

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	8
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f305-gsr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F300/1/2/3/4/5

2. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings*

Parameter	Conditions	Min	Тур	Max	Units
Ambient temperature under bias		-55	_	125	°C
Storage Temperature		-65	_	150	°C
Voltage on any Port I/O Pin or \overline{RST} with respect to GND		-0.3	_	5.8	V
Voltage on V_{DD} with respect to GND		-0.3	_	4.2	V
Maximum Total current through V _{DD} and GND		_	_	500	mA
Maximum output current sunk by \overline{RST} or any Port pin		_	_	100	mA
*Noto: Strassas above these listed under "Absolute Maximu	m Potings" mov		manant da	maga to th	o dovico

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

5. ADC0 (8-Bit ADC, C8051F300/2)

The ADC0 subsystem for the C8051F300/2 consists of two analog multiplexers (referred to collectively as AMUX0) with 11 total input selections, a differential programmable gain amplifier (PGA), and a 500 ksps, 8-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector (see block diagram in Figure 5.1). The AMUX0, PGA, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shown in Figure 5.1. ADC0 operates in both Single-ended and Differential modes, and may be configured to measure any Port pin, the Temperature Sensor output, or V_{DD} with respect to any Port pin or GND. The ADC0 subsystem is enabled only when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1. The ADC0 subsystem is in low power shutdown when this bit is logic 0.

Figure 5.1. ADC0 Functional Block Diagram

SFR	Definition	5.2. ADC	OCF: ADCO	Configuration	(C8051F300	/2)
				5	•	

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
AD0SC-	4 AD0SC3	AD0SC2	AD0SC1	AD0SC0	—	AMP0GN1	AMP0GN0	11111000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBC
Bits7–3:	AD0SC4-0:	ADC0 SAR	Conversio	n Clock Per	iod Bits.			
	SAR Conver	sion clock i	s derived fr	om system	clock by th	e following e	equation, wl	here
	AD0SC refer	's to the 5-b	it value helo	d in bits AD)SC4-0. SA	R Conversio	on clock red	quirements
	are given in							
	AD0SC =	SYSCLK	- 1					
		CLK _{SAR}						
Bit2:	UNUSED. R	ead = 0b: V	Vrite = don'i	t care.				
Bits1–0:	AMP0GN1-0	0: ADC0 Int	ernal Ampli	ifier Gain (P	GA).			
	00: Gain = 0	.5						
	01: Gain = 1							
	10. $Gain = 2$ 11. $Gain = 4$							
	· · · · · · · · · · · · · · · · · · ·							

SFR Definition 5.3. ADC0: ADC0 Data Word (C8051F300/2)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBE
Bits7–0:	ADC0 Data ADC0 holds mode, ADC0 complement	Word. the output) holds an 8 signed 8-b	data byte fr 3-bit unsigne it integer.	om the last ed integer. \	ADC0 conv When in Dif	rersion. Who ferential mo	en in Singl de, ADC0	e-ended holds a 2's

