

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	8
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f305-gs

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Registers

SFR Definition 5.1. AMX0SL: AMUX0 Channel Select (C8051F300/2)	42
SFR Definition 5.2. ADC0CF: ADC0 Configuration (C8051F300/2)	43
SFR Definition 5.3. ADC0: ADC0 Data Word (C8051F300/2)	43
SFR Definition 5.4. ADC0CN: ADC0 Control (C8051F300/2)	44
SFR Definition 5.5. ADC0GT: ADC0 Greater-Than Data Byte (C8051F300/2)	46
SFR Definition 5.6. ADC0LT: ADC0 Less-Than Data Byte (C8051F300/2)	46
SFR Definition 6.1. REF0CN: Reference Control Register	50
SFR Definition 7.1. CPT0CN: Comparator0 Control	
SFR Definition 7.2. CPT0MX: Comparator0 MUX Selection	54
SFR Definition 7.3. CPT0MD: Comparator0 Mode Selection	54
SFR Definition 8.1. DPL: Data Pointer Low Byte	
SFR Definition 8.2. DPH: Data Pointer High Byte	69
SFR Definition 8.3. SP: Stack Pointer	69
SFR Definition 8.4. PSW: Program Status Word	70
SFR Definition 8.5. ACC: Accumulator	71
SFR Definition 8.6. B: B Register	71
SFR Definition 8.7. IE: Interrupt Enable	75
SFR Definition 8.8. IP: Interrupt Priority	76
SFR Definition 8.9. EIE1: Extended Interrupt Enable 1	77
SFR Definition 8.10. EIP1: Extended Interrupt Priority 1	78
SFR Definition 8.11. IT01CF: INT0/INT1 Configuration	
SFR Definition 8.12. PCON: Power Control	
SFR Definition 9.1. RSTSRC: Reset Source	87
SFR Definition 10.1. PSCTL: Program Store R/W Control	92
SFR Definition 10.2. FLKEY: Flash Lock and Key	
SFR Definition 10.3. FLSCL: Flash Scale	
SFR Definition 11.1. OSCICL: Internal Oscillator Calibration	98
SFR Definition 11.2. OSCICN: Internal Oscillator Control	
SFR Definition 11.3. OSCXCN: External Oscillator Control	100
SFR Definition 12.1. XBR0: Port I/O Crossbar Register 0	
SFR Definition 12.2. XBR1: Port I/O Crossbar Register 1	
SFR Definition 12.3. XBR2: Port I/O Crossbar Register 2	108
SFR Definition 12.4. P0: Port0 Register	
SFR Definition 12.5. P0MDIN: Port0 Input Mode	
SFR Definition 12.6. P0MDOUT: Port0 Output Mode	
SFR Definition 13.1. SMB0CF: SMBus Clock/Configuration	118
SFR Definition 13.2. SMB0CN: SMBus Control	
SFR Definition 13.3. SMB0DAT: SMBus Data	
SFR Definition 14.1. SCON0: Serial Port 0 Control	
SFR Definition 14.2. SBUF0: Serial (UART0) Port Data Buffer	
SFR Definition 15.1. TCON: Timer Control	
SFR Definition 15.2. TMOD: Timer Mode	
SFR Definition 15.3. CKCON: Clock Control	149

1.6. Programmable Counter Array

An on-chip Programmable Counter/Timer Array (PCA) is included in addition to the three 16-bit general purpose counter/timers. The PCA consists of a dedicated 16-bit counter/timer time base with three programmable capture/compare modules. The PCA clock is derived from one of six sources: the system clock divided by 12, the system clock divided by 4, Timer 0 overflows, an External Clock Input (ECI), the system clock, or the external oscillator clock source divided by 8. The external clock source selection is useful for real-time clock functionality, where the PCA is clocked by an external source while the internal oscillator drives the system clock.

Each capture/compare module can be configured to operate in one of six modes: Edge-Triggered Capture, Software Timer, High Speed Output, 8- or 16-bit Pulse Width Modulator, or Frequency Output. Additionally, Capture/Compare Module 2 offers watchdog timer (WDT) capabilities. Following a system reset, Module 2 is configured and enabled in WDT mode. The PCA Capture/Compare Module I/O and External Clock Input may be routed to Port I/O via the Digital Crossbar.

