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FPGA Array Architecture in Low Power Flash Devices
I/O State of Newly Shipped Devices
Devices are shipped from the factory with a test design in the device. The power-on switch for VCC is
OFF by default in this test design, so I/Os are tristated by default. Tristated means the I/O is not actively
driven and floats. The exact value cannot be guaranteed when it is floating. Even in simulation software,
a tristate value is marked as unknown. Due to process variations and shifts, tristated I/Os may float
toward High or Low, depending on the particular device and leakage level. 
If there is concern regarding the exact state of unused I/Os, weak pull-up/pull-down should be added to
the floating I/Os so their state is controlled and stabilized.

Note: Flash*Freeze technology only applies to IGLOOe devices.
Figure 1-7 • IGLOOe and ProASIC3E Device Architecture Overview (AGLE600 device is shown)
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FPGA Array Architecture in Low Power Flash Devices
Routing Architecture
The routing structure of low power flash devices is designed to provide high performance through a
flexible four-level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources;
high-speed, very-long-line resources; and the high-performance VersaNet networks.
The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect
directly to every input of the eight surrounding VersaTiles (Figure 1-10). The exception to this is that the
SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaTile global network.
The efficient long-line resources provide routing for longer distances and higher-fanout connections.
These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and
horizontally, and cover the entire device (Figure 1-11 on page 19). Each VersaTile can drive signals onto
the efficient long-line resources, which can access every input of every VersaTile. Routing software
automatically inserts active buffers to limit loading effects.
The high-speed, very-long-line resources, which span the entire device with minimal delay, are used to
route very long or high-fanout nets: length ±12 VersaTiles in the vertical direction and length ±16 in the
horizontal direction from a given core VersaTile (Figure 1-12 on page 19). Very long lines in low power
flash devices have been enhanced over those in previous ProASIC families. This provides a significant
performance boost for long-reach signals.
The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from
external pins or internal logic. These nets are typically used to distribute clocks, resets, and other high-
fanout nets requiring minimum skew. The VersaNet networks are implemented as clock trees, and
signals can be introduced at any junction. These can be employed hierarchically, with signals accessing
every input of every VersaTile. For more details on VersaNets, refer to the "Global Resources in Low
Power Flash Devices" section on page 31. 

Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global
network connection.

Figure 1-10 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors
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ProASIC3 nano FPGA Fabric User’s Guide
Shutdown Mode
For all ProASIC3/E and ProASIC3 nano devices, shutdown mode can be entered by turning off all power
supplies when device functionality is not needed. Cold-sparing and hot-insertion features in ProASIC3
nano devices enable the device to be powered down without turning off the entire system. When power
returns, the live at power-up feature enables immediate operation of the device.

Using Sleep Mode or Shutdown Mode in the System
Depending on the power supply and components used in an application, there are many ways to turn the
power supplies connected to the device on or off. For example, Figure 2-6 shows how a microprocessor
is used to control a power FET. It is recommended that power FETs with low on resistance be used to
perform the switching action.

Figure 2-5 • Entering and Exiting Sleep Mode—Typical Timing Diagram
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Figure 2-6 • Controlling Power On/Off State Using Microprocessor and Power FET
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Low Power Modes in ProASIC3/E and ProASIC3 nano FPGAs
Alternatively, Figure 2-7 shows how a microprocessor can be used with a voltage regulator's shutdown
pin to turn the power supplies connected to the device on or off.

Though Sleep mode or Shutdown mode can be used to save power, the content of the SRAM and the
state of the registers is lost when power is turned off if no other measure is taken. To keep the original
contents of the device, a low-cost external serial EEPROM can be used to save and restore the device
contents when entering and exiting Sleep mode. In the Embedded SRAM Initialization Using External
Serial EEPROM application note, detailed information and a reference design are provided to initialize
the embedded SRAM using an external serial EEPROM. The user can easily customize the reference
design to save and restore the FPGA state when entering and exiting Sleep mode. The microcontroller
will need to manage this activity, so before powering down VCC, the data must be read from the FPGA
and stored externally. Similarly, after the FPGA is powered up, the microcontroller must allow the FPGA
to load the data from external memory and restore its original state.

Conclusion
Microsemi ProASIC3/E and ProASIC3 nano FPGAs inherit low power consumption capability from their
nonvolatile and live-at-power-up flash-based technology. Power consumption can be reduced further
using the Static (Idle), User Low Static (Idle), Sleep, or Shutdown power modes. All these features result
in a low-power, cost-effective, single-chip solution designed specifically for power-sensitive electronics
applications.