Table 5.1. ADC0 Electrical Characteristics

 V_{DD} = 3.0 V, VREF = 2.40 V (REFSL = 0), PGA Gain = 1, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy		1	<u>. </u>	I	
Resolution			8		bits
Integral Nonlinearity		—	±0.5	±1	LSB
Differential Nonlinearity	Guaranteed Monotonic	—	±0.5	±1	LSB
Offset Error		-5.0	0.5	5.0	LSB
Full Scale Error	Differential mode	-5.0	-1	5.0	LSB
Dynamic Performance (10 kHz S	Sine-wave Differential Input, 1	dB belo	w Full Sc	ale, 500	ksps)
Signal-to-Noise Plus Distortion		45	48	_	dB
Total Harmonic Distortion	Up to the 5 th harmonic	-	-56		dB
Spurious-Free Dynamic Range		<u> </u>	58	<u> </u>	dB
Conversion Rate		4	<u> </u>	·I	
SAR Conversion Clock		—	<u> </u>	6	MHz
Conversion Time in SAR Clocks	-	11	<u> </u>		clocks
Track/Hold Acquisition Time	-	300	<u> </u>		ns
Throughput Rate		-	<u> </u>	500	ksps
Analog Inputs		J	·		
Input Voltage Range		0		VREF	V
Input Capacitance		—	5		pF
Temperature Sensor		—	!		
Linearity ^{1,2,3}		-	±0.5	—	°C
Oci=1.2.3		<u>† </u>	3350	_	μV / °C
Gam ^{-,-,-}			±110		
Offset ^{1,2,3}	(Temp = 0 °C)	$\left[- \right]$	897±31	$\overline{} - \overline{}$	mV
Power Specifications					
Power Supply Current (V _{DD} supplied to ADC0)	Operating Mode, 500 ksps	-	400	900	μA
Power Supply Rejection		<u> </u>	±0.3		mV/V
 Notes: 1. Represents one standard devia 2. Measured with PGA Gain = 2. 3. Includes ADC offset, gain, and 	ation from the mean.		<u> </u>		

7. Comparator0

C8051F300/1/2/3/4/5 devices include an on-chip programmable voltage comparator, which is shown in Figure 7.1. Comparator0 offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CP0), or an asynchronous "raw" output (CP0A). The asynchronous CP0A signal is available even when the system clock is not active. This allows Comparator0 to operate and generate an output with the device in STOP mode. When assigned to a Port pin, the Comparator0 output may be configured as open drain or push-pull (see Section "12.2. Port I/O Initialization" on page 106). Comparator0 may also be used as a reset source (see Section "9.5. Comparator0 Reset" on page 85).

The inputs for Comparator0 are selected in the CPT0MX register (SFR Definition 7.2). The CMX0P1-CMX-0P0 bits select the Comparator0 positive input; the CMX0N1-CMX0N0 bits select the Comparator0 negative input.

Important Note About Comparator Inputs: The Port pins selected as comparator inputs should be configured as analog inputs in their associated Port configuration register, and configured to be skipped by the Crossbar (for details on Port configuration, see **Section "12.3. General Purpose Port I/O" on page 108**).

Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	2/3	3	3/4	4	4/5	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

Programming and Debugging Support

In-system programming of the Flash program memory and communication with on-chip debug support logic is accomplished via the Silicon Labs 2-Wire Development Interface (C2). Note that the re-programmable Flash can also be read and changed a single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or other on-chip resources. C2 details can be found in **Section "17. C2 Interface" on page 173**.

The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs provides an integrated development environment (IDE) including editor, macro assembler, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via the C2 interface to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

8.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51[™] instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51[™] counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

8.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 8.1 is the

CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

8.1.2. MOVX Instruction and Program Memory

The MOVX instruction is typically used to access external data memory (Note: the C8051F300/1/2/3/4/5 does not support external data or program memory). In the CIP-51, the MOVX instruction accesses the onchip program memory space implemented as re-programmable Flash memory. This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to **Section "10. Flash Memory" on page 89** for further details.

Mnemonic	Description	Bytes	Clock Cycles					
Arithmetic Operations								
ADD A, Rn	Add register to A	1	1					
ADD A, direct	Add direct byte to A	2	2					
ADD A, @Ri	Add indirect RAM to A	1	2					
ADD A, #data	Add immediate to A	2	2					
ADDC A, Rn	Add register to A with carry	1	1					
ADDC A, direct	Add direct byte to A with carry	2	2					
ADDC A, @Ri	Add indirect RAM to A with carry	1	2					
ADDC A, #data	Add immediate to A with carry	2	2					
SUBB A, Rn	Subtract register from A with borrow	1	1					
SUBB A, direct	Subtract direct byte from A with borrow	2	2					
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2					
SUBB A, #data	Subtract immediate from A with borrow	2	2					
INC A	Increment A	1	1					
INC Rn	Increment register	1	1					
INC direct	Increment direct byte	2	2					
INC @Ri	Increment indirect RAM	1	2					
DEC A	Decrement A	1	1					
DEC Rn	Decrement register	1	1					
DEC direct	Decrement direct byte	2	2					
DEC @Ri	Decrement indirect RAM	1	2					
INC DPTR	Increment Data Pointer	1	1					
MUL AB	Multiply A and B	1	4					
DIV AB	Divide A by B	1	8					
DA A	Decimal adjust A	1	1					
	Logical Operations							
ANL A, Rn	AND Register to A	1	1					
ANL A, direct	AND direct byte to A	2	2					
ANLA, @Ri	AND indirect RAM to A	1	2					
ANL A, #data	AND immediate to A	2	2					

