

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

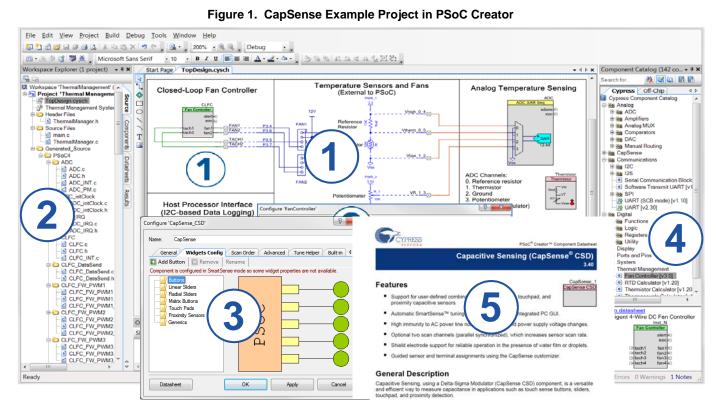
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	16MHz
Connectivity	I ² C
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	D/A 1x7b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-UFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4014lqi-422

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:


- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins
 - AN57821: Mixed Signal Circuit Board Layout
 - □ AN81623: Digital Design Best Practices

- AN73854: Introduction To Bootloaders
- AN89610: ARM Cortex Code Optimization
- Technical Reference Manual (TRM) is in two documents:
 - Architecture TRM details each PSoC 4 functional block.
 - Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
 - □ CY8CKIT-040, PSoC 4000 Pioneer Kit, is an easy-to-use and inexpensive development platform with debugging capability. This kit includes connectors for Arduino[™] compatible shields and Digilent[®] Pmod[™] daughter cards.
 - The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
 - 5. Review component datasheets

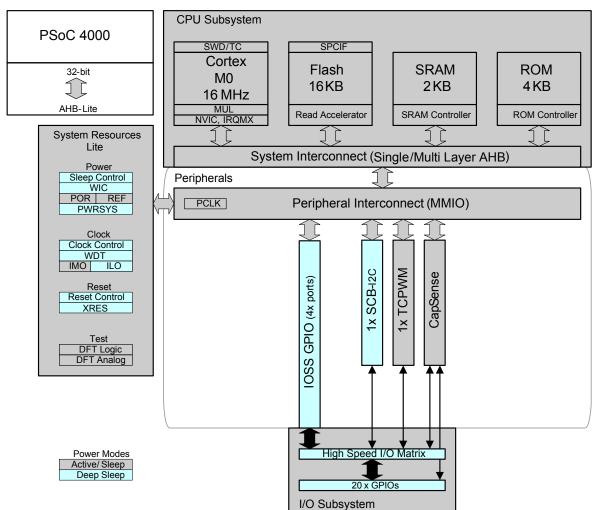


Figure 2. Block Diagram

PSoC 4000 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial-Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE provides fully integrated programming and debug support for the PSoC 4000 devices. The SWD interface is fully compatible with industry-standard third-party tools. The PSoC 4000 family provides a level of security not possible with multi-chip application solutions or with microcontrollers. It has the following advantages:

- Allows disabling of debug features
- Robust flash protection
- Allows customer-proprietary functionality to be implemented in on-chip programmable blocks

The debug circuits are enabled by default and can only be disabled in firmware. If they are not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled. Therefore, PSoC 4000, with device security enabled, may not be returned for failure analysis. This is a trade-off the PSoC 4000 allows the customer to make.

Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in the PSoC 4000 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a subset of the Thumb-2 instruction set. This enables fully compatible, binary, upward migration of the code to higher performance processors, such as the Cortex-M3 and M4. It includes a nested vectored interrupt controller (NVIC) block with eight interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The CPU subsystem also includes a 24-bit timer called SYSTICK, which can generate an interrupt.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a 2-wire form of JTAG. The debug configuration used for PSoC 4000 has four breakpoint (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4000 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The low-power flash block is designed to deliver zero wait-state (WS) access time at 16 MHz.

SRAM

Two KB of SRAM are provided with zero wait-state access at 16 MHz.

