

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	16MHz
Connectivity	I ² C
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	D/A 1x7b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4013sxi-410t

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins
 - □ AN57821: Mixed Signal Circuit Board Layout
 - □ AN81623: Digital Design Best Practices

- □ AN73854: Introduction To Bootloaders
- □ AN89610: ARM Cortex Code Optimization
- Technical Reference Manual (TRM) is in two documents:
 - □ Architecture TRM details each PSoC 4 functional block.
 - □ Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
 - □ CY8CKIT-040, PSoC 4000 Pioneer Kit, is an easy-to-use and inexpensive development platform with debugging capability. This kit includes connectors for Arduino™ compatible shields and Digilent® Pmod™ daughter cards.
 - □ The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- Drag and drop component icons to build your hardware system design in the main design workspace
- Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

File Edit View Project Build Debug Tools Window Help [5] 🔁 👸 🥁 🖟 🐼 🐧 🐧 🐧 🖎 🖎 🖎 🗡 💎 🖟 👰 🔻 📜 200% 🔹 🔍 🥥 Debug 🕮 - 🚵 🥬 😭 👺 🎉 💂 Microsoft Sans Serif Workspace Explorer (1 project) • # × Start Page TopDesign.cysch 4 W W B B | Workspace 'ThermalManagement' (
| Project 'Thermal Manageme
| TopDesign cysch |
| Thermal Management Syster |
| Themal Management Syster |
| Themal Management Syster |
| ThermalManagement Temperature Sensors and Fans Analog Temperature Sensing Closed-Loop Fan Controlle Cypress Off-Chip (External to PSoC) Cypress Component O
Sa Analog
Sa Analog
Sa Amplifiers
Sa Analog MUX
Sa Comparators
Sa DAC
Sa Manual Routing
CapSense Source rce Files main.c

ThermalManager.c Т TACH1 P3.5 rated_Source In Section 1 (SCB mode) (V1.10]

**Section 2.30 ADC.c

ADC.h

ADC.h

ADC_INT.c

ADC_PM.c Host Processor Interface (I2C-based Data Logging) Configure 'CapSense_CSD' Logic CYPRESS Δ CLFC.c

B CLFC.h

CLFC_INT.c General Widgets Config Scan Order Advanced Tune Helper Built-in 4 Capacitive Sensing (CapSense® CSD) Add Button Rem CLFC_DataSend.c nent is configured in 9 an CLFC_DataSend.h
CLFC_FW_PWM1
clFC_FW_PWM1
dlFC_FW_PWM2
clFC_FW_PWM2
clFC_FW_PWM2
dlFC_FW_PWM2
clFC_FW_PWM3
clFC_FW_PWM3
clFC_FW_PWM3
clFC_FW_PWM3
clFC_FW_PWM3
dlFC_FW_PWM3
dlFC_FW_PWM3 RTD Calculator [v1.20]
 Thermistor Calculator [v1.20 ... **Features** sheet 4-Wire DC Fan Controller Automatic SmartSense* High immunity to AC power line power supply voltage changes Fan Co Optional two scan channels (parallel which increases sensor scan rate Shield electrode support for reliable operation in the presence of water film or droplets Guided sensor and terminal assignments using the CapSense cus General Description Ready Errors 0 Warnings 1 Notes Capacitive Sensing, using a Delta-Sigma Modulator (CapSense CSD) component, is a versatile and efficient way to measure capacitance in applications such as touch sense buttons, sliders, touchpad, and proximity detection. Datasheet ОК Apply Cancel

Figure 1. CapSense Example Project in PSoC Creator

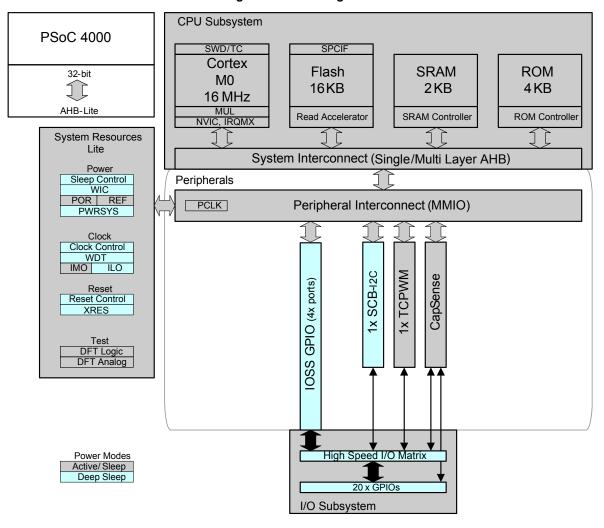


Figure 2. Block Diagram

PSoC 4000 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial-Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE provides fully integrated programming and debug support for the PSoC 4000 devices. The SWD interface is fully compatible with industry-standard third-party tools. The PSoC 4000 family provides a level of security not possible with multi-chip application solutions or with microcontrollers. It has the following advantages:

- Allows disabling of debug features
- Robust flash protection
- Allows customer-proprietary functionality to be implemented in on-chip programmable blocks

The debug circuits are enabled by default and can only be disabled in firmware. If they are not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled. Therefore, PSoC 4000, with device security enabled, may not be returned for failure analysis. This is a trade-off the PSoC 4000 allows the customer to make.