Table 8.1. CIP-51 Instruction Set Summary

F8	CPT0CN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0			
F0	В	P0MDIN					EIP1	
E8	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2			RSTSRC
E0	ACC	XBR0	XBR1	XBR2	IT01CF		EIE1	
D8	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2			
D0	PSW	REF0CN						
C8	TMR2CN		TMR2RLL	TMR2RLH	TMR2L	TMR2H		
C0	SMB0CN	SMB0CF	SMB0DAT		ADC0GT		ADC0LT	
B8	IP			AMX0SL	ADC0CF		ADC0	
B0		OSCXCN	OSCICN	OSCICL			FLSCL	FLKEY
A8	IE							
A0					POMDOUT			
98	SCON0	SBUF0				CPT0MD		CPT0MX
90								
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
80	P0	SP	DPL	DPH				PCON
	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

Table 8.2. Special Function Register (SFR) Memory Map

(bit addressable)

Table 8.3. Special Function Registers*

Register	Address	Description	Page No.
ACC	0xE0	Accumulator	71
ADC0CF	0xBC	ADC0 Configuration	43
ADC0CN	0xE8	ADC0 Control	44
ADC0GT	0xC4	ADC0 Greater-Than Compare Word	46
ADC0LT	0xC6	ADC0 Less-Than Compare Word	46
ADC0	0xBE	ADC0 Data Word	43
AMX0SL	0xBB	ADC0 Multiplexer Channel Select	42
В	0xF0	B Register	71
CKCON	0x8E	Clock Control	149
CPT0CN	0xF8	Comparator0 Control	53
CPT0MD	0x9D	Comparator0 Mode Selection	54
CPT0MX	0x9F	Comparator0 MUX Selection	54
DPH	0x83	Data Pointer High	69
DPL	0x82	Data Pointer Low	68
EIE1	0xE6	Extended Interrupt Enable 1	77
EIP1	0xF6	External Interrupt Priority 1	78
FLKEY	0xB7	Flash Lock and Key	93
*Note: SFRs a	are listed in alpha	betical order. All undefined SFR locations are reserved	