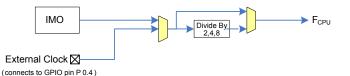
SROM

A supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System

The power system is described in detail in the section on Power on page 12. It provides an assurance that voltage levels are as required for each respective mode and either delays mode entry (for example, on power-on reset (POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brown-out detection). The PSoC 4000 operates with a single external supply over the range of either 1.8 V \pm 5% (externally regulated) or 1.8 to 5.5 V (internally regulated) and has three different power modes, transitions between which are managed by the power system. The PSoC 4000 provides Active, Sleep, and Deep Sleep low-power modes.


All subsystems are operational in Active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in Sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In Deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes 35 μ S.

Clock System

The PSoC 4000 clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that there are no metastable conditions.

The clock system for the PSoC 4000 consists of the internal main oscillator (IMO) and the internal low-frequency oscillator (ILO) and provision for an external clock.

Figure 3. PSoC 4000 MCU Clocking Architecture

The F_{CPU} signal can be divided down to generate synchronous clocks for the analog and digital peripherals. There are four clock dividers for the PSoC 4000, each with 16-bit divide capability The 16-bit capability allows flexible generation of fine-grained frequency values and is fully supported in PSoC Creator.

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4000. It is trimmed during testing to achieve the specified accuracy. The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of 4 MHz. The IMO tolerance with Cypress-provided calibration settings is $\pm 2\%$ (24 and 32 MHz).

ILO Clock Source

The ILO is a very low power, 40-kHz oscillator, which is primarily used to generate clocks for the watchdog timer (WDT) and peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is recorded in a Reset Cause register, which is firmware readable.

Reset

The PSoC 4000 can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset on the 24-pin package. An internal POR is provided on the 16-pin and 8-pin packages. The XRES pin has an internal pull-up resistor that is always enabled. Reset is Active Low.

Voltage Reference

The PSoC 4000 reference system generates all internally required references. A 1.2-V voltage reference is provided for the comparator. The IDACs are based on a $\pm 5\%$ reference.

Pinouts

All port pins support GPIO. Ports 0, 1, and 2 support CSD CapSense and analog multiplexed bus connections. TCPWM functions and Alternate Functions are multiplexed with port pins as follows for the five PSoC 4000 packages.

Table 1. Pin Descriptions

	28-Pin SSOP		24-Pin QFN		16-Pin QFN		16-Pin SOIC		8-Pin SOIC		
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	TCPWM Signals	Alternate Functions
20	VSS										
21	P0.0/TRIN0	1	P0.0/TRIN0							TRIN0: Trigger Input 0	
22	P0.1/TRIN1/CMPO _0	2	P0.1/TRIN1/CMPO _0	1	P0.1/TRIN1/CMPO _0	3	P0.1/TRIN1/CMPO _0			TRIN1: Trigger Input 1	CMPO_0: Sense Comp Out
23	P0.2/TRIN2	3	P0.2/TRIN2	2	P0.2/TRIN2	4	P0.2/TRIN2			TRIN2: Trigger Input 2	
24	P0.3/TRIN3	4	P0.3/TRIN3							TRIN3: Trigger Input 3	
25	P0.4/TRIN4/CMPO _0/EXT_CLK	5	P0.4/TRIN4/CMPO _0/EXT_CLK	3	P0.4/TRIN4/CMPO _0/EXT_CLK	5	P0.4/TRIN4/CMPO _0/EXT_CLK	2	P0.4/TRIN4/CMPO _0/EXT_CLK	TRIN4: Trigger Input 4	CMPO_0: Sense Comp Out, External Clock, CMOD Cap
26	VCC	6	VCC	4	VCC	6	VCC	3	VCC		
27	VDD	7	VDD	6	VDD	7	VDD	4	VDD		
28	VSS	8	VSS	7	VSS	8	VSS	5	VSS		
1	P0.5	9	P0.5	5	VDDIO	9	P0.5				
2	P0.6	10	P0.6	8	P0.6	10	P0.6				
3	P0.7	11	P0.7								
4	P1.0	12	P1.0								
5	P1.1/OUT0	13	P1.1/OUT0	9	P1.1/OUT0	11	P1.1/OUT0	6	P1.1/OUT0	OUT0: PWM OUT 0	
6	P1.2/SCL	14	P1.2/SCL	10	P1.2/SCL	12	P1.2/SCL				I2C Clock
7	P1.3/SDA	15	P1.3/SDA	11	P1.3/SDA	13	P1.3/SDA				I2C Data
8	P1.4/UND0	16	P1.4/UND0							UND0: Underflow Out	
9	P1.5/OVF0	17	P1.5/OVF0							OVF0: Overflow Out	
10	P1.6/OVF0/UND0/n OUT0 /CMPO_0	18	P1.6/OVF0/UND0/n OUT0 /CMPO_0	12	P1.6/OVF0/UND0/n OUT0/CMPO_0	14	P1.6/OVF0/UND0/n OUT0/CMPO_0	7	P1.6/OVF0/UND0/n OUT0/CMPO_0	nOUT0: Complement of OUT0, UND0, OVF0 as above	CMPO_0: Sense Comp Out, Internal Reset function ^[1]

