

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

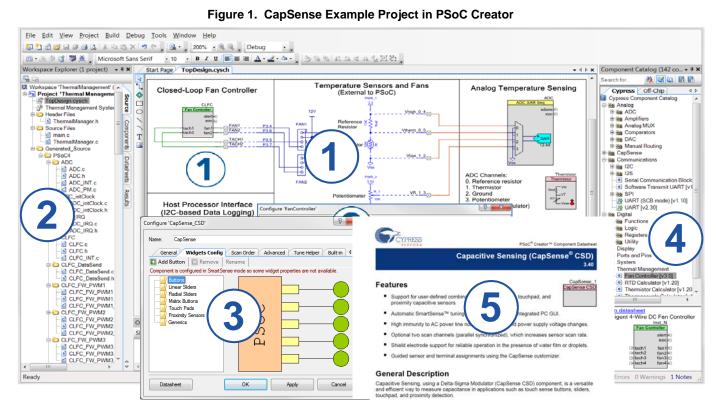
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	16MHz
Connectivity	I ² C
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	D/A 1x7b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4014pvi-422t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:


- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins
 - AN57821: Mixed Signal Circuit Board Layout
 - □ AN81623: Digital Design Best Practices

- AN73854: Introduction To Bootloaders
- AN89610: ARM Cortex Code Optimization
- Technical Reference Manual (TRM) is in two documents:
 - Architecture TRM details each PSoC 4 functional block.
 - Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
 - □ CY8CKIT-040, PSoC 4000 Pioneer Kit, is an easy-to-use and inexpensive development platform with debugging capability. This kit includes connectors for Arduino[™] compatible shields and Digilent[®] Pmod[™] daughter cards.
 - The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
 - 5. Review component datasheets

Contents

Functional Definition 5
CPU and Memory Subsystem 5
System Resources 5
Analog Blocks 6
Fixed Function Digital 6
GPIO
Special Function Peripherals 6
Pinouts 7
Power
Unregulated External Supply 12
Regulated External Supply 12
Development Support 13
Documentation 13
Online 13
Tools 13
Electrical Specifications 14
Absolute Maximum Ratings 14
Device Level Specifications 14
Analog Peripherals 17

Digital Peripherals	19
Memory	20
System Resources	20
Ordering Information	23
Part Numbering Conventions	23
Packaging	25
Package Outline Drawings	26
Acronyms	30
Document Conventions	
Units of Measure	32
Revision History	33
Sales, Solutions, and Legal Information	34
Worldwide Sales and Design Support	34
Products	34
PSoC® Solutions	34
Cypress Developer Community	34
Technical Support	

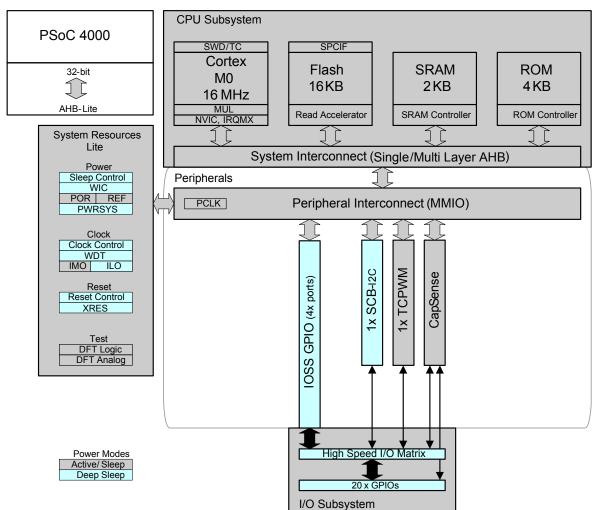


Figure 2. Block Diagram

PSoC 4000 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial-Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE provides fully integrated programming and debug support for the PSoC 4000 devices. The SWD interface is fully compatible with industry-standard third-party tools. The PSoC 4000 family provides a level of security not possible with multi-chip application solutions or with microcontrollers. It has the following advantages:

- Allows disabling of debug features
- Robust flash protection
- Allows customer-proprietary functionality to be implemented in on-chip programmable blocks

The debug circuits are enabled by default and can only be disabled in firmware. If they are not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled. Therefore, PSoC 4000, with device security enabled, may not be returned for failure analysis. This is a trade-off the PSoC 4000 allows the customer to make.

Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in the PSoC 4000 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a subset of the Thumb-2 instruction set. This enables fully compatible, binary, upward migration of the code to higher performance processors, such as the Cortex-M3 and M4. It includes a nested vectored interrupt controller (NVIC) block with eight interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The CPU subsystem also includes a 24-bit timer called SYSTICK, which can generate an interrupt.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a 2-wire form of JTAG. The debug configuration used for PSoC 4000 has four breakpoint (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4000 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The low-power flash block is designed to deliver zero wait-state (WS) access time at 16 MHz.

SRAM

Two KB of SRAM are provided with zero wait-state access at 16 MHz.

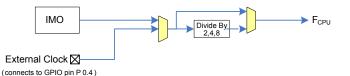
SROM

A supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System

The power system is described in detail in the section on Power on page 12. It provides an assurance that voltage levels are as required for each respective mode and either delays mode entry (for example, on power-on reset (POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brown-out detection). The PSoC 4000 operates with a single external supply over the range of either 1.8 V \pm 5% (externally regulated) or 1.8 to 5.5 V (internally regulated) and has three different power modes, transitions between which are managed by the power system. The PSoC 4000 provides Active, Sleep, and Deep Sleep low-power modes.


All subsystems are operational in Active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in Sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In Deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes 35 μ S.

Clock System

The PSoC 4000 clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that there are no metastable conditions.

The clock system for the PSoC 4000 consists of the internal main oscillator (IMO) and the internal low-frequency oscillator (ILO) and provision for an external clock.

Figure 3. PSoC 4000 MCU Clocking Architecture

The F_{CPU} signal can be divided down to generate synchronous clocks for the analog and digital peripherals. There are four clock dividers for the PSoC 4000, each with 16-bit divide capability The 16-bit capability allows flexible generation of fine-grained frequency values and is fully supported in PSoC Creator.

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4000. It is trimmed during testing to achieve the specified accuracy. The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of 4 MHz. The IMO tolerance with Cypress-provided calibration settings is $\pm 2\%$ (24 and 32 MHz).

ILO Clock Source

The ILO is a very low power, 40-kHz oscillator, which is primarily used to generate clocks for the watchdog timer (WDT) and peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is recorded in a Reset Cause register, which is firmware readable.

Reset

The PSoC 4000 can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset on the 24-pin package. An internal POR is provided on the 16-pin and 8-pin packages. The XRES pin has an internal pull-up resistor that is always enabled. Reset is Active Low.

Voltage Reference

The PSoC 4000 reference system generates all internally required references. A 1.2-V voltage reference is provided for the comparator. The IDACs are based on a $\pm 5\%$ reference.

Analog Blocks

Low-power Comparators

The PSoC 4000 has a low-power comparator, which uses the built-in voltage reference. Any one of up to 16 pins can be used as a comparator input and the output of the comparator can be brought out to a pin. The selected comparator input is connected to the minus input of the comparator with the plus input always connected to the 1.2-V voltage reference. This comparator is also used for CapSense purposes and is not available during CapSense operation.

Current DACs

The PSoC 4000 has two IDACs, which can drive any of up to 16 pins on the chip. These IDACs have programmable current ranges.

Analog Multiplexed Buses

The PSoC 4000 has two concentric independent buses that go around the periphery of the chip. These buses (called amux buses) are connected to firmware-programmable analog switches that allow the chip's internal resources (IDACs, comparator) to connect to any pin on Ports 0, 1, and 2.

Fixed Function Digital

Timer/Counter/PWM (TCPWM) Block

The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register that is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as dead-band programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be shut off immediately with no time for software intervention.

Serial Communication Block (SCB)

The PSoC 4000 has a serial communication block, which implements a multi-master $\mathsf{I}^2\mathsf{C}$ interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multi-master arbitration). This block is capable of operating at speeds of up to 400 kbps (Fast Mode) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EZI2C that creates a mailbox address range in the memory of the PSoC 4000 and effectively reduces I²C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time.

The I²C peripheral is compatible with the I²C Standard-mode and Fast-mode devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

The PSoC 4000 is not completely compliant with the I^2C spec in the following respect:

- GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-mode minimum fall time is not met in Fast Strong mode; Slow Strong mode can help meet this spec depending on the Bus Load.