Register	Address	Description	Page No.
FLSCL	0xB6	Flash Scale	93
IE	0xA8	Interrupt Enable	75
IP	0xB8	Interrupt Priority	76
IT01CF	0xE4	INT0/INT1 Configuration Register	79
OSCICL	0xB3	Internal Oscillator Calibration	98
OSCICN	0xB2	Internal Oscillator Control	98
OSCXCN	0xB1	External Oscillator Control	100
P0	0x80	Port 0 Latch	109
POMDIN	0xF1	Port 0 Input Mode Configuration	109
POMDOUT	0xA4	Port 0 Output Mode Configuration	110
PCA0CN	0xD8	PCA Control	167
PCA0MD	0xD9	PCA Mode	168
PCA0CPH0	0xFC	PCA Capture 0 High	171
PCA0CPH1	0xEA	PCA Capture 1 High	171
PCA0CPH2	0xEC	PCA Capture 2 High	171
PCA0CPL0	0xFB	PCA Capture 0 Low	171
PCA0CPL1	0xE9	PCA Capture 1 Low	171
PCA0CPL2	0xEB	PCA Capture 2 Low	171
PCA0CPM0	0xDA	PCA Module 0 Mode Register	169
PCA0CPM1	0xDB	PCA Module 1 Mode Register	169
PCA0CPM2	0xDC	PCA Module 2 Mode Register	169
PCA0H	0xFA	PCA Counter High	170
PCA0L	0xF9	PCA Counter Low	170
PCON	0x87	Power Control	81
PSCTL	0x8F	Program Store R/W Control	92
PSW	0xD0	Program Status Word	70
REF0CN	0xD1	Voltage Reference Control	49
RSTSRC	0xEF	Reset Source Configuration/Status	87
SBUF0	0x99	UART 0 Data Buffer	137
SCON0	0x98	UART 0 Control	136
SMB0CF	0xC1	SMBus Configuration	118
SMB0CN	0xC0	SMBus Control	120
SMB0DAT	0xC2	SMBus Data	122
SP	0x81	Stack Pointer	69
TMR2CN	0xC8	Timer/Counter 2 Control	154
TCON	0x88	Timer/Counter Control	147
TH0	0x8C	Timer/Counter 0 High	150
*Note: SFRs a	re listed in alpha	betical order. All undefined SFR locations are reserved	

Table 8.3. Special Function Registers* (Continued)

SFR Definition 8.9. EIE1: Extended Interrupt Enable 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
	_	ECP0R	ECP0F	EPCA0	EADC0C	EWADC0	ESMB0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE6
Bits7–6:	UNUSED. F	Read = $00b$.	Write = do	n't care.				
Bit5:	ECPOR: Ena	able Compa	arator0 (CP	0) Rising E	dge Interru	ot.		
	I his bit sets	the maskin	ig of the CI		age interrup	Dt.		
	1: Enable in	PU RISING E	zage intern	Jpt. atod by the				
Bit4.	FCP0F: Ena	able Compa	rator0 (CP	0) Falling F	dae Interru	iy. nt		
Dit i.	This bit sets	the maskir	a of the CF	P0 Falling E	dae interru	pt. pt.		
	0: Disable C	P0 Falling	Edge interr	upt.	-9-	F ••		
	1: Enable in	terrupt requ	iests gener	ated by the	CP0FIF fla	ıg.		
Bit3:	EPCA0: Ena	able Progra	mmable Co	ounter Array	/ (PCA0) In	terrupt.		
	This bit sets	the maskir	ig of the PC	CA0 interrup	ots.			
	0: Disable a	II PCA0 inte	errupts.					
D'IO	1: Enable in	terrupt requ	iests gener	ated by PC	A0.			
Bit2:	EADCOC: E	hable ADC		on Complet	e Interrupt.	lata intorrur	.+	
			ig of the AL	nlete interri	ision Comp	iele interrup	Л.	
	1: Enable in	terrunt regi	lests dener	ated by the	AD0INT fla	n		
Bit1:	EWADC0: E	Enable Wind	low Compa	rison ADC) Interrupt.	.g.		
	This bit sets	the maskir	g of ADC0	Window C	omparison i	nterrupt.		
	0: Disable A	DC0 Windo	w Compar	ison interru	pt.			
	1: Enable in	terrupt requ	iests gener	ated by AD	C0 Window	Compare f	flag.	
Bit0:	ESMB0: En	able SMBus	s Interrupt.					
	This bit sets	the maskir	ig of the SN	/Bus interro	upt.			
	U: Disable a	II SMBus in	terrupts.	منمما امبينا م	Clfler			
	T: Enable in	terrupt requ	iests gener	ated by the	Si flag.			

