	Х
					STOP.	Reschedule failed transfer.	1	0	X
	0000	1	0	X	A slave byte was received; ACK requested.	Acknowledge received byte; Read SMB0DAT.	0	0	1
						Do not acknowledge received byte.	0	0	0
		1	1	х	Lost arbitration while transmitting	Abort failed transfer.	0	0	0
					a data byte as master.	Reschedule failed transfer.	1	0	0

Table 13.4. SMBus Status Decoding (Continued)

NOTES:

14.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB80 (SCON0.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB80 (SCON0.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to '1'. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: (1) RI0 must be logic 0, and (2) if MCE0 is logic 1, the 9th bit must be logic 1 (when MCE0 is logic 0, the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF0, the ninth bit is stored in RB80, and the RI0 flag is set to '1'. A UART0 interrupt will occur if enabled when either TI0 or RI0 is set to '1'.

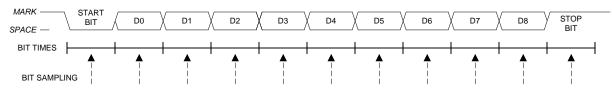
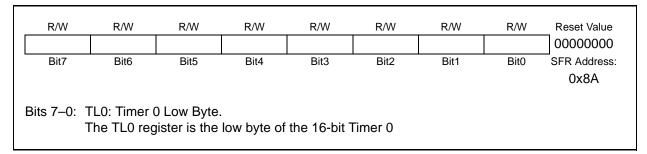
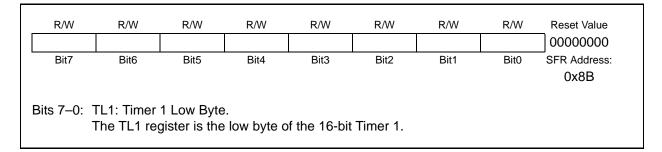


Figure 14.5. 9-Bit UART Timing Diagram

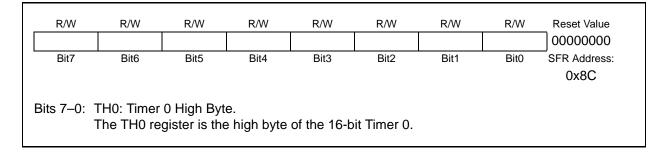
Table 14.6. Timer Settings for Standard Baud Rates Using an External 3.6864 MHZ
Oscillator

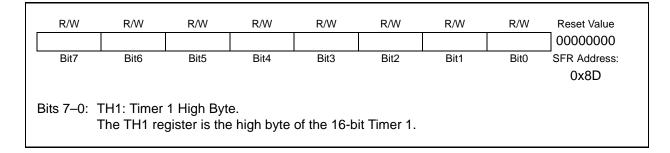

			Frequ	iency: 3.6864 M	ЛНz		
	Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)
	230400	0.00%	16	SYSCLK	XX ²	1	0xF8
	115200	0.00%	32	SYSCLK	XX ²	1	0xF0
from Osc.	57600	0.00%	64	SYSCLK	XX ²	1	0xE0
SYSCLK from External Osc.	28800	0.00%	128	SYSCLK	XX ²	1	0xC0
SYSCLK External	14400	0.00%	256	SYSCLK	XX ²	1	0x80
SY: Ext	9600	0.00%	384	SYSCLK	XX ²	1	0x40
	2400	0.00%	1536	SYSCLK / 12	00	0	0xC0
	1200	0.00%	3072	SYSCLK / 12	00	0	0x80
	230400	0.00%	16	EXTCLK / 8	11	0	0xFF
from Osc.	115200	0.00%	32	EXTCLK / 8	11	0	0xFE
K fr al O	57600	0.00%	64	EXTCLK / 8	11	0	0xFC
SYSCLK from Internal Osc.	28800	0.00%	128	EXTCLK / 8	11	0	0xF8
SY: Inte	14400	0.00%	256	EXTCLK / 8	11	0	0xF0
	9600	0.00%	384	EXTCLK / 8	11	0	0xE8