Document Number: 001-89638 Rev. *G Page 4 of 34

Pinouts

All port pins support GPIO. Ports 0, 1, and 2 support CSD CapSense and analog multiplexed bus connections. TCPWM functions and Alternate Functions are multiplexed with port pins as follows for the five PSoC 4000 packages.

Table 1. Pin Descriptions

	28-Pin SSOP		24-Pin QFN		16-Pin QFN		16-Pin SOIC		8-Pin SOIC		
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	TCPWM Signals	Alternate Functions
20	VSS										
21	P0.0/TRIN0	1	P0.0/TRIN0							TRIN0: Trigger Input 0	
22	P0.1/TRIN1/CMPO _0	2	P0.1/TRIN1/CMPO _0	1	P0.1/TRIN1/CMPO _0	3	P0.1/TRIN1/CMPO _0			TRIN1: Trigger Input 1	CMPO_0: Sense Comp Out
23	P0.2/TRIN2	3	P0.2/TRIN2	2	P0.2/TRIN2	4	P0.2/TRIN2			TRIN2: Trigger Input 2	
24	P0.3/TRIN3	4	P0.3/TRIN3							TRIN3: Trigger Input 3	
25	P0.4/TRIN4/CMPO _0/EXT_CLK	5	P0.4/TRIN4/CMPO _0/EXT_CLK	3	P0.4/TRIN4/CMPO _0/EXT_CLK	5	P0.4/TRIN4/CMPO _0/EXT_CLK	2	P0.4/TRIN4/CMPO _0/EXT_CLK	TRIN4: Trigger Input 4	CMPO_0: Sense Comp Out, External Clock, CMOD Cap
26	VCC	6	VCC	4	VCC	6	VCC	3	VCC		
27	VDD	7	VDD	6	VDD	7	VDD	4	VDD		
28	VSS	8	VSS	7	VSS	8	VSS	5	VSS		
1	P0.5	9	P0.5	5	VDDIO	9	P0.5				
2	P0.6	10	P0.6	8	P0.6	10	P0.6				
3	P0.7	11	P0.7								
4	P1.0	12	P1.0								
5	P1.1/OUT0	13	P1.1/OUT0	9	P1.1/OUT0	11	P1.1/OUT0	6	P1.1/OUT0	OUT0: PWM OUT 0	
6	P1.2/SCL	14	P1.2/SCL	10	P1.2/SCL	12	P1.2/SCL				I2C Clock
7	P1.3/SDA	15	P1.3/SDA	11	P1.3/SDA	13	P1.3/SDA				I2C Data
8	P1.4/UND0	16	P1.4/UND0							UND0: Underflow Out	
9	P1.5/OVF0	17	P1.5/OVF0							OVF0: Overflow Out	
10	P1.6/OVF0/UND0/n OUT0 /CMPO_0	18	P1.6/OVF0/UND0/n OUT0 /CMPO_0	12	P1.6/OVF0/UND0/n OUT0/CMPO_0	14	P1.6/OVF0/UND0/n OUT0/CMPO_0	7	P1.6/OVF0/UND0/n OUT0/CMPO_0	nOUT0: Complement of OUT0, UND0, OVF0 as above	CMPO_0: Sense Comp Out, Internal Reset function ^[1]

Note

^{1.} Must not have load to ground during POR (should be an output).