SFR Definition 8.11. IT01CF: INT0/INT1 Configuration

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
IN1PL	IN1SL2	IN1SL1	IN1SL0	IN0PL	IN0SL2	IN0SL1	IN0SL0	00000001			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xE4			
Note: Re	efer to SFR Defin	nition 15.1 fo	or INT0/1 edd	ge- or level-s	ensitive inter	rupt selectior	า.				
				, ,							
Bit7:	IN1PL: /INT1	Polarity									
	0: /INT1 inpu	t is active I	ow.								
	1: /INT1 inpu	t is active h	nigh.								
Bits6–4:	IN1SL2–0: /INT1 Port Pin Selection Bits										
	These bits select which Port pin is assigned to /INT1. Note that this pin assignment is inde-										
	pendent of th	e Crossba	r; /INT1 will	monitor the	e assigned l	Port pin with	nout disturb	ping the			
	peripheral that	at has beer	n assigned	the Port pin	via the Cro	ssbar. The	Crossbar v	vill not			
	assign the Po	ort pin to a p	peripheral if	It is configu	Ired to skip	the selected	i pin (accoi	npiisned by			
	setting to 1	ine corresp	ionaing bit i	n register A	DRU).						
	IN1SL2-0	/INT	1 Port Pin								
	000		P0.0								
	001		P0.1								
	010		P0.2								
	011		P0.3								
	100		P0.4								
	101		P0.5								
	110		P0.6								
	111		P0.7								
DVA		-									
Bit3:	INOPL: /INTO	Polarity									
	0. /INTO Inter	rupt is activ	ve IOW.								
Rits2_0.		INTO Port	ve nign. Pin Selectic	n Rits							
DI(32 0.	These bits se	elect which	Port pin is	assigned to	/INT0_Note	e that this p	in assignm	ent is inde-			
	pendent of th	e Crossba	r. /INT0 will	monitor the	assigned F	Port pin with	out disturb	ping the			
	, peripheral that	at has beer	n assigned	the Port pin	via the Cro	ssbar. The	Crossbar v	vill not			
	assign the Po	ort pin to a p	peripheral if	it is configu	ured to skip	the selected	d pin (accoi	mplished by			
	setting to '1'	the corresp	onding bit i	n register >	(BR0).						
		(15.1									
	INUSL2-0	/IN I	0 Port Pin								
	000		P0.0								
	001		P0.1								
	010		PU.2								
	011		PU.3								
	100		PU.4								
	101		PU.5								
	110		PU.0								
			r'U. <i>I</i>								

C8051F300/1/2/3/4/5

NOTES:

Figure 12.4. Crossbar Priority Decoder with XBR0 = 0x44

Registers XBR1 and XBR2 are used to assign the digital I/O resources to the physical I/O Port pins. Note that when the SMBus is selected, the Crossbar assigns both pins associated with the SMBus (SDA and SCL). Either or both of the UART signals may be selected by the Crossbar. UART0 pin assignments are fixed for bootloading purposes: when UART TX0 is selected, it is always assigned to P0.4; when UART RX0 is selected, it is always assigned to P0.5. Standard Port I/Os appear contiguously after the prioritized functions have been assigned. For example, if assigned functions that take the first 3 Port I/O (P0.[2:0]), 5 Port I/O are left for analog or GPIO use.

SFR Definition 12.1. XBR0: Port I/O Crossbar Register 0

R/W	R/W R/W XSKP6 XSKP5		R/W R/W R/W SKP5 XSKP4 XSKP		R/W XSKP2	R/W XSKP1	R/W XSKP0	Reset Value			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xE1			
Bit7:	UNUSED. R	lead = 0b; \	Write = don	't care.							
Bits6–0:	XSKP[6:0]: Crossbar Skip Enable Bits										
	I hese bits select Port pins to be skipped by the Crossbar Decoder. Port pins used as ana- log inputs (for ADC or Comparator) or used as special functions (VRFF input external oscil-										
	lator circuit, CNVSTR input) should be skipped by the Crossbar.										
	0: Corresponding P0.n pin is not skipped by the Crossbar.										
			hii is skipp		1033041.						