Note

1. Must not have load to ground during POR (should be an output).

Table 1.	Pin	Descriptions	(continued)
----------	-----	--------------	-------------

	28-Pin SSOP		24-Pin QFN		16-Pin QFN		16-Pin SOIC	8-Pin SOIC			
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	TCPWM Signals	Alternate Functions
11	VSS										
12	No Connect (NC) ^[2]										
13	P1.7/MATCH/EXT_ CLK	19	P1.7/MATCH/EXT_ CLK	13	P1.7/MATCH/EXT_ CLK	15	P1.7/MATCH/EXT_ CLK			MATCH: Match Out	External Clock
14	P2.0	20	P2.0			16	P2.0				
15	VSS										
16	P3.0/SDA/SWD_IO	21	P3.0/SDA/SWD_IO	14	P3.0/SDA/SWD_IO	1	P3.0/SDA/SWD_IO	8	P3.0/SDA/SWD_IO		I2C Data, SWD I/O
17	P3.1/SCL/SWD_CL K	22	P3.1/SCL/SWD_CL K	15	P3.1/SCL/SWD_CL K	2	P3.1/SCL/SWD_CL K	1	P3.1/SCL/SWD_CL K		I2C Clock, SWD Clock
18	P3.2	23	P3.2	16	P3.2					OUT0:PWM OUT 0	
19	XRES	24	XRES								XRES: External Reset

Descriptions of the Pin functions are as follows:

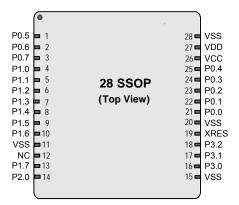
VDD: Power supply for both analog and digital sections.

VDDIO: Where available, this pin provides a separate voltage domain (see the Power section for details).

VSS: Ground pin.

VCCD: Regulated digital supply (1.8 V ±5%).

Pins belonging to Ports 0, 1, and 2 can all be used as CSD sense or shield pins connected to AMUXBUS A or B. They can also be used as GPIO pins that can be driven by the firmware, in addition to their alternate functions listed in the Table 1.


Pins on Port 3 can be used as GPIO, in addition to their alternate functions listed above.

The following packages are provided: 28-pin SSOP, 24-pin QFN, 16-pin QFN, 16-pin SOIC, and 8-pin SOIC.

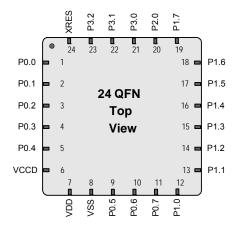

2. This pin is not to be used; it must be left floating.

Figure 4. 28-Pin SSOP Pinout

Figure 6. 16-Pin QFN Pinout

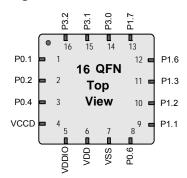
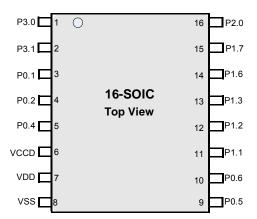
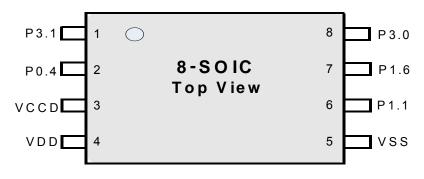