Table 1. Pin Descriptions (continued)

	28-Pin SSOP		24-Pin QFN		16-Pin QFN		16-Pin SOIC		8-Pin SOIC		
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	TCPWM Signals	Alternate Functions
11	VSS										
12	No Connect (NC)[2]										
13	P1.7/MATCH/EXT_ CLK	19	P1.7/MATCH/EXT_ CLK	13	P1.7/MATCH/EXT_ CLK	15	P1.7/MATCH/EXT_ CLK			MATCH: Match Out	External Clock
14	P2.0	20	P2.0			16	P2.0				
15	VSS										
16	P3.0/SDA/SWD_IO	21	P3.0/SDA/SWD_IO	14	P3.0/SDA/SWD_IO	1	P3.0/SDA/SWD_IO	8	P3.0/SDA/SWD_IO		I2C Data, SWD I/O
17	P3.1/SCL/SWD_CL K	22	P3.1/SCL/SWD_CL K	15	P3.1/SCL/SWD_CL K	2	P3.1/SCL/SWD_CL K	1	P3.1/SCL/SWD_CL K		I2C Clock, SWD Clock
18	P3.2	23	P3.2	16	P3.2					OUT0:PWM OUT 0	
19	XRES	24	XRES								XRES: External Reset

Descriptions of the Pin functions are as follows:

VDD: Power supply for both analog and digital sections.

VDDIO: Where available, this pin provides a separate voltage domain (see the Power section for details).

VSS: Ground pin.

VCCD: Regulated digital supply (1.8 V ±5%).

Pins belonging to Ports 0, 1, and 2 can all be used as CSD sense or shield pins connected to AMUXBUS A or B. They can also be used as GPIO pins that can be driven by the firmware, in addition to their alternate functions listed in the Table 1.

Pins on Port 3 can be used as GPIO, in addition to their alternate functions listed above.

The following packages are provided: 28-pin SSOP, 24-pin QFN, 16-pin QFN, 16-pin SOIC, and 8-pin SOIC.

Note

2. This pin is not to be used; it must be left floating.

Figure 4. 28-Pin SSOP Pinout

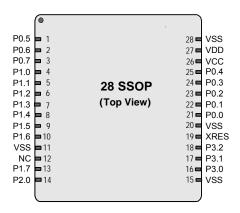


Figure 5. 24-pin QFN Pinout

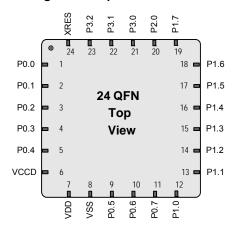


Figure 6. 16-Pin QFN Pinout

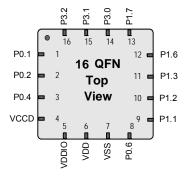


Table 2. 16-ball WLCSP Pin Descriptions and Diagram

Pin	Name	TCPWM Signal	Alternate Functions	Pin Diagram
B4	P3.2	OUT0:PWMOUT0	-	Bottom View
C3	P0.2/TRIN2	TRIN2:Trigger Input 2	-	4 3 2 1
C4	P0.4/TRIN4/CMPO_0/ EXT_CLK	TRIN4:Trigger Input 4	CMPO_0: Sense Comp Out, Ext. Clock, CMOD Cap	A
D4	VCCD	_	-	() () B
D3	VDD	_	-	
D2	VSS	-	-	
C2	VDDIO	-	-	
D1	P0.6	-	-	
C1	P1.1/OUT0	OUT0:PWMOUT0	-	Top View
B1	P1.2/SCL	-	I ² C Clock	Top View
A1	P1.3/SDA	-	I ² C Data	1 2 3 4
A2	P1.6/OVF0/UND0/nO UT0/CMPO_0	nOUT0:Complement of OUT0, UND0, OVF0	CMPO_0: Sense Comp Out, Internal Reset function ^[3]	A PIN 1 DOT
B2	P1.7/MATCH/ EXT_CLK	MATCH: Match Out	External Clock	C PIN IDOI
A3	P2.0	_	_	
В3	P3.0/SDA/SWD_IO	-	I ² C Data, SWD I/O	D
A4	P3.1/SCL/SWD_CLK	-	I ² C Clock, SWD Clock	

Note
3. Must not have load to ground during POR (should be an output).

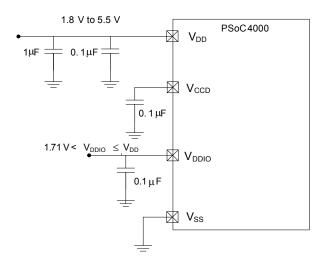
Power

The following power system diagrams (Figure 9 and Figure 10) show the set of power supply pins as implemented for the PSoC 4000. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DD} input. There is a separate regulator for the Deep Sleep mode. The supply voltage range is either 1.8 V $\pm 5\%$ (externally regulated) or 1.8 V to 5.5 V (unregulated externally; regulated internally) with all functions and circuits operating over that range.

The V_{DDIO} pin, available in the 16-pin QFN package, provides a separate voltage domain for the following pins: P3.0, P3.1, and P3.2. P3.0 and P3.1 can be I^2C pins and the chip can thus communicate with an I^2C system, running at a different voltage (where $V_{DDIO} \leq V_{DD}$). For example, V_{DD} can be 3.3 V and V_{DDIO} can be 1.8 V.