SFR Definition 12.2. XBR1: Port I/O Crossbar Register 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
PC	AOME	CP0AOEN	CP00EN	SYSCKE	SMB0OEN	URX0EN	UTX0EN	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xE2				
Bits7–6:	PCA0ME: P	CA Module	I/0 Enable	Bits								
	00: All PCA	I/O unavaila	ble at Port	pins.								
	01: CEX0 rc	outed to Port	pin.									
	10: CEX0, C	CEX1 routed	to Port pin	s.								
	11: CEX0, C	CEX1, CEX2	routed to F	Port pins.								
Bit5:	CP0AOEN:	Comparator	0 Asynchro	onous Outp	ut Enable							
	0: Asynchronous CP0 unavailable at Port pin.											
	1: Asynchro	nous CP0 ro	outed to Po	rt pin.								
Bit4:	CP0OEN: C	comparator0	Output Ena	able								
	0: CP0 una	vailable at Po	ort pin.									
B 1/0	1: CP0 route	ed to Port pil	ר. <u>ר</u>									
Bit3:	SYSCRE: /S	SYSCLK Out	put Enable									
	0: /SYSCLK unavailable at Port pin.											
D:40.			ed to Port p	oin.								
BILZ:	SMBUUEN:	SIVIBUS I/O	Enable	ina								
	U. SIVIDUS I/U UNAVAIIABLE AL FUIL PITIS.											
Bit1 ·	LIPYOENI LI		on pins. ablo									
Dit i.		(A unavailah	le at Port n	in								
		(0 routed to	Port nin P0	5								
Bit0 [.]		ART TX Out	nut Enable	.0.								
Dito.	0. UART TX	0 unavailab	e at Port pi	in								
	1: UART TX	0 routed to I	Port pin P0	.4.								

13.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see SFR Definition 13.2). The higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. MASTER and TXMODE indicate the master/slave state and transmit/receive modes, respectively.

The STA bit indicates that a START has been detected or generated since the last SMBus interrupt. When set to '1', the STA bit will cause the SMBus to enter Master mode and generate a START when the bus becomes free. STA is not cleared by hardware after the START is generated; it must be cleared by software.

As a master, writing the STO bit will cause the hardware to generate a STOP condition and end the current transfer after the next ACK cycle. STO is cleared by hardware after the STOP condition is generated. As a slave, STO indicates that a STOP condition has been detected since the last SMBus interrupt. STO is also used in slave mode to manage the transition from slave receiver to slave transmitter; see **Section 13.5.4** for details on this procedure.

If STO and STA are both set to '1' (while in Master Mode), a STOP followed by a START will be generated.

As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received on the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be ignored until the next START is detected.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when an arbitration is lost; see Table 13.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus is stalled until software clears SI.

Table 13.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 13.4 for SMBus status decoding using the SMB0CN register.

13.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. In the table below, STATUS VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. Note that the shown response options are only the typical responses; application-specific procedures are allowed as long as they conform with the SMBus specification. Highlighted responses are allowed but do not conform to the SMBus specification.

	Valu	ies I	Read	ł	Current SMbus State	Typical Response Options	Values Written		
Mode	Status Vector	ACKRQ	ARBLOST	ACK			STA	STO	ACK
	1110	0	0	Х	A master START was generated.	Load slave address + R/W into SMB0DAT.	0	0	Х
	1100	0	0	0	A master data or address byte	Set STA to restart transfer.	1	0	Х
ter					was transmitted; NACK received.	Abort transfer.	0	1	Х
nsmit		0	0	1	A master data or address byte was transmitted; ACK received.	Load next data byte into SMB0DAT	0	0	Х
Irai						End transfer with STOP	0	1	Х
ister -						End transfer with STOP and start another transfer.	1	1	Х
В В						Send repeated START	1	0	Х
						Switch to Master Receiver Mode (clear SI without writ- ing new data to SMB0DAT).	0	0	X

Table 13.4. SMBus Status Decoding

C8051F300/1/2/3/4/5

NOTES:

14.1. Enhanced Baud Rate Generation

The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 14.2), which is not user accessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see **Section "15.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 145**). The Timer 1 reload value should be set so that over-flows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of five sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, or the external oscillator clock / 8. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 14.1.

$$UartBaudRate = \frac{T1_{CLK}}{(256 - T1H)} \times \frac{1}{2}$$

Equation 14.1. UART0 Baud Rate

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in **Section "15.2. Timer 2" on page 151**. A quick reference for typical baud rates and system clock frequencies is given in Tables 14.1 through 14.6. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1 (see **Section "15.1. Timer 0 and Timer 1" on page 143** for more details).