GPIO

The PSoC 4000 has up to 20 GPIOs. The GPIO block implements the following:

- Eight drive modes:
 - Analog input mode (input and output buffers disabled)
 - Input only
 - Weak pull-up with strong pull-down
 - Strong pull-up with weak pull-down
 - Open drain with strong pull-down
 - Open drain with strong pull-up
 - Strong pull-up with strong pull-down
 Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width (less for Ports 2 and 3). During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves. Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (4 for PSoC 4000).

The 28-pin and 24-pin packages have 20 GPIOs. The 16-pin SOIC has 13 GPIOs. The 16-pin QFN and the 16-ball WLCSP have 12 GPIOs. The 8-pin SOIC has 5 GPIOs.

Special Function Peripherals

CapSense

CapSense is supported in the PSoC 4000 through a CSD block that can be connected to up to 16 pins through an analog mux bus via an analog switch (pins on Port 3 are not available for CapSense purposes). CapSense function can thus be provided on any available pin or group of pins in a system under software control. A PSoC Creator component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another mux bus to provide water-tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. Proximity sensing can also be implemented.

The CapSense block has two IDACs, which can be used for general purposes if CapSense is not being used (both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

Pinouts

All port pins support GPIO. Ports 0, 1, and 2 support CSD CapSense and analog multiplexed bus connections. TCPWM functions and Alternate Functions are multiplexed with port pins as follows for the five PSoC 4000 packages.

Table 1. Pin Descriptions

	28-Pin SSOP		24-Pin QFN		16-Pin QFN		16-Pin SOIC		8-Pin SOIC		
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	TCPWM Signals	Alternate Functions
20	VSS										
21	P0.0/TRIN0	1	P0.0/TRIN0							TRIN0: Trigger Input 0	
22	P0.1/TRIN1/CMPO _0	2	P0.1/TRIN1/CMPO _0	1	P0.1/TRIN1/CMPO _0	3	P0.1/TRIN1/CMPO _0			TRIN1: Trigger Input 1	CMPO_0: Sense Comp Out
23	P0.2/TRIN2	3	P0.2/TRIN2	2	P0.2/TRIN2	4	P0.2/TRIN2			TRIN2: Trigger Input 2	
24	P0.3/TRIN3	4	P0.3/TRIN3							TRIN3: Trigger Input 3	
25	P0.4/TRIN4/CMPO _0/EXT_CLK	5	P0.4/TRIN4/CMPO _0/EXT_CLK	3	P0.4/TRIN4/CMPO _0/EXT_CLK	5	P0.4/TRIN4/CMPO _0/EXT_CLK	2	P0.4/TRIN4/CMPO _0/EXT_CLK	TRIN4: Trigger Input 4	CMPO_0: Sense Comp Out, External Clock, CMOD Cap
26	VCC	6	VCC	4	VCC	6	VCC	3	VCC		
27	VDD	7	VDD	6	VDD	7	VDD	4	VDD		
28	VSS	8	VSS	7	VSS	8	VSS	5	VSS		
1	P0.5	9	P0.5	5	VDDIO	9	P0.5				
2	P0.6	10	P0.6	8	P0.6	10	P0.6				
3	P0.7	11	P0.7								
4	P1.0	12	P1.0								
5	P1.1/OUT0	13	P1.1/OUT0	9	P1.1/OUT0	11	P1.1/OUT0	6	P1.1/OUT0	OUT0: PWM OUT 0	
6	P1.2/SCL	14	P1.2/SCL	10	P1.2/SCL	12	P1.2/SCL				I2C Clock
7	P1.3/SDA	15	P1.3/SDA	11	P1.3/SDA	13	P1.3/SDA				I2C Data
8	P1.4/UND0	16	P1.4/UND0							UND0: Underflow Out	
9	P1.5/OVF0	17	P1.5/OVF0							OVF0: Overflow Out	
10	P1.6/OVF0/UND0/n OUT0 /CMPO_0	18	P1.6/OVF0/UND0/n OUT0 /CMPO_0	12	P1.6/OVF0/UND0/n OUT0/CMPO_0	14	P1.6/OVF0/UND0/n OUT0/CMPO_0	7	P1.6/OVF0/UND0/n OUT0/CMPO_0	nOUT0: Complement of OUT0, UND0, OVF0 as above	CMPO_0: Sense Comp Out, Internal Reset function ^[1]

Note

1. Must not have load to ground during POR (should be an output).

Table 1.	Pin	Descriptions	(continued)
----------	-----	--------------	-------------