The PSoC 4000 family allows two distinct modes of power supply operation: Unregulated External Supply and Regulated External Supply.

Unregulated External Supply

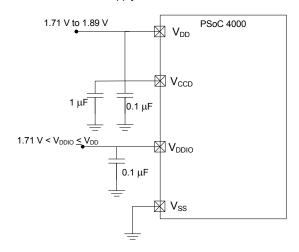

In this mode, the PSoC 4000 is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4000 supplies the internal logic and the V_{CCD} output of the PSoC 4000 must be bypassed to ground via an external capacitor (0.1 $\mu F;\, X5R$ ceramic or better).

Bypass capacitors must be used from V_{DD} to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- μF range, in parallel with a smaller capacitor (0.1 μF , for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme follows (V_{DDIO} is available on the 16-QFN package).

Figure 9. 16-pin QFN Bypass Scheme Example - Unregulated External Supply

Power supply connections when $1.8 \le V_{DD} \le 5.5 \text{ V}$


Regulated External Supply

In this mode, the PSoC 4000 is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the $V_{\rm DD}$ and $V_{\rm CCD}$ pins are shorted together and bypassed. The internal regulator should be disabled in the firmware. Note that in this mode VDD (VCCD) should never exceed 1.89 in any condition, including flash programming.

An example of a bypass scheme follows (V_{DDIO} is available on the 16-QFN package).

Figure 10. 16-pin QFN Bypass Scheme Example - Regulated External Supply

Power supply connections when $1.71 \le V_{DD} \le 1.89 \text{ V}$

Document Number: 001-89638 Rev. *G Page 12 of 34

Table 4. DC Specifications (continued)

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions			
Deep Sleep Mode, V _{DD} = 3.6 to 5.5 V (Regulator on)										
SID34	I _{DD29}	I ² C wakeup and WDT on	_	2.5	12	μA				
Deep Sleep M	ode, V _{DD} = V _{CCI}	= 1.71 to 1.89 V (Regulator bypassed))							
SID37	I _{DD32}	I ² C wakeup and WDT on	_	2.5	9.2	μΑ				
XRES Current	XRES Current									
SID307	I _{DD_XR}	Supply current while XRES asserted	-	2	5	mA				

Table 5. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	16	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49 ^[5]	T _{SLEEP}	Wakeup from Sleep mode	_	0	_	μs	
SID50 ^[5]	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	_	35	_	μs	

GPIO

Table 6. GPIO DC Specifications (referenced to V_{DDIO} for 16-Pin QFN V_{DDIO} pins)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID57	V _{IH} ^[6]	Input voltage high threshold	$0.7 \times V_{DD}$	_	_	V	CMOS Input
SID58	V _{IL}	Input voltage low threshold	_	_	$0.3 \times V_{DD}$	V	CMOS Input
SID241	V _{IH} ^[6]	LVTTL input, V _{DD} < 2.7 V	0.7× V _{DD}	_	_	V	
SID242	V _{IL}	LVTTL input, V _{DD} < 2.7 V	_	-	$0.3 \times V_{DD}$	V	
SID243	V _{IH} ^[6]	LVTTL input, V _{DD} ≥ 2.7 V	2.0	_	_	V	
SID244	V _{IL}	LVTTL input, V _{DD} ≥ 2.7 V	_	_	0.8	V	
SID59	V _{OH}	Output voltage high level	V _{DD} -0.6	-	_	V	I _{OH} = 4 mA at 3 V V _{DD}
SID60	V _{OH}	Output voltage high level	V _{DD} -0.5	-	_	V	I _{OH} = 1 mA at 1.8 V V _{DD}
SID61	V _{OL}	Output voltage low level	_	-	0.6	V	I _{OL} = 4 mA at 1.8 V V _{DD}
SID62	V _{OL}	Output voltage low level	_	-	0.6	V	I _{OL} = 10 mA at 3 V V _{DD}
SID62A	V _{OL}	Output voltage low level	_	-	0.4	V	I _{OL} = 3 mA at 3 V V _{DD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID65	I _{IL}	Input leakage current (absolute value)	_	_	2	nA	25 °C, V _{DD} = 3.0 V
SID66	C _{IN}	Input capacitance	_	3	7	pF	

- 5. Guaranteed by characterization.
 6. V_{IH} must not exceed V_{DD} + 0.2 V.