Figure 7. 16-Pin SOIC Pinout

Pin	Name	TCPWM Signal	Alternate Functions	Pin Diagram
B4	P3.2	OUT0:PWMOUT0	-	Bottom View
C3	P0.2/TRIN2	TRIN2:Trigger Input 2	-	4 3 2 1
C4	P0.4/TRIN4/CMPO_0/ EXT_CLK	TRIN4: Trigger Input 4	CMPO_0: Sense Comp Out, Ext. Clock, CMOD Cap	
D4	VCCD	_	_	
D3	VDD	-	-	
D2	VSS	-	-	
C2	VDDIO	-	-	
D1	P0.6	-	-	
C1	P1.1/OUT0	OUT0:PWMOUT0	-	Top View
B1	P1.2/SCL	-	I ² C Clock	
A1	P1.3/SDA	-	l ² C Data	
A2	P1.6/OVF0/UND0/nO UT0/CMPO_0	nOUT0:Complement of OUT0, UND0, OVF0	CMPO_0: Sense Comp Out, Internal Reset function ^[3]	A PIN 1 DOT
B2	P1.7/MATCH/ EXT_CLK	MATCH: Match Out	External Clock	C
A3	P2.0	_	-	
B3	P3.0/SDA/SWD_IO	-	I ² C Data, SWD I/O	D
A4	P3.1/SCL/SWD_CLK	-	I ² C Clock, SWD Clock	

Table 2. 16-ball WLCSP Pin Descriptions and Diagram

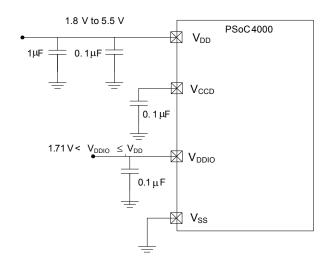
Power

The following power system diagrams (Figure 9 and Figure 10) show the set of power supply pins as implemented for the PSoC 4000. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DD} input. There is a separate regulator for the Deep Sleep mode. The supply voltage range is either 1.8 V ±5% (externally regulated) or 1.8 V to 5.5 V (unregulated externally; regulated internally) with all functions and circuits operating over that range.

The V_{DDIO} pin, available in the 16-pin QFN package, provides a separate voltage domain for the following pins: P3.0, P3.1, and P3.2. P3.0 and P3.1 can be I²C pins and the chip can thus communicate with an I²C system, running at a different voltage (where V_{DDIO} \leq V_{DD}). For example, V_{DD} can be 3.3 V and V_{DDIO} can be 1.8 V.

The PSoC 4000 family allows two distinct modes of power supply operation: Unregulated External Supply and Regulated External Supply.

Unregulated External Supply

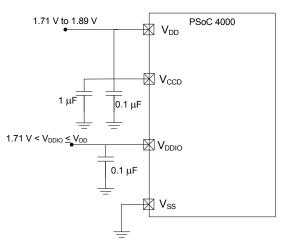

In this mode, the PSoC 4000 is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4000 supplies the internal logic and the V_{CCD} output of the PSoC 4000 must be bypassed to ground via an external capacitor (0.1 μ F; X5R ceramic or better).

Bypass capacitors must be used from V_{DD} to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1-µF range, in parallel with a smaller capacitor (0.1 µF, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme follows (V_{DDIO} is available on the 16-QFN package).

Figure 9. 16-pin QFN Bypass Scheme Example - Unregulated External Supply

Power supply connections when $1.8 \leq V_{\text{DD}} \leq ~5.5\,\text{V}$


Regulated External Supply

In this mode, the PSoC 4000 is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the V_{DD} and V_{CCD} pins are shorted together and bypassed. The internal regulator should be disabled in the firmware. Note that in this mode VDD (VCCD) should never exceed 1.89 in any condition, including flash programming.

An example of a bypass scheme follows ($V_{\mbox{\scriptsize DDIO}}$ is available on the 16-QFN package).

Figure 10. 16-pin QFN Bypass Scheme Example - Regulated External Supply

Power supply connections when $1.71 \leq V_{\text{DD}} \leq 1.89 \; V$

Development Support

The PSoC 4000 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4000 family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4000 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Electrical Specifications

Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings^[4]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DD_ABS}	Digital supply relative to V _{SS}	-0.5	-	6	V	
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SS}	-0.5	-	1.95	V	
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	-	V _{DD} +0.5	V	
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25	mA	
SID5	I _{GPIO_injection}	GPIO injection current, Max for V _{IH} > V _{DD} , and Min for V _{IL} < V _{SS}	-0.5	_	0.5	mA	Current injected per pin
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	-	V	
BID46	LU	Pin current for latch-up	-140	_	140	mA	