	28-Pin SSOP		24-Pin QFN		16-Pin QFN		16-Pin SOIC	8-Pin SOIC			
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	TCPWM Signals	Alternate Functions
11	VSS										
12	No Connect (NC) ^[2]										
13	P1.7/MATCH/EXT_ CLK	19	P1.7/MATCH/EXT_ CLK	13	P1.7/MATCH/EXT_ CLK	15	P1.7/MATCH/EXT_ CLK			MATCH: Match Out	External Clock
14	P2.0	20	P2.0			16	P2.0				
15	VSS										
16	P3.0/SDA/SWD_IO	21	P3.0/SDA/SWD_IO	14	P3.0/SDA/SWD_IO	1	P3.0/SDA/SWD_IO	8	P3.0/SDA/SWD_IO		I2C Data, SWD I/O
17	P3.1/SCL/SWD_CL K	22	P3.1/SCL/SWD_CL K	15	P3.1/SCL/SWD_CL K	2	P3.1/SCL/SWD_CL K	1	P3.1/SCL/SWD_CL K		I2C Clock, SWD Clock
18	P3.2	23	P3.2	16	P3.2					OUT0:PWM OUT 0	
19	XRES	24	XRES								XRES: External Reset

Descriptions of the Pin functions are as follows:

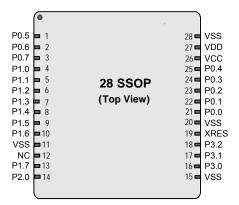
VDD: Power supply for both analog and digital sections.

VDDIO: Where available, this pin provides a separate voltage domain (see the Power section for details).

VSS: Ground pin.

VCCD: Regulated digital supply (1.8 V ±5%).

Pins belonging to Ports 0, 1, and 2 can all be used as CSD sense or shield pins connected to AMUXBUS A or B. They can also be used as GPIO pins that can be driven by the firmware, in addition to their alternate functions listed in the Table 1.


Pins on Port 3 can be used as GPIO, in addition to their alternate functions listed above.

The following packages are provided: 28-pin SSOP, 24-pin QFN, 16-pin QFN, 16-pin SOIC, and 8-pin SOIC.

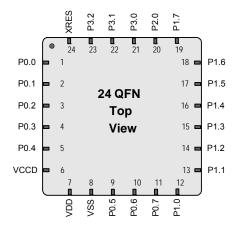

2. This pin is not to be used; it must be left floating.

Figure 4. 28-Pin SSOP Pinout

Figure 6. 16-Pin QFN Pinout

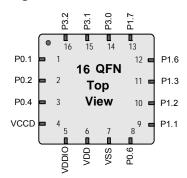
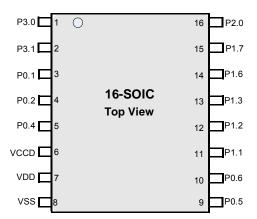
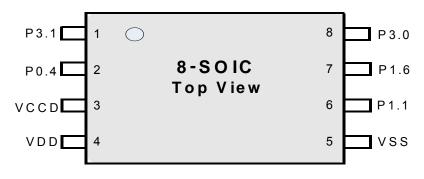




Figure 7. 16-Pin SOIC Pinout

Table 4. DC Specifications (continued)

Typical values measured at V_DD = 3.3 V and 25 $^\circ\text{C}.$

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions				
Deep Sleep M	Deep Sleep Mode, V _{DD} = 3.6 to 5.5 V (Regulator on)										
SID34	I _{DD29}	I ² C wakeup and WDT on	_	2.5	12	μA					
Deep Sleep M	ode, V _{DD} = V _{CCI}	_D = 1.71 to 1.89 V (Regulator bypassed))								
SID37	I _{DD32}	I ² C wakeup and WDT on	-	2.5	9.2	μA					
XRES Current	XRES Current										
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA					

Table 5. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	16	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49 ^[5]	T _{SLEEP}	Wakeup from Sleep mode	_	0	_	μs	
SID50 ^[5]	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode		35	_	μs	