Document Number: 001-89638 Rev. *G Page 15 of 34

Table 6. GPIO DC Specifications (referenced to V_{DDIO} for 16-Pin QFN V_{DDIO} pins) (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID67 ^[7]	V _{HYSTTL}	Input hysteresis LVTTL	15	40	-	mV	$V_{DD} \ge 2.7 \text{ V}$
SID68 ^[7]	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DD}	1	-	mV	V _{DD} < 4.5 V
SID68A ^[7]	V _{HYSCMOS5V5}	Input hysteresis CMOS	200	_	_	mV	V _{DD} > 4.5 V
SID69 ^[7]	I _{DIODE}	Current through protection diode to V_{DD}/V_{SS}	_	1	100	μΑ	
SID69A ^[7]	I _{TOT_GPIO}	Maximum total source or sink chip current	_	ı	85	mA	

Table 7. GPIO AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	_	12	ns	3.3 V V _{DD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	_	12	ns	3.3 V V _{DD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	_	60	_	3.3 V V _{DD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	_	60	_	3.3 V V _{DD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO F_{OUT} ; 3.3 $V \le V_{DD} \le 5.5 V$. Fast strong mode.	-	_	16	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO F_{OUT} ; 1.71 $V \le V_{DD} \le 3.3 \text{ V}$. Fast strong mode.	_	_	16	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO F_{OUT} ; 3.3 $V \le V_{DD} \le 5.5 V$. Slow strong mode.	_	_	7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO F_{OUT} ; 1.71 $V \le V_{DD} \le 3.3 V$. Slow strong mode.	-	_	3.5	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DD} \leq 5.5 V	-	_	16	MHz	90/10% V _{IO}

Document Number: 001-89638 Rev. *G Page 16 of 34

Note
7. Guaranteed by characterization.

XRES

Table 8. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DD}	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	_	_	0.3 × V _{DD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	_	3	7	pF	
SID81 ^[8]	V _{HYSXRES}	Input voltage hysteresis	_	0.05* V _{DD}	-	mV	Typical hysteresis is 200 mV for V _{DD} > 4.5V

Table 9. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83 ^[8]	T _{RESETWIDTH}	Reset pulse width	5	_	_	μs	
BID#194 ^[8]	T _{RESETWAKE}	Wake-up time from reset release	_	_	3	ms	

Analog Peripherals

Comparator

Table 10. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID330 ^[8]	I _{CMP1}	Block current, High Bandwidth mode	-	_	110	μA	
SID331 ^[8]	I _{CMP2}	Block current, Low Power mode	_	-	85	μΑ	
SID332 ^[8]	V _{OFFSET1}	Offset voltage, High Bandwidth mode	_	10	30	mV	
SID333 ^[8]	V _{OFFSET2}	Offset voltage, Low Power mode	-	10	30	mV	
SID334 ^[8]	Z _{CMP}	DC input impedance of comparator	35	-	_	МΩ	
SID338 ^[8]	VINP_COMP	Comparator input range	0	_	3.6	V	Max input voltage is lower of 3.6 V or V _{DD}
SID339	VREF_COMP	Comparator internal voltage reference	1.188	1.2	1.212	V	

Note8. Guaranteed by characterization.

Table 11. Comparator AC Specifications (Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID336 ^[8]	T _{COMP1}	Response Time High Bandwidth mode, 50-mV overdrive	1	ı	90	ns	
SID337 ^[8]	T _{COMP2}	Response Time Low Power mode, 50-mV overdrive	-	ı	110	ns	