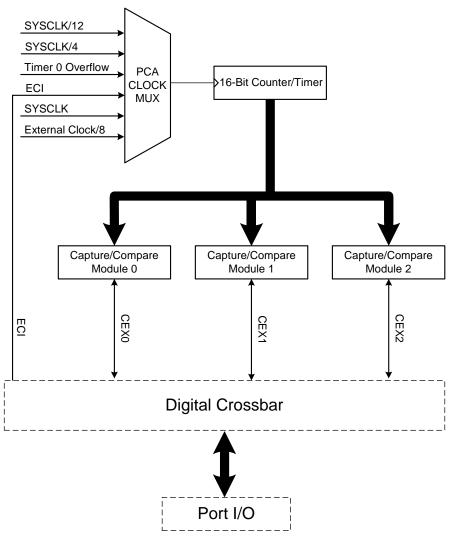


Figure 1.9. PCA Block Diagram

C8051F300/1/2/3/4/5

2. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings*

Parameter	Conditions	Min	Тур	Max	Units
Ambient temperature under bias		-55		125	°C
Storage Temperature		-65	_	150	°C
Voltage on any Port I/O Pin or $\overline{\text{RST}}$ with respect to GND		-0.3	_	5.8	V
Voltage on V _{DD} with respect to GND		-0.3	_	4.2	V
Maximum Total current through V_{DD} and GND		_	_	500	mA
Maximum output current sunk by RST or any Port pin		_	_	100	mA
*Note: Stresses above those listed under "Absolute Maximu	m Ratings" may	cause perr	manent da	mage to th	e device

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.



Figure 4.1. QFN-11 Pinout Diagram (Top View)

CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

8.1.2. MOVX Instruction and Program Memory

The MOVX instruction is typically used to access external data memory (Note: the C8051F300/1/2/3/4/5 does not support external data or program memory). In the CIP-51, the MOVX instruction accesses the onchip program memory space implemented as re-programmable Flash memory. This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to **Section "10. Flash Memory" on page 89** for further details.

Mnemonic	Description	Bytes	Clock Cycles
	Arithmetic Operations		
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, #data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, #data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, #data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal adjust A	1	1
	Logical Operations		
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND indirect RAM to A	1	2
ANL A, #data	AND immediate to A	2	2

Table 8.1. CIP-51 Instruction Set Summary

F8	CPT0CN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0			
F0	В	P0MDIN					EIP1	
E8	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2			RSTSRC
E0	ACC	XBR0	XBR1	XBR2	IT01CF		EIE1	
D8	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2			
D0	PSW	REF0CN						
C8	TMR2CN		TMR2RLL	TMR2RLH	TMR2L	TMR2H		
C0	SMB0CN	SMB0CF	SMB0DAT		ADC0GT		ADC0LT	
B8	IP			AMX0SL	ADC0CF		ADC0	
B0		OSCXCN	OSCICN	OSCICL			FLSCL	FLKEY
A8	IE							
A0					POMDOUT			
98	SCON0	SBUF0				CPT0MD		CPT0MX
90								
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
80	P0	SP	DPL	DPH				PCON
•	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
	(hit addragaable)							

Table 8.2. Special Function Register (SFR) Memory Map

(bit addressable)

Table 8.3. Special Function Registers*

Register	Address	Description	Page No.
ACC	0xE0	Accumulator	71
ADC0CF	0xBC	ADC0 Configuration	43
ADC0CN	0xE8	ADC0 Control	44
ADC0GT	0xC4	ADC0 Greater-Than Compare Word	46
ADC0LT	0xC6	ADC0 Less-Than Compare Word	46
ADC0	0xBE	ADC0 Data Word	43
AMX0SL	0xBB	ADC0 Multiplexer Channel Select	42
В	0xF0	B Register	71
CKCON	0x8E	Clock Control	149
CPT0CN	0xF8	Comparator0 Control	53
CPT0MD	0x9D	Comparator0 Mode Selection	54
CPT0MX	0x9F	Comparator0 MUX Selection	54
DPH	0x83	Data Pointer High	69
DPL	0x82	Data Pointer Low	68
EIE1	0xE6	Extended Interrupt Enable 1	77
EIP1	0xF6	External Interrupt Priority 1	78
FLKEY	0xB7	Flash Lock and Key	93
*Note: SFRs a	are listed in alpha	betical order. All undefined SFR locations are reserved	