GPIO

Table 6. GPIO DC Specifications (referenced to V_{DDIO} for 16-Pin QFN V_{DDIO} pins)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID57	V _{IH} ^[6]	Input voltage high threshold	$0.7 \times V_{DD}$	-	-	V	CMOS Input
SID58	V _{IL}	Input voltage low threshold	-	-	$0.3 \times V_{DD}$	V	CMOS Input
SID241	V _{IH} ^[6]	LVTTL input, V _{DD} < 2.7 V	0.7× V _{DD}	-	-	V	
SID242	V _{IL}	LVTTL input, V _{DD} < 2.7 V	-	-	$0.3 \times V_{DD}$	V	
SID243	V _{IH} ^[6]	LVTTL input, $V_{DD} \ge 2.7 \text{ V}$	2.0	-	-	V	
SID244	V _{IL}	LVTTL input, $V_{DD} \ge 2.7 \text{ V}$	-	-	0.8	V	
SID59	V _{OH}	Output voltage high level	V _{DD} –0.6	-	-	V	I _{OH} = 4 mA at 3 V V _{DD}
SID60	V _{OH}	Output voltage high level	V _{DD} -0.5	-	-	V	I _{OH} = 1 mA at 1.8 V V _{DD}
SID61	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 4 mA at 1.8 V V _{DD}
SID62	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 10 mA at 3 V V _{DD}
SID62A	V _{OL}	Output voltage low level	-	-	0.4	V	I _{OL} = 3 mA at 3 V V _{DD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID65	IIL	Input leakage current (absolute value)	-	_	2	nA	25 °C, V _{DD} = 3.0 V
SID66	C _{IN}	Input capacitance	-	3	7	pF	

Notes

Guaranteed by characterization.
 V_{IH} must not exceed V_{DD} + 0.2 V.

XRES

Table 8. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DD}	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	7	pF	
SID81 ^[8]	V _{HYSXRES}	Input voltage hysteresis	-	0.05* V _{DD}	_	mV	Typical hysteresis is 200 mV for V _{DD} > 4.5V

Table 9. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83 ^[8]	TRESETWIDTH	Reset pulse width	5	-	Ι	μs	
BID#194 ^[8]	T _{RESETWAKE}	Wake-up time from reset release	-	-	3	ms	

Analog Peripherals

Comparator

Table 10. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID330 ^[8]	I _{CMP1}	Block current, High Bandwidth mode	-	-	110	μA	
SID331 ^[8]	I _{CMP2}	Block current, Low Power mode	-	-	85	μA	
SID332 ^[8]	V _{OFFSET1}	Offset voltage, High Bandwidth mode	-	10	30	mV	
SID333 ^[8]	V _{OFFSET2}	Offset voltage, Low Power mode	-	10	30	mV	
SID334 ^[8]	Z _{CMP}	DC input impedance of comparator	35	-	_	MΩ	
SID338 ^[8]	VINP_COMP	Comparator input range	0	-	3.6	V	Max input voltage is lower of 3.6 V or V _{DD}
SID339	VREF_COMP	Comparator internal voltage reference	1.188	1.2	1.212	V	

Memory

Table 16. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	-	5.5	V	

Table 17. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[11]	Row (block) write time (erase and program)	-	-	20	ms	Row (block) = 64 bytes
SID175	T _{ROWERASE} ^[11]	Row erase time	-	_	13	ms	
SID176	T _{ROWPROGRAM} ^[11]	Row program time after erase	-	-	7	ms	
SID178	T _{BULKERASE} ^[11]	Bulk erase time (16 KB)	-	-	15	ms	
SID180 ^[12]	T _{DEVPROG} ^[11]	Total device program time	-	-	7.5	seconds	
SID181 ^[12]	F _{END}	Flash endurance	100 K	-	-	cycles	
SID182 ^[12]	F _{RET}	Flash retention. $T_A \le 55 \degree$ C, 100 K P/E cycles	20	-	-	years	
SID182A ^[12]		Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	-	_	years	

System Resources

Power-on Reset (POR)

Table 18. Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
	SR_POWER_UP	Power supply slew rate	1	-	67	V/ms	At power-up
SID185 ^[12]	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.5	V	
SID186 ^[12]	V _{FALLIPOR}	Falling trip voltage	0.70	—	1.4	V	

Table 19. Brown-out Detect (BOD) for V_{CCD}

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190 ^[12]	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.48	-	1.62	V	
SID192 ^[12]	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.11	-	1.5	V	

Notes 11. It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

SWD Interface

Table 20. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3~V \leq V_{DD} \leq 5.5~V$	-	_	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71 \text{ V} \leq \text{V}_{DD} \leq 3.3 \text{ V}$	-	_	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID215 ^[13]	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	-	-	ns	
SID216 ^[13]	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	-	_	ns	
SID217 ^[13]	T_SWDO_VALID		-	-	0.5*T	ns	
SID217A ^[13]	T_SWDO_HOLD	T = 1/f SWDCLK	1	Ι	-	ns	