CSD

Table 12. CSD and IDAC Block Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
CSD and IDA	Specifications						
SYS.PER#3	VDD_RIPPLE	Max allowed ripple on power supply, DC to 10 MHz	_	_	±50	mV	VDD > 2V (with ripple), 25 °C T _A , Sensitivity = 0.1 pF
SYS.PER#16	VDD_RIPPLE_1.8	Max allowed ripple on power supply, DC to 10 MHz	_	_	±25	mV	VDD > 1.75V (with ripple), 25 C T_A , Parasitic Capacitance (C_P) < 20 pF, Sensitivity ≥ 0.4 pF
SID.CSD#15	VREFHI	Reference Buffer Output	1.1	1.2	1.3	V	
SID.CSD#16	IDAC1IDD	IDAC1 (8-bits) block current	-	_	1125	μA	
SID.CSD#17	IDAC2IDD	IDAC2 (7-bits) block current	_	-	1125	μA	
SID308	V _{CSD}	Voltage range of operation	1.71	-	5.5	V	1.8 V ±5% or 1.8 V to 5.5 V
SID308A	VCOMPIDAC	Voltage compliance range of IDAC	8.0	_	V _{DD} -0.8	V	
SID309	IDAC1 _{DNL}	DNL for 8-bit resolution	-1	-	1	LSB	
SID310	IDAC1 _{INL}	INL for 8-bit resolution	-3	-	3	LSB	
SID311	IDAC2 _{DNL}	DNL for 7-bit resolution	-1	_	1	LSB	
SID312	IDAC2 _{INL}	INL for 7-bit resolution	-3	_	3	LSB	
SID313	SNR	Ratio of counts of finger to noise. Guaranteed by characterization	5	_	_	Ratio	Capacitance range of 9 to 35 pF, 0.1 pF sensitivity
SID314	IDAC1 _{CRT1}	Output current of IDAC1 (8 bits) in high range	_	612	_	μA	
SID314A	IDAC1 _{CRT2}	Output current of IDAC1(8 bits) in low range	_	306	_	μA	
SID315	IDAC2 _{CRT1}	Output current of IDAC2 (7 bits) in high range	_	304.8	-	μA	
SID315A	IDAC2 _{CRT2}	Output current of IDAC2 (7 bits) in low range	_	152.4	-	μA	
SID320	IDAC _{OFFSET}	All zeroes input	_	_	±1	LSB	
SID321	IDAC _{GAIN}	Full-scale error less offset	-	-	±10	%	
SID322	IDAC _{MISMATCH}	Mismatch between IDACs	-	-	7	LSB	
SID323	SID323 IDAC _{SET8} Settling time to 0.5 LSB for 8-bit IDAC		_	_	10	μs	Full-scale transition. No external load.
SID324	IDAC _{SET7}	Settling time to 0.5 LSB for 7-bit IDAC	-	_	10	μs	Full-scale transition. No external load.
SID325	CMOD	External modulator capacitor.	-	2.2	_	nF	5-V rating, X7R or NP0 cap.

Document Number: 001-89638 Rev. *G Page 18 of 34

Table 25. External Clock Specifications

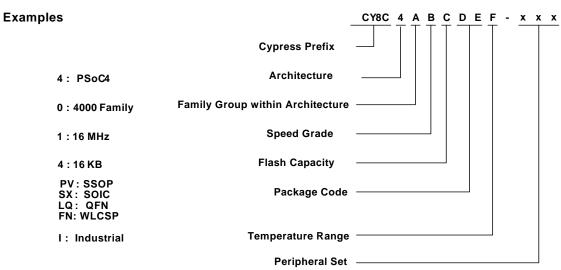
Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
	<u>'</u>	External clock input frequency	0	-	16	MHz	
SID306 ^[14]	ExtClkDuty	Duty cycle; measured at V _{DD/2}	45	-	55	%	

Table 26. Block Specs

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID262 ^[14]	T _{CLKSWITCH}	System clock source switching time	3	-	4	Periods	

Note 14. Guaranteed by characterization.

Ordering Information


The PSoC 4000 part numbers and features are listed in the following table. All package types are available in Tape and Reel.

			Feature						Pac	kage						
Category	MPN	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	CapSense	7-bit IDAC	8-bit IDAC	Comparators	TCPWM Blocks	12C	16 -WLCSP	8-SOIC	16-SOIC	16-QFN	24-QFN	28-SSOP
8	CY8C4013SXI-400	16	8	2	-	-	-	-	1	1	-	~	-	_	_	-
401	CY8C4013SXI-410	16	8	2	-	1	1	1	1	1	-	~	_	-	-	-
CY8C4013	CY8C4013SXI-411	16	8	2	_	1	1	1	1	1	_	1	~	-	1	_
S	CY8C4013LQI-411	16	8	2	_	1	1	1	1	1	_	ı	_	~	ı	_
	CY8C4014SXI-420	16	16	2	~	1	1	1	1	1	-	~	-	-	-	-
	CY8C4014SXI-411	16	16	2	-	1	1	1	1	1	-	-	~	-	-	-
	CY8C4014SXI-421	16	16	2	~	1	1	1	1	1	-	-	~	-	-	-
4	CY8C4014LQI-421	16	16	2	~	1	1	1	1	1	-	_	-	~	_	_
CY8C4014	CY8C4014LQI-412	16	16	2	_	1	1	1	1	1	-	_	-	-	~	_
CX	CY8C4014LQI-422	16	16	2	~	1	1	1	1	1	-	_	-	-	~	_
	CY8C4014PVI-412	16	16	2	-	1	1	1	1	1	-	-	_	-	-	~
	CY8C4014PVI-422	16	16	2	~	1	1	1	1	1	-	-	-	-	-	~
	CY8C4014FNI-421	16	16	2	~	1	1	1	1	1	~	-	_	-	_	-
er	CY8C4014LQI-SLT1	16	16	2	~	1	1	1	1	1	_	_	_	~	_	_
Other	CY8C4014LQI-SLT2	16	16	2	~	1	1	1	1	1	-	-	_	-	~	_

Part Numbering Conventions

PSoC 4 devices follow the part numbering convention described in the following table. All fields are single-character alphanumeric (0, 1, 2, ..., 9, A,B, ..., Z) unless stated otherwise.