Register Address		Description	Page No.
FLSCL	0xB6	Flash Scale	93
IE	0xA8	Interrupt Enable	75
IP	0xB8	Interrupt Priority	76
IT01CF	0xE4	INT0/INT1 Configuration Register	79
OSCICL	0xB3	Internal Oscillator Calibration	98
OSCICN	0xB2	Internal Oscillator Control	98
OSCXCN	0xB1	External Oscillator Control	100
P0	0x80	Port 0 Latch	109
POMDIN	0xF1	Port 0 Input Mode Configuration	109
POMDOUT	0xA4	Port 0 Output Mode Configuration	110
PCA0CN	0xD8	PCA Control	167
PCA0MD	0xD9	PCA Mode	168
PCA0CPH0	0xFC	PCA Capture 0 High	171
PCA0CPH1	0xEA	PCA Capture 1 High	171
PCA0CPH2	0xEC	PCA Capture 2 High	171
PCA0CPL0	0xFB	PCA Capture 0 Low	171
PCA0CPL1	0xE9	PCA Capture 1 Low	171
PCA0CPL2	0xEB	PCA Capture 2 Low	171
PCA0CPM0	0xDA	PCA Module 0 Mode Register	169
PCA0CPM1	0xDB	PCA Module 1 Mode Register	169
PCA0CPM2	0xDC	PCA Module 2 Mode Register	169
PCA0H	0xFA	PCA Counter High	170
PCA0L	0xF9	PCA Counter Low	170
PCON	0x87	Power Control	81
PSCTL	0x8F	Program Store R/W Control	92
PSW	0xD0	Program Status Word	70
REF0CN	0xD1	Voltage Reference Control	49
RSTSRC	0xEF	Reset Source Configuration/Status	87
SBUF0	0x99	UART 0 Data Buffer	137
SCON0	0x98	UART 0 Control	136
SMB0CF	0xC1	SMBus Configuration	118
SMB0CN	0xC0	SMBus Control	120
SMB0DAT	0xC2	SMBus Data	122
SP	0x81	Stack Pointer	69
TMR2CN	0xC8	Timer/Counter 2 Control	154
TCON	0x88	Timer/Counter Control	147
TH0	0x8C	Timer/Counter 0 High	150
*Note: SFRs a	re listed in aloha	abetical order. All undefined SFR locations are reserved	


Table 8.3. Special Function Registers* (Continued)

Register	Address	Description	Page No.		
TH1	0x8D	Timer/Counter 1 High	150		
TL0	0x8A	Timer/Counter 0 Low	150		
TL1	0x8B	Timer/Counter 1 Low	150		
TMOD	0x89	Timer/Counter Mode	148		
TMR2RLH	0xCB	Timer/Counter 2 Reload High	154		
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	154		
TMR2H	0xCD	Timer/Counter 2 High	154		
TMR2L	0xCC	Timer/Counter 2 Low	154		
XBR0	0xE1	Port I/O Crossbar Control 0	107		
XBR1	0xE2	Port I/O Crossbar Control 1	107		
XBR2	0xE3	Port I/O Crossbar Control 2	108		
0x97, 0xAE, 0xAF, 0xB4, 0xB6, 0xBF, 0xCE, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xDD, 0xDE, 0xDF, 0xF5		Reserved			
*Note: SFRs a	are listed in alpha	betical order. All undefined SFR locations are reserved			

8.2.7. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic I. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

SFR Definition 8.1. DPL: Data Pointer Low Byte

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag		Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (/INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (/INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y	N	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	N	ET2 (IE.5)	PT2 (IP.5)
SMBus Interface	0x0033	6	SI (SMB0CN.0)	Y	N	ESMB0 (EIE1.0)	PSMB0 (EIP1.0)
ADC0 Window Compare	0x003B	7	AD0WINT (ADC0CN.3)	Y	N	EWADC0 (EIE1.1)	PWADC0 (EIP1.1)
ADC0 Conversion Com- plete	0x0043	8	AD0INT (ADC0CN.5)	Y	N	EADC0C (EIE1.2)	PADC0C (EIP1.2)
Programmable Counter Array	0x004B	9	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y	N	EPCA0 (EIE1.3)	PPCA0 (EIP1.3)
Comparator0 Falling Edge	0x0053	10	CP0FIF (CPT0CN.4)	N	N	ECP0F (EIE1.4)	PCP0F (EIP1.4)
Comparator0 Rising Edge	0x005B	11	CP0RIF (CPT0CN.5)	N	N	ECP0R (EIE1.5)	PCP0R (EIP1.5)

Table 8.4. Interrupt Summary

9. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the \overrightarrow{RST} pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. Refer to **Section "11. Oscillators" on page 97** for information on selecting and configuring the system clock source. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source (**Section "16.3. Watchdog Timer Mode" on page 164** details the use of the Watchdog Timer). Once the system clock source is stable, program execution begins at location 0x0000.