Notes:


1. SCA1–SCA0 and T1M bit definitions can be found in **Section 15.1**.

2. X = Don't care




SFR Definition 15.5. TL1: Timer 1 Low Byte

SFR Definition 15.6. TH0: Timer 0 High Byte

SFR Definition 15.7. TH1: Timer 1 High Byte

15.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers operate in auto-reload mode as shown in Figure 15.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or the clock defined by the Timer 2 External Clock Select bit (T2XCLK in TMR2CN), as follows:

T2MH	T2XCLK	TMR2H Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

T2ML	T2XCLK	TMR2L Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

Note: External clock divided by 8 is synchronized with the system clock, and the external clock must be less than or equal to the system clock to operate in this mode.

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows from 0xFF to 0x00. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is generated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be manually cleared by software.

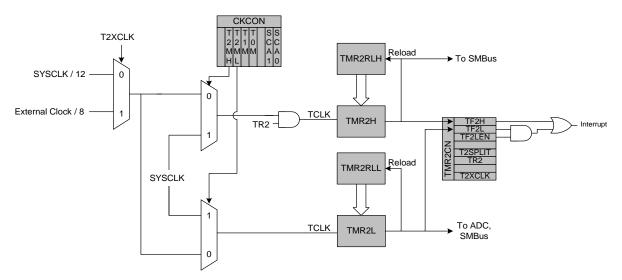
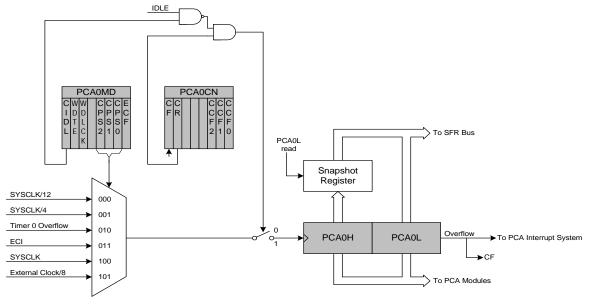


Figure 15.5. Timer 2 8-Bit Mode Block Diagram

16.1. PCA Counter/Timer


The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of PCA0H into a "snapshot" register; the following PCA0H read accesses this "snapshot" register. **Reading the PCA0L Register first guarantees an accurate reading of the entire 16-bit PCA0 counter**. Reading PCA0H or PCA0L does not disturb the counter operation. The CPS2-CPS0 bits in the PCA0MD register select the timebase for the counter/timer as shown in Table 16.1. **Note that in 'External oscillator source divided by 8' mode, the external oscillator source is synchronized with the system clock, and must have a frequency less than or equal to the system clock.**

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software (Note: PCA0 interrupts must be globally enabled before CF interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1). Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the CPU is in Idle mode.

CPS2	CPS1	CPS0	Timebase
0	0	0	System clock divided by 12
0	0	1	System clock divided by 4
0	1	0	Timer 0 overflow
0	1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)
1	0	0	System clock
1	0	1	External oscillator source divided by 8 [*]

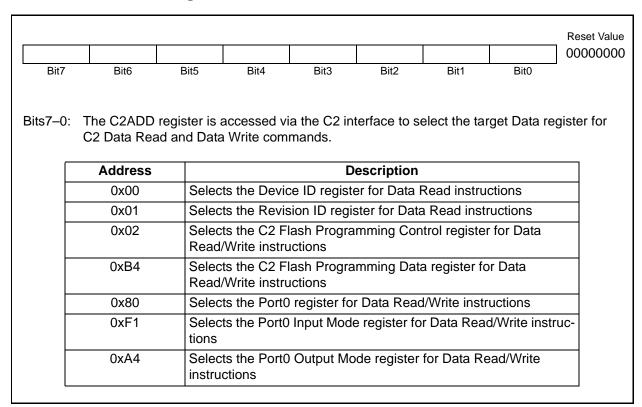
Table 16.1. PCA Timebase Input Options	Table	16.1.	PCA	Timebase	Input	Options
--	-------	-------	-----	----------	-------	---------

*Note: External oscillator source divided by 8 is synchronized with the system clock.