The part numbers are of the form CY8C4ABCDEF-XYZ where the fields are defined as follows.

Document Number: 001-89638 Rev. *G Page 23 of 34

The Field Values are listed in the following table:

Field	Description	Values	Meaning
CY8C	Cypress prefix		
4	Architecture	4	PSoC 4
Α	Family	0	4000 Family
В	CPU speed	1	16 MHz
		4	48 MHz
С	Flash capacity	3	8 KB
		4	16 KB
		5	32 KB
		6	64 KB
		7	128 KB
DE	Package code	SX	SOIC
		LQ	QFN
		PV	SSOP
		FN	WLCSP
F	Temperature range	I	Industrial
XYZ	Attributes code	000-999	Code of feature set in specific family

Document Number: 001-89638 Rev. *G Page 24 of 34

Packaging

Table 27. Package List

Spec ID#	Package	Description
BID#47A	28-Pin SSOP	28-pin 5 × 10 × 1.65mm SSOP with 0.65-mm pitch
BID#26	24-Pin QFN	24-pin 4 × 4 × 0.6 mm QFN with 0.5-mm pitch
BID#33	16-Pin QFN	16-pin 3 × 3 × 0.6 mm QFN with 0.5-mm pitch
BID#40	16-Pin SOIC	16-pin (150 Mil) SOIC
BID#47	8-Pin SOIC	8-pin (150 Mil) SOIC
BID#147A	16-Ball WLCSP	16-Ball 1.47 × 1.58 × 0.4 mm

Table 28. Package Characteristics

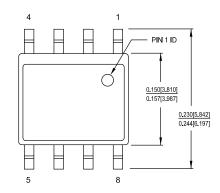
Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25	85	°C
T _J	Operating junction temperature		-40	_	100	°C
T _{JA}	Package θ _{JA} (28-pin SSOP)		_	66.6	_	°C/Watt
Γ _{JC}	Package θ _{JC} (28-pin SSOP)		-	34	_	°C/Watt
Γ _{JA}	Package θ _{JA} (24-pin QFN)		-	38	_	°C/Watt
Γ _{JC}	Package θ _{JC} (24-pin QFN)		_	5.6	_	°C/Watt
ГЈА	Package θ _{JA} (16-pin QFN)		_	49.6	_	°C/Watt
Г _{JC}	Package θ _{JC} (16-pin QFN)		_	5.9	_	°C/Watt
ГЈА	Package θ _{JA} (16-pin SOIC)		_	142	_	°C/Watt
Γ _{JC}	Package θ _{JC} (16-pin SOIC)		_	49.8	_	°C/Watt
ГЈА	Package θ _{JA} (16-ball WLCSP)		_	90	_	°C/Watt
Γ _{JC}	Package θ _{JC} (16-ball WLCSP)		_	0.9	_	°C/Watt
ГЈА	Package θ _{JA} (8-pin SOIC)		_	198	-	°C/Watt
Γ _{JC}	Package θ _{JC} (8-pin SOIC)		_	56.9	_	°C/Watt

Table 29. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All	260 °C	30 seconds

Table 30. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All except WLCSP	MSL 3
16-ball WLCSP	MSL1


Document Number: 001-89638 Rev. *G Page 25 of 34

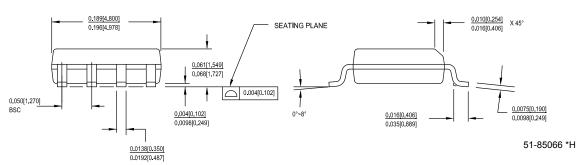


Figure 15. 8-pin (150-mil) SOIC Package Outline

- 1. DIMENSIONS IN INCHES[MM] $\frac{\text{MIN.}}{\text{MAX.}}$
- PIN 1 ID IS OPTIONAL,
 ROUND ON SINGLE LEADFRAME
 RECTANGULAR ON MATRIX LEADFRAME
- 3. REFERENCE JEDEC MS-012
- 4. PACKAGE WEIGHT 0.07gms