Internal Main Oscillator

Table 21. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	-	-	250	μA	
SID219	I _{IMO2}	IMO operating current at 24 MHz	-	-	180	μA	

Table 22. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation at 24 and 32 MHz (trimmed)	_	_	±2	%	2 V \leq V $_{DD}$ \leq 5.5 V, and –25 $^\circ\text{C}$ \leq T $_A$ \leq 85 $^\circ\text{C}$
SID223A	FIMOTOLVCCD	Frequency variation at 24 and 32 MHz (trimmed)	_	_	±4	%	All other conditions
SID226	T _{STARTIMO}	IMO startup time	_	-	7	μs	
SID228	T _{JITRMSIMO2}	RMS jitter at 24 MHz	_	145	_	ps	

Internal Low-Speed Oscillator

Table 23. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
	I _{ILO1}	ILO operating current	-	0.3	1.05	μA	
SID233 ^[13]	I _{ILOLEAK}	ILO leakage current	-	2	15	nA	

Table 24. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234 ^[13]	OTAICHEOT	ILO startup time	-	-	2	ms	
SID236 ^[13]	T _{ILODUTY}	ILO duty cycle	40	50	60	%	
SID237	F _{ILOTRIM1}	ILO frequency range	20	40	80	kHz	

Note 13. Guaranteed by characterization.

Table 25. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID305 ^[14]	ExtClkFreq	External clock input frequency	0	-	16	MHz	
SID306 ^[14]	ExtClkDuty	Duty cycle; measured at V _{DD/2}	45	-	55	%	

Table 26. Block Specs

Spec ID	Parameter Description		Min	Тур	Max	Units	Details/Conditions
SID262 ^[14]	SID262 ^[14] T _{CLKSWITCH} System clock source switching time		3	-	4	Periods	

The Field Values are listed in the following table:

Field	Description	Values	Meaning
CY8C	Cypress prefix		
4	Architecture	4	PSoC 4
Α	Family	0	4000 Family
В	CPU speed	1	16 MHz
		4	48 MHz
С	Flash capacity	3	8 KB
		4	16 KB
		5	32 KB
		6	64 KB
		7	128 KB
DE	Package code	SX	SOIC
		LQ	QFN
		PV	SSOP
		FN	WLCSP
F	Temperature range	I	Industrial
XYZ	Attributes code	000-999	Code of feature set in specific family

Packaging

Table 27. Package List

Spec ID#	Package	Description
BID#47A	28-Pin SSOP	28-pin 5 × 10 × 1.65mm SSOP with 0.65-mm pitch
BID#26	24-Pin QFN	24-pin 4 × 4 × 0.6 mm QFN with 0.5-mm pitch
BID#33	16-Pin QFN	16-pin 3 × 3 × 0.6 mm QFN with 0.5-mm pitch
BID#40	16-Pin SOIC	16-pin (150 Mil) SOIC
BID#47	8-Pin SOIC	8-pin (150 Mil) SOIC
BID#147A	16-Ball WLCSP	16-Ball 1.47 × 1.58 × 0.4 mm

Table 28. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25	85	°C
Т _Ј	Operating junction temperature		-40	-	100	°C
T _{JA}	Package θ_{JA} (28-pin SSOP)		-	66.6	-	°C/Watt
T _{JC}	Package θ_{JC} (28-pin SSOP)		-	34	-	°C/Watt
T _{JA}	Package θ _{JA} (24-pin QFN)		-	38	-	°C/Watt
T _{JC}	Package θ_{JC} (24-pin QFN)		-	5.6	-	°C/Watt
T _{JA}	Package θ _{JA} (16-pin QFN)		-	49.6	-	°C/Watt
T _{JC}	Package θ _{JC} (16-pin QFN)		-	5.9	-	°C/Watt
T _{JA}	Package θ _{JA} (16-pin SOIC)		-	142	-	°C/Watt
T _{JC}	Package θ_{JC} (16-pin SOIC)		-	49.8	-	°C/Watt
T _{JA}	Package θ_{JA} (16-ball WLCSP)		-	90	-	°C/Watt
T _{JC}	Package θ_{JC} (16-ball WLCSP)		-	0.9	-	°C/Watt
T _{JA}	Package θ _{JA} (8-pin SOIC)		-	198	_	°C/Watt
T _{JC}	Package θ_{JC} (8-pin SOIC)		-	56.9	-	°C/Watt