16.4. Register Descriptions for PCA

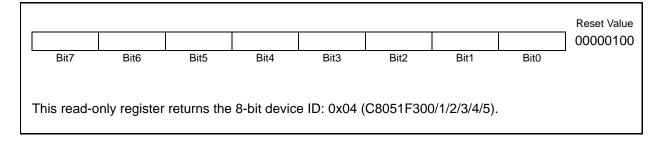
Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 16.1. PC	A0CN: PCA Control
-------------------------	-------------------

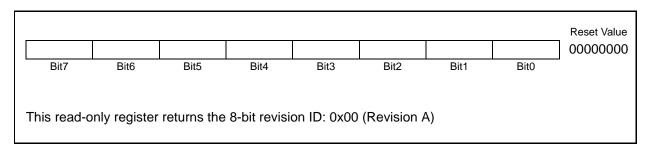

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CF	CR	_	_	—	CCF2	CCF1	CCF0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bit	addressable	e) 0xD8
Bit7: Bit6:	Counter/Tim to the PCA i must be clea CR: PCA Co This bit enal 0: PCA Cou	vare when er Overflow nterrupt se ared by soft punter/Time ples/disable nter/Timer	the PCA Co v (CF) inter rvice routin ware. er Run Cont es the PCA disabled.	ounter/Time rupt is enat e. This bit is rol.	oled, setting s not autom	this bit cau	uses the C	00. When the PU to vector rdware and
Bits5–3: Bit2:	1: PCA Cour UNUSED. R CCF2: PCA This bit is se enabled, set bit is not aut	ead = 000 Module 2 (et by hardw ting this bit	o, Write = d Capture/Co are when a causes the	mpare Flag match or c CPU to ve	ector to the	PCA interru	upt service	nterrupt is routine. This
Bit1:	CCF1: PCA This bit is se enabled, set bit is not aut	Module 1 (et by hardw ting this bit omatically	Capture/Co are when a causes the cleared by	mpare Flag match or c CPU to ve hardware a	apture occu ector to the l nd must be	urs. When t PCA interru	he CCF1 i ıpt service	nterrupt is routine. This
Bit0:	CCF0: PCA This bit is se enabled, set bit is not aut	et by hardw ting this bit	are when a causes the	match or c CPU to ve	ector to the	PCA interru	upt service	nterrupt is routine. This

17. C2 Interface

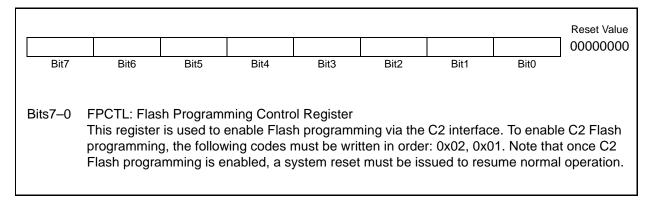
C8051F300/1/2/3/4/5 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface operates using only two pins: a bi-directional data signal (C2D) and a clock input (C2CK). See the C2 Interface Specification for details on the C2 protocol.


17.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.


C2 Register Definition 17.1. C2ADD: C2 Address

C2 Register Definition 17.2. DEVICEID: C2 Device ID



C2 Register Definition 17.3. REVID: C2 Revision ID

C2 Register Definition 17.4. FPCTL: C2 Flash Programming Control

C2 Register Definition 17.5. FPDAT: C2 Flash Programming Data

								Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
Bits7–0:	FPDAT: C2 F							
	This register accesses. Va				addresses	, and data	during C2 I	Flash
	-		nds are list		addresses	s, and data	during C2 I	Flash
	accesses. Va		nds are list Com	ed below.	addresses	s, and data	during C2 I	Flash
	accesses. Va		nds are list Com Flash Bl	ed below. mand	addresses	and data	during C2 I	-lash
	accesses. Va		nds are list Com Flash Bl Flash Bl	ed below. Imand lock Read	addresses	and data	during C2 I	Flash