Device Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 4. DC Specifications

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID53	V _{DD}	Power supply input voltage	1.8	-	5.5	V	With regulator enabled
SID255	V _{DD}	Power supply input voltage (V_{CCD} = V_{DD})	1.71	-	1.89	V	Internally unreg- ulated supply
SID54	V _{DDIO}	V _{DDIO} domain supply	1.71	-	V _{DD}	V	
SID55	C _{EFC}	External regulator voltage bypass	-	0.1	-	μF	X5R ceramic or better
SID56	C _{EXC}	Power supply bypass capacitor	_	1	-	μF	X5R ceramic or better
Active Mode,	V _{DD} = 1.8 to 5.5	V					
SID9	I _{DD5}	Execute from flash; CPU at 6 MHz	-	2.0	2.85	mA	
SID12	I _{DD8}	Execute from flash; CPU at 12 MHz	-	3.2	3.75	mA	
SID16	I _{DD11}	Execute from flash; CPU at 16 MHz	-	4.0	4.5	mA	
Sleep Mode, V	/ _{DD} = 1.71 to 5.5	ν.					
SID25	I _{DD20}	I ² C wakeup, WDT on. 6 MHz	-	1.1	-	mA	
SID25A	I _{DD20A}	I ² C wakeup, WDT on. 12 MHz	_	1.4	_	mA	
Deep Sleep M	ode, V _{DD} = 1.8 t	o 3.6 V (Regulator on)					
SID31	I _{DD26}	I ² C wakeup and WDT on	-	2.5	8.2	μA	

Note

^{4.} Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

XRES

Table 8. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DD}	_	_	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	_	0.3 × V _{DD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	7	pF	
SID81 ^[8]	V _{HYSXRES}	Input voltage hysteresis	_	0.05* V _{DD}	-	mV	Typical hysteresis is 200 mV for V _{DD} > 4.5V

Table 9. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83 ^[8]	TRESETWIDTH	Reset pulse width	5	-	Ι	μs	
BID#194 ^[8]	T _{RESETWAKE}	Wake-up time from reset release	-	-	3	ms	

Analog Peripherals

Comparator

Table 10. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID330 ^[8]	I _{CMP1}	Block current, High Bandwidth mode	-	-	110	μA	
SID331 ^[8]	I _{CMP2}	Block current, Low Power mode	-	-	85	μA	
SID332 ^[8]	V _{OFFSET1}	Offset voltage, High Bandwidth mode	-	10	30	mV	
SID333 ^[8]	V _{OFFSET2}	Offset voltage, Low Power mode	-	10	30	mV	
SID334 ^[8]	Z _{CMP}	DC input impedance of comparator	35	-	-	MΩ	
SID338 ^[8]	VINP_COMP	Comparator input range	0	_	3.6	V	Max input voltage is lower of 3.6 V or V _{DD}
SID339	VREF_COMP	Comparator internal voltage reference	1.188	1.2	1.212	V	

Digital Peripherals

Timer Counter Pulse-Width Modulator (TCPWM)

Table 13. TCPWM Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	-	-	45	μA	All modes (TCPWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 8 MHz	-	-	145	μA	All modes (TCPWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 16 MHz	_	-	160	μA	All modes (TCPWM)
SID.TCPWM.3	TCPWM _{FREQ}	Operating frequency	_	_	Fc	MHz	Fc max = CLK_SYS. Maximum = 16 MHz
SID.TCPWM.4	TPWM _{ENEXT}	Input trigger pulse width	2/Fc	-	-	ns	For all trigger events ^[9]
SID.TCPWM.5	TPWM _{EXT}	Output trigger pulse widths	2/Fc	_	_	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	TC _{RES}	Resolution of counter	1/Fc	-	_	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	1/Fc	-	_	ns	Minimum pulse width of PWM Output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	1/Fc	_	_	ns	Minimum pulse width between Quadrature phase inputs.

βĈ

Table 14. Fixed I²C DC Specifications^[10]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	25	μA	
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135	μA	
SID.PWR#5	ISBI2C	I ² C enabled in Deep Sleep mode	-	—	2.5	μA	

Table 15. Fixed I²C AC Specifications^[10]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	_	-	400	Kbps	

Note 9. Trigger events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected. 10. Guaranteed by characterization.