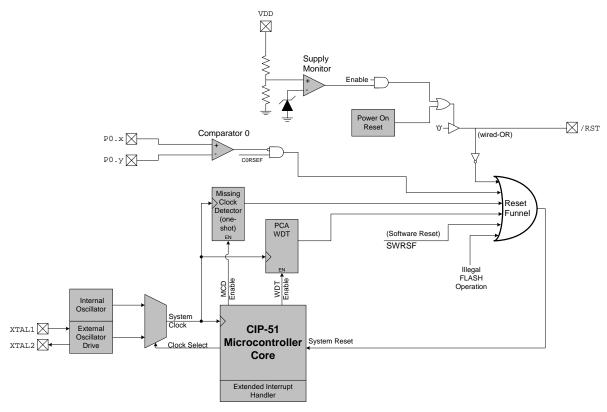


Figure 9.1. Reset Sources

Parameter	Conditions	Min	Тур	Max	Units		
Calibrated Internal Oscillator	C8051F300/1 devices -40 to +85 °C	24	24.5	25	MHz		
Frequency	C8051F300/1 devices 0 to +70 °C	24.3	24.7	25	MHz		
Uncalibrated Internal Oscillator Frequency	C8051F302/3/4/5 devices	16	20	24	MHz		
Internal Oscillator Supply Current (from V _{DD})	OSCICN.2 = 1		450		μA		

Table 11.1. Internal Oscillator Electrical Characteristics

11.2. External Oscillator Drive Circuit

-40 to +85 °C unless otherwise specified

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 11.1. A 10 M Ω resistor also must be wired across the XTAL2 and XTAL1 pins for the crystal/resonator configuration. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as shown in Option 2, 3, or 4 of Figure 11.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 11.3).

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins P0.2 and P0.3 are occupied as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P0.3 is occupied as XTAL2. The Port I/O Crossbar should be configured to skip the occupied Port pins; see **Section "12.1. Priority Crossbar Decoder" on page 104** for Crossbar configuration. Additionally, when using the external oscillator circuit in crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as **analog inputs**. In CMOS clock mode, the associated pin should be configured as a **digital input**. See **Section "12.2. Port I/O Initialization" on page 106** for details on Port input mode selection.

11.3. System Clock Selection

The CLKSL bit in register OSCICN selects which oscillator is used as the system clock. CLKSL must be set to '1' for the system clock to run from the external oscillator; however the external oscillator may still clock peripherals (timers, PCA) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal and external oscillator, so long as the selected oscillator is enabled and has settled. The internal oscillator requires little start-up time and may be enabled and selected as the system clock in the same write to OSCICN. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use as the system clock. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to '1' by hardware when the external oscillator is settled. To avoid reading a false XTLVLD, in crystal mode software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD. RC and C modes typically require no start-up time.

SFR Definition 11.3. OSCXCN: External Oscillator Control

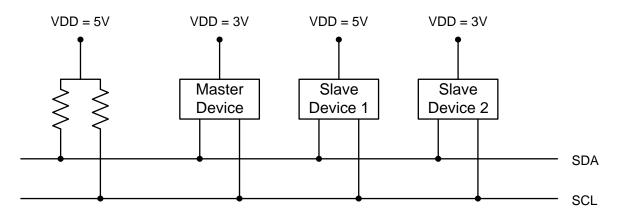
	D 444	D 444	-	-	5 4 4	5.44	5.444	5		
		R/W XOSCMD1		R	R/W XFCN2	R/W XFCN1	R/W XFCN0	Reset Value		
Bit7	Bit6	Bit5	Bit4		Bit2		Bit0	00000000		
BIT	BIto	BItS	BI[4	Bit3	BItZ	Bit1	Bitu	SFR Address: 0xB1		
								UXDI		
Bit7:		ustal Oscillat	or Valid Flag.							
Ditr.	(Read only w									
	· ·		used or not ye	t stable.						
	•		nning and stat							
Bits6-4:	XOSCMD2-0): External C	scillator Mode	Bits.						
	00x: Externa	l Oscillator c	ircuit off.							
	010: Externa									
			ck Mode with o	•	-					
			with divide by	-						
	•		Mode with div	ide by 2	stage.					
	110: Crystal			by 2 of						
Bit3:	•		ode with divide Nrite = don't ca	•	ige.					
Bits2–0:			lator Frequenc		h Rits					
B102 0.	000-111: See		•							
	XFCN	Crystal (XC	DSCMD = 11x)	RC ()	(OSCMD =	10x) C	(XOSCMD	= 10x)		
	000	f ≤ 3	32 kHz		f≤25 kHz		K Factor =	0.87		
	001	32 kHz <	< f ≤ 84 kHz	25 k	Hz < f ≤ 50	kHz	K Factor =	= 2.6		
	010	84 kHz <	: f ≤ 225 kHz	50 kł	Hz < f ≤ 100	kHz	K Factor =	= 7.7		
	011	225 kHz «	< f ≤ 590 kHz	100 k	$Hz < f \le 200$) kHz	K Factor =	= 22		
	100	590 kHz <	< f ≤ 1.5 MHz	200 k	$Hz < f \le 400$) kHz	K Factor =	= 65		
	101	1.5 MHz	$< f \le 4 MHz$	400 k	$Hz < f \le 800$) kHz	K Factor =	180		
	110	4 MHz <	: f ≤ 10 MHz	800 k	Hz < f ≤ 1.6	MHz	K Factor =	664		
	111	10 MHz «	< f ≤ 30 MHz	1.6 M	Hz < f ≤ 3.2	MHz	K Factor =	1590		
CRYSTA		cuit from Fig	ure 11.1, Optic	n 1· XO	SCMD - 11	v)				
ORIGIA			natch crystal fr			^)				
	2				-					
RC MOD	E (Circuit fror	n Figure 11.1	I, Option 2; XC	SCMD	= 10x)					
			natch frequend							
	$f = 1.23(10^3)$	/ (R x C) , w	here							
	f = frequency									
	C = capacito	r value in pF								
	R = Pull-up ı	esistor value	e in kΩ							
C MODE	(Circuit from	Figure 11.1,	Option 3; XOS	SCMD =	10x)					
	C MODE (Circuit from Figure 11.1, Option 3; XOSCMD = 10x) Choose K Factor (KF) for the oscillation frequency desired:									
	$f = KF / (C \times V_{DD})$, where									
	f = frequency of oscillation in MHz									
			(TAL2 pin in pl	=						
	$V_{DD} = Powe$	r Supply on I	MCU in volts							