PART#				
S08.15	STANDARD PKG			
SZ08.15	LEAD FREE PKG			
SW8.15	LEAD FREE PKG			

øb (16X) 3 2 A1 BALL CORNER 0.08 В PIN 1 DOT E1 С С D D 0.265 **TOP VIEW** 0.211 0.211 SIDE VIEW D1

Figure 16. 16-Ball WLCSP 1.47 × 1.58 × 0.4 mm

0.44001		DIMENSIONS				
SYMBOL	MIN.	NOM.	MAX.			
Α	-	-	0.42			
A1	0.089	0.099	0.109			
D	1.447	1.472	1.497			
E	1.554	1.579	1.604			
D1		1.05 BSC	SC			
E1	1.05 BSC					
MD		4				
ME		4				
N		16				
Øb	0.17	0.20	0.23			
eD	0.35 BSC					
еE	0.35 BSC					
SD	0.18 BSC					
SE	0.18 BSC					

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.

BOTTOM VIEW

- 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.

 SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.

 N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- (\$\frac{1}{2}\$\) DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.

 WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW,

 "SD" OR "SE" = 0.

 WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW,
 - WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" = eD/2 AND "SE" = eE/2.
- A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
- 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER
 BALLS.
- 9. JEDEC SPECIFICATION NO. REF.: N/A.

002-18598 **

Table 31. Acronyms Used in this Document (continued)

Acronym	Description			
PC	program counter			
PCB	printed circuit board			
PGA	programmable gain amplifier			
PHUB	peripheral hub			
PHY	physical layer			
PICU	port interrupt control unit			
PLA	programmable logic array			
PLD	programmable logic device, see also PAL			
PLL	phase-locked loop			
PMDD	package material declaration data sheet			
POR	power-on reset			
PRES	precise power-on reset			
PRS	pseudo random sequence			
PS	port read data register			
PSoC [®]	Programmable System-on-Chip™			
PSRR	power supply rejection ratio			
PWM	pulse-width modulator			
RAM	random-access memory			
RISC	reduced-instruction-set computing			
RMS	root-mean-square			
RTC	real-time clock			
RTL	register transfer language			
RTR	remote transmission request			
RX	receive			
SAR	successive approximation register			
SC/CT	switched capacitor/continuous time			
SCL	I ² C serial clock			
SDA	I ² C serial data			
S/H	sample and hold			
SINAD	signal to noise and distortion ratio			
SIO	special input/output, GPIO with advanced features. See GPIO.			
SOC	start of conversion			
SOF	start of frame			
SPI	Serial Peripheral Interface, a communications protocol			
SR	slew rate			
SRAM	static random access memory			
SRES	software reset			
SWD	serial wire debug, a test protocol			

Table 31. Acronyms Used in this Document (continued)

Acronym	Description			
SWV	single-wire viewer			
TD	transaction descriptor, see also DMA			
THD	total harmonic distortion			
TIA	transimpedance amplifier			
TRM	technical reference manual			
TTL	transistor-transistor logic			
TX	transmit			
UART	Universal Asynchronous Transmitter Receiver, a communications protocol			
UDB	universal digital block			
USB	Universal Serial Bus			
USBIO	USB input/output, PSoC pins used to connect to a USB port			
VDAC	voltage DAC, see also DAC, IDAC			
WDT	watchdog timer			
WOL	write once latch, see also NVL			
WRES	watchdog timer reset			
XRES	external reset I/O pin			
XTAL	crystal			

Document Number: 001-89638 Rev. *G Page 31 of 34

Revision History

Description Title: PSoC [®] 4: PSoC 4000 Family Datasheet Programmable System-on-Chip (PSoC [®]) Document Number: 001-89638						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
*B	4348760	WKA	05/16/2014	New PSoC 4000 datasheet.		
*C	4514139	WKA	10/27/2014	Added 28-pin SSOP pin and package details. Updated V _{REF} spec values. Updated conditions for SID174. Updated SID.CSD#15 values and description. Added spec SID339.		
*D	4617283	WKA	01/09/2015	Corrected Development Kits information and PSoC Creator Example Project figure. Corrected typo in the ordering information table. Updated 28-pin SSOP package diagram.		
*E	4735762	WKA	05/26/2015	Added 16-ball WLCSP pin and package details.		
*F	5466193	WKA	10/07/2016	Updated Table 30. Updated 8-pin SOIC package diagram. Updated the template.		
*G	5685079	TSEN	04/05/2017	Updated 16-ball WLCSP package details.		

Document Number: 001-89638 Rev. *G Page 33 of 34

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot cypress.com/memory Memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2013-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems of the medical devices or systems (including resuscitation equipment and surjoical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-89638 Rev. *G Revised April 5, 2017 Page 34 of 34