Table 25. External Clock Specifications

Spec ID	Parameter	ter Description		Тур	Max	Units	Details/Conditions
SID305 ^[14]	ExtClkFreq	External clock input frequency	0	-	16	MHz	
SID306 ^[14]	SID306 ^[14] ExtClkDuty Duty cycle; measured at V _{DD/2}		45	-	55	%	

Table 26. Block Specs

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID262 ^[14]	T _{CLKSWITCH}	System clock source switching time	3	-	4	Periods	

Ordering Information

The PSoC 4000 part numbers and features are listed in the following table. All package types are available in Tape and Reel.

						Feature	•						Pac	kage		
Category	MPN	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	CapSense	7-bit IDAC	8-bit IDAC	Comparators	TCPWM Blocks	12C	16 -WLCSP	8-SOIC	16-SOIC	16-QFN	24-QFN	28-SSOP
~	CY8C4013SXI-400	16	8	2	-	-	-	-	1	1	-	~	-	-	-	-
401:	CY8C4013SXI-410	16	8	2	-	1	1	1	1	1	-	~	-	-	-	-
CY8C4013	CY8C4013SXI-411	16	8	2	-	1	1	1	1	1	-	Ι	~	-	Ι	-
o	CY8C4013LQI-411	16	8	2	-	1	1	1	1	1	-	-	-	~	-	-
	CY8C4014SXI-420	16	16	2	~	1	1	1	1	1	-	~	-	-	-	-
	CY8C4014SXI-411	16	16	2	-	1	1	1	1	1	-	-	~	-	-	-
	CY8C4014SXI-421	16	16	2	~	1	1	1	1	1	-	-	~	-	-	-
4	CY8C4014LQI-421	16	16	2	~	1	1	1	1	1	-	-	-	~	-	-
CY8C4014	CY8C4014LQI-412	16	16	2	-	1	1	1	1	1	-	-	-	-	~	-
СУ8	CY8C4014LQI-422	16	16	2	~	1	1	1	1	1	-	-	-	-	~	-
	CY8C4014PVI-412	16	16	2	_	1	1	1	1	1	-	-	-	-	-	~
	CY8C4014PVI-422	16	16	2	~	1	1	1	1	1	-	-	-	-	-	~
	CY8C4014FNI-421	16	16	2	~	1	1	1	1	1	~	-	-	-	-	-
er	CY8C4014LQI-SLT1	16	16	2	~	1	1	1	1	1	-	-	-	~	-	-
Other	CY8C4014LQI-SLT2	16	16	2	~	1	1	1	1	1	-	-	-	-	~	-

Part Numbering Conventions

Exam

PSoC 4 devices follow the part numbering convention described in the following table. All fields are single-character alphanumeric (0, 1, 2, ..., 9, A,B, ..., Z) unless stated otherwise.

The part numbers are of the form CY8C4ABCDEF-XYZ where the fields are defined as follows.

ples		<u>CY8C</u>	<u>4</u> <u>A</u>	B	c ⊤	D	E	F	-	x	x	x
	Cypress Prefix											
4: PSoC4	Architecture											
0 : 4000 Family	Family Group within Architecture											
1 : 16 MHz	Speed Grade											
4 : 16 KB	Flash Capacity											
PV:SSOP SX:SOIC LQ:QFN FN:WLCSP	Package Code											
I : Industrial	Temperature Range											
	Peripheral Set											

The Field Values are listed in the following table:

Field	Description	Values	Meaning
CY8C	Cypress prefix		
4	Architecture	4	PSoC 4
Α	Family	0	4000 Family
В	CPU speed	1	16 MHz
		4	48 MHz
С	Flash capacity	3	8 KB
		4	16 KB
		5	32 KB
		6	64 KB
		7	128 KB
DE	Package code	SX	SOIC
		LQ	QFN
		PV	SSOP
		FN	WLCSP
F	Temperature range	I	Industrial
XYZ	Attributes code	000-999	Code of feature set in specific family

Packaging

Table 27. Package List

Spec ID#	Package	Description
BID#47A	28-Pin SSOP	28-pin 5 × 10 × 1.65mm SSOP with 0.65-mm pitch
BID#26	24-Pin QFN	24-pin 4 × 4 × 0.6 mm QFN with 0.5-mm pitch
BID#33	16-Pin QFN	16-pin 3 × 3 × 0.6 mm QFN with 0.5-mm pitch
BID#40	16-Pin SOIC	16-pin (150 Mil) SOIC
BID#47	8-Pin SOIC	8-pin (150 Mil) SOIC
BID#147A	16-Ball WLCSP	16-Ball 1.47 × 1.58 × 0.4 mm