SFR Definition 12.1. XBR0: Port I/O Crossbar Register 0

R/W	R/W XSKP6	R/W XSKP5	R/W XSKP4	R/W XSKP3	R/W XSKP2	R/W XSKP1	R/W XSKP0	Reset Value 0000000	
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR									
Bit7: Bits6–0:		Crossbar S elect Port p or ADC or C CNVSTR in nding P0.n	kip Enable bins to be sl Comparator nput) should pin is not sl	Bits kipped by th) or used as d be skippe kipped by tl	s special fur d by the Cr he Crossba	nctions (VR ossbar.		0xE1 Ised as ana- external oscil-	

SFR Definition 12.2. XBR1: Port I/O Crossbar Register 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
-	AOME	CP0AOEN	CPOOEN	SYSCKE		-	UTX0EN	7			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
Ditt	Dito	Dito	Ditt	Dito	DIE	Ditt	Dito	0xE2			
								UNEZ			
Bits7–6:	PCA0ME: P	CA Module	/0 Enable	Bits							
	00: All PCA	I/O unavaila	ble at Port	pins.							
	01: CEX0 rc			•							
	10: CEX0, C	EX1 routed	to Port pin	s.							
	11: CEX0, C	EX1, CEX2	routed to F	Port pins.							
Bit5:		Comparator			ut Enable						
	0: Asynchronous CP0 unavailable at Port pin.										
	1: Asynchronous CP0 routed to Port pin.										
Bit4:		omparator0	•	able							
		ailable at Po									
Dito	1: CP0 routed to Port pin.										
Bit3:		SYSCLK Out									
	0: /SYSCLK		•								
Bit2:	1: /SYSCLK output routed to Port pin. SMB0OEN: SMBus I/O Enable										
DILZ.				inc							
	0: SMBus I/O unavailable at Port pins. 1: SDA, SCL routed to Port pins.										
Bit1:	URX0EN: UART RX Enable										
Ditt.				in							
	0: UART RX0 unavailable at Port pin. 1: UART RX0 routed to Port pin P0.5.										
Bit0:	UTX0EN: UART TX Output Enable										
	0: UART TX0 unavailable at Port pin.										
		0 routed to I	•								


13.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

- 1. The I²C-Bus and How to Use It (including specifications), Philips Semiconductor.
- 2. The I²C-Bus Specification Version 2.0, Philips Semiconductor.
- 3. System Management Bus Specification Version 1.1, SBS Implementers Forum.

13.2. SMBus Configuration

Figure 13.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 3.0 and 5.0 V; different devices on the bus may operate at different voltage levels. The bidirectional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pull-up resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 1000 ns, respectively.

Figure 13.2. Typical SMBus Configuration

13.3. SMBus Operation

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ). The master device initiates both types of data transfers and provides the serial clock pulses on SCL. The SMBus interface may operate as a master or a slave, and multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration. Note that it is not necessary to specify one device as the Master in a system; any device that transmits a START and a slave address becomes the master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7–1: 7-bit slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Each byte that is received (by a master or slave) must be acknowledged (ACK) with a low SDA during a high SCL (see Figure 13.3). If the receiving device does not ACK, the transmitting device will read a NACK (not acknowledge), which is a high SDA during a high SCL.