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
SOMOD	E —	MCE0	REN0	TB80	RB80	TI0	RI0	0100000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
						(bit	addressable	e) 0x98		
Bit7:	SOMODE: S	Serial Port 0	Operation	Mode.						
	This bit sele	ects the UAF	RT0 Operat	ion Mode.						
	0: Mode 0: 8	B-bit UART	with Variab	le Baud Ra	te					
	1: Mode 1: 9-bit UART with Variable Baud Rate									
Bit6:	UNUSED. F	Read = 1b. \	Write = don	't care.						
Bit5:	MCE0: Mult	iprocessor	Communica	ation Enable	е.					
	The function	n of this bit i	is depende	nt on the Se	erial Port 0	Operation I	Mode.			
	Mode 0: Ch	ecks for val	id stop bit.							
	0: L	ogic level o	of stop bit is	ignored.		al 1				
	1: F Mode 1: Mu	du will only	be activate	a II stop bit	is logic lev	er 1.				
			f ninth hit is		ible.					
	1. 6	210 is set an	d an interri	int is dener	ated only w	hen the nir	th hit is lo	aic 1		
Bit4 [.]	REN0: Rece	eive Enable		ipt is gener				gio i.		
2	This bit ena	bles/disable	es the UAR [:]	T receiver.						
	0: UARTO re	eception dis	abled.							
	1: UART0 re	eception en	abled.							
Bit3:	TB80: Ninth	Transmiss	ion Bit.							
	The logic le	vel of this bi	it will be as	signed to th	e ninth tran	smission b	it in 9-bit L	JART Mode. It		
	is not used	in 8-bit UAF	RT Mode.	Set or clear	ed by softw	are as requ	uired.			
Bit2:	RB80: Ninth	n Receive B	it.							
	RB80 is ass	signed the v	alue of the	STOP bit in	n Mode 0; it	is assigned	d the value	e of the 9th		
	data bit in M	lode 1.								
Bit1:	TI0: Transm	it Interrupt	Flag.							
	Set by hard	ware when	a byte of da	ata has bee	en transmitte	ed by UAR	TO (after th	ne 8th bit in 8-		
	bit UART M	ode, or at th	ne beginnin	g of the ST	OP bit in 9-I	DIT UART M	lode). Whe	en the UARI0		
	Interrupt is e	enabled, sei	tting this bit	causes the	e CPU to ve	ctor to the	UAR I U INT	errupt service		
DitO	PIO: Poopin	S DIT MUST D	e cieared if	ianually by	software					
DILU.	Set to '1' by	e interiupt i bardware w	riay. Vhan a hvta	of data has	hoon rocoi		QTA (cot a	t the STOP hit		
	sampling tin	ne) When t	he UARTO	interrunt is	enabled se	etting this h	it to '1' ca	uses the CPU		
	to vector to	the UART0	interrupt se	ervice routir	ne. This bit	must be cle	eared man	ually by soft-		
	ware.									

SFR Definition 14.1. SCON0: Serial Port 0 Control

C8051F300/1/2/3/4/5

SFR Definition 15.9. TMR2RLL: Timer 2 Reload Register Low Byte

SFR Definition 15.10. TMR2RLH: Timer 2 Reload Register High Byte

SFR Definition 15.11. TMR2L: Timer 2 Low Byte

SFR Definition 15.12. TMR2H Timer 2 High Byte