Table 29. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All	260 °C	30 seconds

Table 30. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All except WLCSP	MSL 3
16-ball WLCSP	MSL1

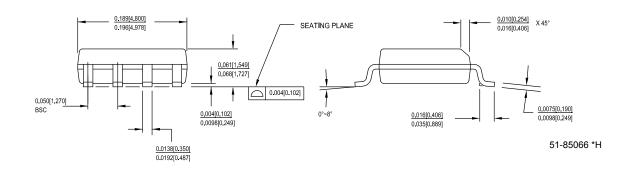
4

5

1

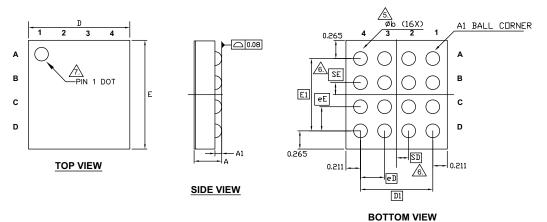
8

PIN 1 ID


0.150[3.810] 0.157[3.987]

> 0.230[5.842] 0.244[6.197]

Figure 15. 8-pin (150-mil) SOIC Package Outline


- 1. DIMENSIONS IN INCHES[MM] MIN. MAX.
- 2. PIN 1 ID IS OPTIONAL, ROUND ON SINGLE LEADFRAME RECTANGULAR ON MATRIX LEADFRAME
- 3. REFERENCE JEDEC MS-012
- 4. PACKAGE WEIGHT 0.07gms

	PART #
S08.15	STANDARD PKG
SZ08.15	LEAD FREE PKG
SW8.15	LEAD FREE PKG

Figure 16. 16-Ball WLCSP 1.47 × 1.58 × 0.4 mm

0.4450	DIMENSIONS			
SYMBOL	MIN.	NOM.	MAX.	
A	-	-	0.42	
A1	0.089	0.099	0.109	
D	1.447	1.472	1.497	
E	1.554	1.579	1.604	
D1	1.05 BSC			
E1	1.05 BSC			
MD	4			
ME	4			
N		16		
Øb	0.17 0.20 0.23		0.23	
eD	0.35 BSC			
eE	0.35 BSC			
SD	0.18 BSC			
SE	0.18 BSC			

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
- 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- AIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0.
 - WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.
- A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
- 8. *** INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS.
- 9. JEDEC SPECIFICATION NO. REF. : N/A.

002-18598 **

Document Conventions

Units of Measure

Table 32. Units of Measure

Symbol	ol Unit of Measure	
°C	degrees Celsius	
dB	decibel	
fF	femto farad	
Hz	hertz	
KB	1024 bytes	
kbps	kilobits per second	
Khr	kilohour	
kHz	kilohertz	
kΩ	kilo ohm	
ksps	kilosamples per second	
LSB	least significant bit	
Mbps	megabits per second	
MHz	megahertz	
MΩ	mega-ohm	
Msps	megasamples per second	
μA	microampere	
μF	microfarad	
μH	microhenry	
μs	microsecond	
μV	microvolt	
μW	microwatt	
mA	milliampere	
ms	millisecond	
mV	millivolt	
nA	nanoampere	
ns	nanosecond	
nV	nanovolt	
Ω	ohm	
pF	picofarad	
ppm	parts per million	
ps	picosecond	
S	second	
sps	samples per second	
sqrtHz	square root of hertz	
V	volt	

Revision History

Revision	ECN	Orig. of Change	Submission Date	Description of Change
*B	4348760	WKA	05/16/2014	New PSoC 4000 datasheet.
*C	4514139	WKA	10/27/2014	Added 28-pin SSOP pin and package details. Updated V _{REF} spec values. Updated conditions for SID174. Updated SID.CSD#15 values and description. Added spec SID339.
*D	4617283	WKA	01/09/2015	Corrected Development Kits information and PSoC Creator Example Project figure. Corrected typo in the ordering information table. Updated 28-pin SSOP package diagram.
*E	4735762	WKA	05/26/2015	Added 16-ball WLCSP pin and package details.
*F	5466193	WKA	10/07/2016	Updated Table 30. Updated 8-pin SOIC package diagram. Updated the template.
*G	5685079	TSEN	04/05/2017	Updated 16-ball WLCSP package details.