Table 28. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25	85	°C
Т _Ј	Operating junction temperature		-40	-	100	°C
T _{JA}	Package θ_{JA} (28-pin SSOP)		_	66.6	-	°C/Watt
T _{JC}	Package θ_{JC} (28-pin SSOP)		-	34	-	°C/Watt
T _{JA}	Package θ _{JA} (24-pin QFN)		-	38	-	°C/Watt
T _{JC}	Package θ_{JC} (24-pin QFN)		-	5.6	-	°C/Watt
T _{JA}	Package θ _{JA} (16-pin QFN)		-	49.6	-	°C/Watt
T _{JC}	Package θ _{JC} (16-pin QFN)		-	5.9	-	°C/Watt
T _{JA}	Package θ _{JA} (16-pin SOIC)		-	142	-	°C/Watt
T _{JC}	Package θ_{JC} (16-pin SOIC)		-	49.8	-	°C/Watt
T _{JA}	Package θ_{JA} (16-ball WLCSP)		-	90	-	°C/Watt
T _{JC}	Package θ_{JC} (16-ball WLCSP)		-	0.9	-	°C/Watt
T _{JA}	Package θ _{JA} (8-pin SOIC)		-	198	_	°C/Watt
T _{JC}	Package θ_{JC} (8-pin SOIC)		-	56.9	-	°C/Watt

Table 29. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All	260 °C	30 seconds

Table 30. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All except WLCSP	MSL 3
16-ball WLCSP	MSL1

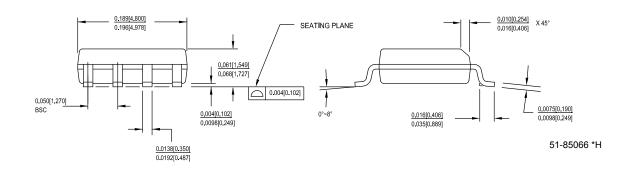
4

5

1

8

PIN 1 ID


0.150[3.810] 0.157[3.987]

> 0.230[5.842] 0.244[6.197]

Figure 15. 8-pin (150-mil) SOIC Package Outline

- 1. DIMENSIONS IN INCHES[MM] MIN. MAX.
- 2. PIN 1 ID IS OPTIONAL, ROUND ON SINGLE LEADFRAME RECTANGULAR ON MATRIX LEADFRAME
- 3. REFERENCE JEDEC MS-012
- 4. PACKAGE WEIGHT 0.07gms

	PART #
S08.15	STANDARD PKG
SZ08.15	LEAD FREE PKG
SW8.15	LEAD FREE PKG

Acronyms

Table 31. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
АНВ	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
ARM®	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC cyclic redundancy check, an error-checking protocol	
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMIPS	Dhrystone million instructions per second
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge

Table 31. Acronyms Used in this Document (continued)

Acronym	Description
ETM	embedded trace macrocell
FIR	finite impulse response, see also IIR
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSoC pin
HVI	high-voltage interrupt, see also LVI, LVD
IC	integrated circuit
IDAC	current DAC, see also DAC, VDAC
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
lir	infinite impulse response, see also FIR
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
INL	integral nonlinearity, see also DNL
I/O	input/output, see also GPIO, DIO, SIO, USBIO
IPOR	initial power-on reset
IPSR	interrupt program status register
IRQ	interrupt request
ITM	instrumentation trace macrocell
LCD	liquid crystal display
LIN	Local Interconnect Network, a communications protocol.
LR	link register
LUT	lookup table
LVD	low-voltage detect, see also LVI
LVI	low-voltage interrupt, see also HVI
LVTTL	low-voltage transistor-transistor logic
MAC	multiply-accumulate
MCU	microcontroller unit
MISO	master-in slave-out
NC	no connect
NMI	nonmaskable interrupt
NRZ	non-return-to-zero
NVIC	nested vectored interrupt controller
NVL	nonvolatile latch, see also WOL
opamp	operational amplifier
PAL	programmable array logic, see also PLD

Document Conventions

Units of Measure

Table 32. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
S	second
sps	samples per second
sqrtHz	square root of hertz
V	volt