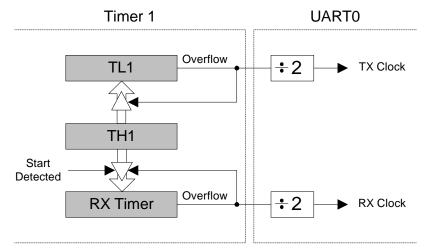

	Valu	ies	Read	k	Current SMbus State	Typical Response Options	Values Written		
Mode	Status Vector ACKRQ ARBLOST ACK			ACK				STO	ACK
	0010	1	0	X	A slave address was received; ACK requested.	Acknowledge received address (received slave address match, R/W bit = READ).	0	0	1
						Do not acknowledge received address.	0	0	0
						Acknowledge received address, and switch to trans- mitter mode (received slave address match, R/W bit = WRITE); see Section 13.5.4 for procedure.	0	0	1
		1	1	X	Lost arbitration as master; slave address received; ACK requested.	Acknowledge received address (received slave address match, R/W bit = READ).	0	0	1
						Do not acknowledge received address.	0	0	0
SLAVE RECEIVER						Acknowledge received address, and switch to trans- mitter mode (received slave address match, R/W bit = WRITE); see Section 13.5.4 for procedure.	0	0	1
SL/						Reschedule failed transfer; do not acknowledge received address	1	0	0
	0010	0	1	Х	Lost arbitration while attempting a	Abort failed transfer.	0	0	Х
	0001			V	repeated START.	Reschedule failed transfer.	1	0	X
	0001	1	1 X Lost arbitration while attempting a STOP.		STOP.	complete/aborted).	0	0	0
		0	0		A STOP was detected while addressed as a Slave Transmitter or Slave Receiver.	Clear STO.	0	0	X
		0	1	Х		Abort transfer.	0	0	Х
					STOP.	Reschedule failed transfer.	1	0	X
	0000	1	0	X	A slave byte was received; ACK requested.	Acknowledge received byte; Read SMB0DAT.	0	0	1
						Do not acknowledge received byte.	0	0	0
		1	1	х	Lost arbitration while transmitting	Abort failed transfer.	0	0	0
					a data byte as master.	Reschedule failed transfer.	1	0	0

Table 13.4. SMBus Status Decoding (Continued)

14.1. Enhanced Baud Rate Generation

The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 14.2), which is not user accessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see **Section "15.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 145**). The Timer 1 reload value should be set so that over-flows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of five sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, or the external oscillator clock / 8. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 14.1.

$$UartBaudRate = \frac{T1_{CLK}}{(256 - T1H)} \times \frac{1}{2}$$

Equation 14.1. UART0 Baud Rate

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in **Section "15.2. Timer 2" on page 151**. A quick reference for typical baud rates and system clock frequencies is given in Tables 14.1 through 14.6. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1 (see **Section "15.1. Timer 0 and Timer 1" on page 143** for more details).

