

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38-9
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1301t038x0064abxuma2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC1100 / XMC1200 / XMC1300

Fixed Flash Wait States

XMC1000 Family

ARM[®] Cortex[®]-M0 32-bit processor core

Data Sheet Addendum V1.0 2016-02

Microcontrollers

Edition 2016-02 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XMC1100 / XMC1200 / XMC1300

Fixed Flash Wait States

XMC1000 Family

ARM[®] Cortex[®]-M0 32-bit processor core

Data Sheet Addendum V1.0 2016-02

Microcontrollers

XMC1100 / XMC1200 / XMC1300 Data Sheet Addendum Revision History: V1.0 2016-02

Previous Version: none								
Page	Subjects							
	Initial version.							

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG.

ARM®, ARM Powered®, Cortex®, Thumb® and AMBA® are registered trademarks of ARM. Limited.

CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM. Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

V1.0, 2016-02

XMC1100 / XMC1200 / XMC1300 XMC1000 Family

Table of Contents

Table of Contents

1	Fixed Flash Wait States	6
1.1	Flash read access with fixed wait states	6
1.2	NVM Registers	7
1.3	Electrical Parameters 1	-
1.3.1	Flash Memory Parameters 1	0

1 Fixed Flash Wait States

The parameter limits defined in this addendum extend the electrical parameters defined in the XMC1100 / XMC1200 / XMC1300 Data Sheet stated below.

- Data Sheet AA-Step, V1.4, 2014-05
- Data Sheet AB-Step, V1.6, 2015-04

1.1 Flash read access with fixed wait states

Per default the XMC1100 / XMC1200 / XMC1300 devices use a configuration with adaptive wait states for read accesses to the flash memory, dynamically adapting to the system frequency and flash access timing without user software interaction.

Alternatively, it is possible to configure the XMC1100 / XMC1200 / XMC1300 devices to apply fixed wait states to each flash read access, improving determinism of program execution from flash. The required number of wait states depends on the system frequency $f_{\rm MCLK}$, as defined in the parameter $N_{\rm FWSFLASH}$. The number of wait states can be configured with the bit NVM_NVMCONF.WS, the selection of adaptive or fixed wait states is done with the bit NVM_CONFIG1.WS.

- Attention: Any write operation to the register NVM_CONFIG1 to switch between adaptive and fixed wait states configuration must only modify the bit NVM_CONFIG1.FIXWS. Changing other bits in NVM_CONFIG1 can lead to unpredictable results.
- Attention: Before and after the fixed wait states configuration or the system frequency $f_{\rm MCLK}$ is changed, the number of selected wait states must always comply to the parameter $N_{\rm FWSFLASH}$.

Below is a code snippet defining the register addresses, configuring one wait state and then switching to operation with fixed wait states.

Example

```
// Headers and variables to fix number of wait states to "1"
#define ADDR1 0x40050008 //Address of NVM_NVMCONF
uint32_t * NVM_NVMCONF = (uint32_t *) ADDR1;
#define ADDR2 0x40050048 //Address of NVM_CONFIG1
uint32_t * NVM_CONFIG1 = (uint32_t *) ADDR2;
```

```
// init sequence to fix number of wait states to "1"
*NVM_NVMCONF = *NVM_NVMCONF | 0x1000; //Set .WS bit => 1WS
*NVM_CONFIG1 = *NVM_CONFIG1 | 0x0800; //Set .FIXWS bit => fixed
WS scheme
```

6

1.2 NVM Registers

NVM Configuration Register

The definition of bit NVMCONF.12 changes to NVMCONF.WS.

NVM_	NV	MCON	F	
	-		-	_

NVM Configuration Register						(4005 0008 _H)						Reset Value: 9000 _H				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
NVM _ON	INT_ ON	0	ws		SECPROT						0	HR	LEV	0		
rw	rw	rw	rw		rw						r	r	N	rw		

Field	Bits	Туре	Description						
NVM_ON	15	rw	NVM OnWhen cleared, no software code can be executed anymorefrom the NVM, until it is set again. I.e., already the softwarecode that initiates the change in NVM_ON itself may notreside in the NVM, otherwise the software is stalled forever.0BSLEEP, NVM is switched to or stays in sleep mode.1NORM, NVM is switched to or stays in normal mode.						
INT_ON	14	rw	Interrupt OnWhen enabled the completion of a sequence started by setting NVMPROG.ACTION (write or erase sequence) will be indicated by NVM interrupt. The same is true for the wake-up sequence. 0_B INTOFF, No NVM ready interrupts are generated. 1_B INTON, NVM ready interrupts are generated.						
0	13	rw	Reserved for Future Use Must be written with 0 to allow correct operation.						
WS	12	rw	Number of fixed Wait StatesDefines the number of fixed wait states whenNVM_CONFIG1.FIXWS = 1_B . 0_B 0 fixed wait states. 1_B 1 fixed wait state.						
SECPROT	11:4	rw	Sector Protection ¹⁾ This field defines the number of write, erase, verify protected sectors, starting with physical sector 0.						

Field	Bits	Туре	Description					
0	3	r	Reserved Read as 0; should be written with 0.					
HRLEV	2:1	rw	Hardread Level2Defines single hardread level for verification withNVMPROG.ACTION.VERIFY = 11_B : 00_B NR, Normal read 01_B HRW, Hardread written 10_B HRE, Hardread erased 11_B RFU, Reserved for Future Use					
0	0	rw	Reserved for Future Use Must be written with 0 to allow correct operation.					

 For SECPROT > 0, SECPROT defines the number of protected sectors. The sectors 0 to SECPROT-1 cannot be written, erased, or verified. All writes that target the protected sectors are accepted, but are internally ignored.

2) HRLEV defines the hardread level for a stand-alone verification sequence started with NVMPROG.ACTION.VERIFY = 11_B. This hardread level is used until the end of the verification sequence. HRLEV may not be changed in between.

Configuration 1 Register

The bit NVM_CONFIG1.FIXWS allows to switch between adaptive and fixed wait state configuration.

Attention: Any write operation to the register NVM_CONFIG1 to switch between adaptive and fixed wait states configuration must only modify the bit NVM_CONFIG1.FIXWS. Changing other bits in NVM_CONFIG1 can lead to unpredictable results.

NVM_CONFIG1Configuration 1 Register(4005 0048 _H)Reset Value: XXXX													XXX _H		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RES FIX RES					RES	1	1							
1	rw rw								rw					41	

Field	Bits	Туре	Description
RES	15:12	rw	Reserved Must not be changed when programming the NVM_CONFIG1 register.

Field	Bits	Туре	Description
FIXWS	11	rw	Wait States SchemeDefines the scheme by which flash wait states are generated. Withfixed wait states NVM_NVMCONF.WS defines the number of wait states. 0_B adaptive wait states. 1_B fixed wait states.
RES	10:0	rw	Reserved Must not be changed when programming the NVM_CONFIG1 register.

1.3 Electrical Parameters

1.3.1 Flash Memory Parameters

This definition expands the flash wait states definition by parameters for the configuration with fixed wait states.

Table 1 Flash Memory Parameters

Parameter	Symbol		Value	S	Unit	Note /		
		Min.	Min. Typ.			Test Condition		
Fixed Flash Wait States configured in bit NVM_NVMCONF.WS	N _{FWSFLASH} SR	0	0	1		NVM_CONFIG1. FIXWS = 1_B , $f_{MCLK} \le 16$ MHz		
		1	1	1		NVM_CONFIG1. FIXWS = 1_B , 16 MHz < $f_{MCLK} \le$ 32 MHz		

www.infineon.com

Published by Infineon Technologies AG