 The function of this bit is dependent on the Serial Port 0 Operation Mode. Mode 0: Checks for valid stop bit. 0: Logic level of stop bit is ignored. 1: RI0 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: T10: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt server. 	Value
 (bit addressable) (c) (bit addressable) (
 S0MODE: Serial Port 0 Operation Mode. This bit selects the UART0 Operation Mode. 0: Mode 0: 8-bit UART with Variable Baud Rate 1: Mode 1: 9-bit UART with Variable Baud Rate 3it6: UNUSED. Read = 1b. Write = don't care. 3it5: MCE0: Multiprocessor Communication Enable. The function of this bit is dependent on the Serial Port 0 Operation Mode. Mode 0: Checks for valid stop bit. 0: Logic level of stop bit is ignored. 1: RI0 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode. Bit4: RB80: Ninth Receive Bit. RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: T10: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt servutine. This bit must be cleared manually by software Bit0: R10: Receive Interrupt Flag. Set to 1'1 by hardware when a byte of data has been received by UART0 (set at the STO sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the	
 This bit selects the UARTO Operation Mode. 0: Mode 0: 8-bit UART with Variable Baud Rate 1: Mode 1: 9-bit UART with Variable Baud Rate 1: MOde 1: 9-bit UART with Variable Baud Rate Bit6: UNUSED. Read = 1b. Write = don't care. Bit5: MCE0: Multiprocessor Communication Enable. The function of this bit is dependent on the Serial Port 0 Operation Mode. Mode 0: Checks for valid stop bit. 0: Logic level of stop bit is ignored. 1: RI0 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UARTO reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode. Bit4: RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 1 data bit in Mode 1. Bit1: Ti0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bid bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by software 	98
 This bit selects the UART⁰ Operation Mode. 0: Mode 0: 8-bit UART with Variable Baud Rate 1: Mode 1: 9-bit UART with Variable Baud Rate 3it6: UNUSED. Read = 1b. Write = don't care. 3it5: MCE0: Multiprocessor Communication Enable. The function of this bit is dependent on the Serial Port 0 Operation Mode. Mode 0: Checks for valid stop bit. 0: Logic level of stop bit is ignored. 1: RI0 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. 8it4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception disabled. 1: UART0 reception enabled. 3it3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode. 3it4: RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 1 data bit in Mode 1. 3it1: T10: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bid bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by software 	
 0: Mode 0: 8-bit UART with Variable Baud Rate 1: Mode 1: 9-bit UART with Variable Baud Rate Bit6: UNUSED. Read = 1b. Write = don't care. Bit5: MCE0: Multiprocessor Communication Enable. The function of this bit is dependent on the Serial Port 0 Operation Mode. Mode 0: Checks for valid stop bit. 0: Logic level of stop bit is ignored. 1: R10 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: R10 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode is not used in 8-bit UART Mode. Set or cleared by software as required. Bit4: RB80: Sasigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: T10: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bid bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by software Bit0: R10: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP sampling time). When the UART0 interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by software 	
 1: Mode 1: 9-bit UART with Variable Baud Rate Bit6: UNUSED. Read = 1b. Write = don't care. Bit5: MCE0: Multiprocessor Communication Enable. The function of this bit is dependent on the Serial Port 0 Operation Mode. Mode 0: Checks for valid stop bit. 0: Logic level of stop bit is ignored. 1: RI0 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: T10: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by software Bit0: R10: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STO sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	
 Bit6: UNUSED. Read = 1b. Write = don't care. Bit5: MCE0: Multiprocessor Communication Enable. The function of this bit is dependent on the Serial Port 0 Operation Mode. Mode 0: Checks for valid stop bit. 0: Logic level of stop bit is ignored. 1: RI0 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception disabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the sidata bit in Mode 1. Bit1: T10: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bid bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service manually by software Bit0: R10: Receive Interrupt Flag. Set by hardware when a byte of data has been received by UART0 (set at the STO sampling time). When the UART0 interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by software 	
 Bit5: MCE0: Multiprocessor Communication Enable. The function of this bit is dependent on the Serial Port 0 Operation Mode. Mode 0: Checks for valid stop bit. 0: Logic level of stop bit is ignored. 1: RI0 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt se routine. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STO sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	
 The function of this bit is dependent on the Serial Port 0 Operation Mode. Mode 0: Checks for valid stop bit. 0: Logic level of stop bit is ignored. 1: RI0 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP simpling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by software 	
 Mode 0: Checks for valid stop bit. 0: Logic level of stop bit is ignored. 1: RI0 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode. Bit2: RB80: Ninth Receive Bit. RB80: Ninth Receive Bit. RB80: is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, setting this bit causes the CPU to vector to the UART0 interrupt service mutually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STO sampling time). When the UART0 interrupt is enabled, setting this bit causes the celeared manually by software 	
 0: Logic level of stop bit is ignored. 1: RI0 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	
 RI0 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the sidata bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bid bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt set routine. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOS sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by software 	
 Mode 1: Multiprocessor Communications Enable. 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: T10: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bid bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt servotine. This bit must be cleared manually by software Bit0: R10: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP sampling time). When the UART0 interrupt is enabled, setting this bit course the to vector to the UART0 interrupt service routine. This bit must be cleared manually by software 	
 0: Logic level of ninth bit is ignored. 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt set routine. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STO sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	
 RIO is set and an interrupt is generated only when the ninth bit is logic 1. Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt set routine. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STO sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	
 Bit4: REN0: Receive Enable. This bit enables/disables the UART receiver. 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt se routine. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STO sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	
 0: UART0 reception disabled. 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt set routine. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP sampling time). When the UART0 interrupt is enabled, setting this bit causes the created by UART0 (set at the STOP sampling time). When the UART0 interrupt is enabled, setting this bit causes the created by UART0 (set at the STOP sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	
 1: UART0 reception enabled. Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Modis is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt set routine. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP sampling time). When the UART0 interrupt is enabled, setting this bit course to '1' causes the to vector to the UART0 interrupt set or vector to the UART0 interrupt is enabled, setting this bit causes the course by UART0 (set at the STOP sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	
 Bit3: TB80: Ninth Transmission Bit. The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Modis not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STO sampling time). When the UART0 interrupt is enabled, setting this bit course routine. This bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by software 	
 The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Modilis not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt set routine. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP sit ovector to the UART0 interrupt set routine). When the UART0 interrupt is enabled, setting this bit causes the created by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	
 is not used in 8-bit UART Mode. Set or cleared by software as required. Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9 data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt set routine. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP sit or '1' causes the to vector to the UART0 interrupt is enabled, setting this bit causes the CPU to vector by UART0 (set at the STOP sit or '1' by hardware when a byte of data has been received by UART0 (set at the STOP sit or '1' by hardware when a byte of data has been received by UART0 (set at the STOP sit or '1' by hardware when a byte of data has been received by UART0 (set at the STOP sit or '1' by hardware when a byte of data has been received by UART0 (set at the STOP sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	
 Bit2: RB80: Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the sidata bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt set routine. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP sit to vector to the UART0 interrupt set to vector to the UART0 interrupt is enabled, setting this bit causes the CPU to vector by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	ode.
 RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the s data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP sampling time). When the UART0 interrupt is enabled, setting this bit causes the celeared by UART0 (set at the STOP set to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by software 	
 data bit in Mode 1. Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP set to vector to the UART0 interrupt service routine. This bit must be cleared manually by software 	
 Bit1: TI0: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP is enabled, setting time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	9th
 Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bi bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by software 	
 bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the U interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt so routine. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STO sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	
 interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt service. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the ST0 sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by 	
routine. This bit must be cleared manually by software Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STO sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by	
Bit0: RI0: Receive Interrupt Flag. Set to '1' by hardware when a byte of data has been received by UART0 (set at the STC sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by	servic
Set to '1' by hardware when a byte of data has been received by UART0 (set at the STC sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by	
sampling time). When the UART0 interrupt is enabled, setting this bit to '1' causes the to vector to the UART0 interrupt service routine. This bit must be cleared manually by	
to vector to the UART0 interrupt service routine. This bit must be cleared manually by	
Wale.	/ SOIL

SFR Definition 14.1. SCON0: Serial Port 0 Control

C8051F300/1/2/3/4/5

15.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

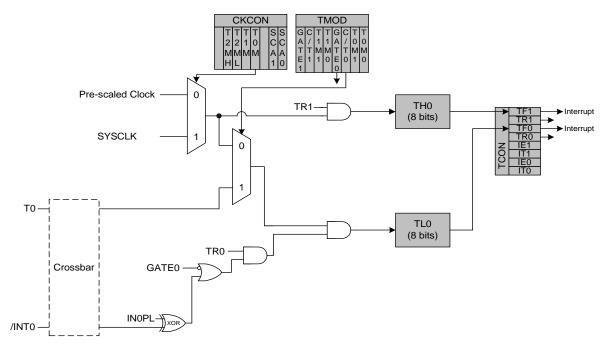
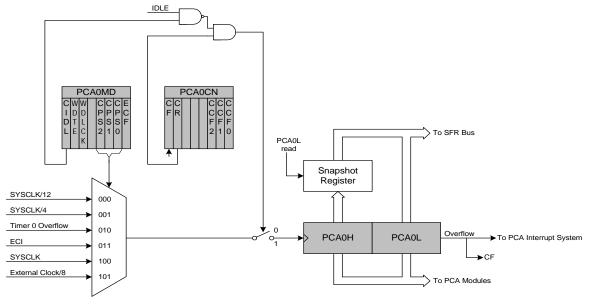


Figure 15.3. T0 Mode 3 Block Diagram

16.1. PCA Counter/Timer


The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of PCA0H into a "snapshot" register; the following PCA0H read accesses this "snapshot" register. **Reading the PCA0L Register first guarantees an accurate reading of the entire 16-bit PCA0 counter**. Reading PCA0H or PCA0L does not disturb the counter operation. The CPS2-CPS0 bits in the PCA0MD register select the timebase for the counter/timer as shown in Table 16.1. **Note that in 'External oscillator source divided by 8' mode, the external oscillator source is synchronized with the system clock, and must have a frequency less than or equal to the system clock.**

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software (Note: PCA0 interrupts must be globally enabled before CF interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1). Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the CPU is in Idle mode.

CPS2	CPS1	CPS0	Timebase	
0	0	0	System clock divided by 12	
0	0	1	System clock divided by 4	
0	1	0	Timer 0 overflow	
0	1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)	
1	0	0	System clock	
1	0	1	External oscillator source divided by 8 [*]	

Table 16.1. PCA Timebase Input Options	Table	16.1.	PCA	Timebase	Input	Options
--	-------	-------	-----	----------	-------	---------

*Note: External oscillator source divided by 8 is synchronized with the system clock.

16.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 16.1.

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Equation 16.1. Square Wave Frequency Output

Where F_{PCA} is the frequency of the clock selected by the CPS2–0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

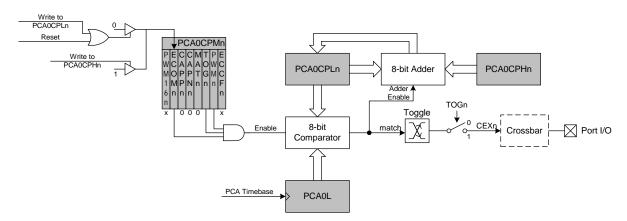


Figure 16.7. PCA Frequency Output Mode