Related Documents

Application Notes
Embedded SRAM Initialization Using External Serial EEPROM
http://www.microsemi.com/soc/documents/EmbeddedSRAMInit_AN.pdf

Figure 2-7 • Controlling Power On/Off State Using Microprocessor and Voltage Regulator
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ProASIC3 nano FPGA Fabric User’s Guide
The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to 
delay the clock input using a programmable delay. The CLKDLY macro takes the selected clock input 
and adds a user-defined delay element. This macro generates an output clock phase shift from the input 
clock.
The CLKDLY macro can be driven by an INBUF* macro to create a composite macro, where the I/O 
macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the 
software will automatically place the dedicated global I/O in the appropriate locations. Many specific 
INBUF macros support the wide variety of single-ended and differential I/O standards supported by the 
low power flash family. The available INBUF macros are described in the IGLOO, ProASIC3, 
SmartFusion, and Fusion Macro Library Guide. 
The CLKDLY macro can be driven directly from the FPGA core. The CLKDLY macro can also be driven 
from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a 
special macro, PLLINT, to differentiate the clock input driven by the hardwired I/O connection.
The visual CLKDLY configuration in the SmartGen area of the Microsemi Libero System-on-Chip (SoC) 
and Designer tools allows the user to select the desired amount of delay and configures the delay 
elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will 
automatically instantiate the special macro, PLLINT, when needed.

CLKDLY Macro Signal Descriptions 
The CLKDLY macro supports one input and one output. Each signal is described in Table 4-2.  

Notes:
1. For INBUF* driving a PLL macro or CLKDLY macro, the I/O will be hard-routed to the CCC; i.e., will be placed by 

software to a dedicated Global I/O.
2. IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Figure 4-3 • CCC Options: Global Buffers with Programmable Delay
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Table 4-2 • Input and Output Description of the CLKDLY Macro

Signal Name I/O Description

CLK Reference Clock Input Reference clock input 

GL Global Output Output Primary output clock to respective global/quadrant clock networks
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
IGLOOe and ProASIC3E CCC Locations
IGLOOe and ProASIC3E devices have six CCCs—one in each of the four corners and one each in the 
middle of the east and west sides of the device (Figure 4-15).
All six CCCs are integrated with PLLs, except in PQFP-208 package devices. PQFP-208 package 
devices also have six CCCs, of which two include PLLs and four are simplified CCCs. The CCCs with 
PLLs are implemented in the middle of the east and west sides of the device (middle right and middle 
left). The simplified CCCs without PLLs are located in the four corners of the device (Figure 4-16).   

Figure 4-15 • CCC Locations in IGLOOe and ProASIC3E Family Devices (except PQFP-208 
package)

Figure 4-16 • CCC Locations in ProASIC3E Family Devices (PQFP-208 package)
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ProASIC3 nano FPGA Fabric User’s Guide
difference will cause the VCO to increase its frequency until the output signal is phase-identical to the 
input after undergoing division. In other words, lock in both frequency and phase is achieved when the 
output frequency is M times the input. Thus, clock division in the feedback path results in multiplication at 
the output.
A similar argument can be made when the delay element is inserted into the feedback path. To achieve 
steady-state lock, the VCO output signal will be delayed by the input period less the feedback delay. For 
periodic signals, this is equivalent to time-advancing the output clock by the feedback delay. 
Another key parameter of a PLL system is the acquisition time. Acquisition time is the amount of time it 
takes for the PLL to achieve lock (i.e., phase-align the feedback signal with the input reference clock). 
For example, suppose there is no voltage applied to the VCO, allowing it to operate at its free-running 
frequency. Should an input reference clock suddenly appear, a lock would be established within the 
maximum acquisition time.

Functional Description
This section provides detailed descriptions of PLL block functionality: clock dividers and multipliers, clock 
delay adjustment, phase adjustment, and dynamic PLL configuration.

Clock Dividers and Multipliers
The PLL block contains five programmable dividers. Figure 4-20 shows a simplified PLL block. 

Figure 4-20 • PLL Block Diagram
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ProASIC3 nano FPGA Fabric User’s Guide
When SmartGen is used to define the configuration that will be shifted in via the serial interface, 
SmartGen prints out the values of the 81 configuration bits. For ease of use, several configuration bits 
are automatically inferred by SmartGen when the dynamic PLL core is generated; however, <71:73> 
(STATASEL, STATBSEL, STATCSEL) and <77:79> (DYNASEL, DYNBSEL, DYNCSEL) depend on the 
input clock source of the corresponding CCC. Users must first run Layout in Designer to determine the 
exact setting for these ports. After Layout is complete, generate the "CCC_Configuration" report by 
choosing Tools > Reports > CCC_Configuration in the Designer software. Refer to "PLL Configuration 
Bits Description" on page 90 for descriptions of the PLL configuration bits. For simulation purposes, bits 
<71:73> and <78:80> are "don't care." Therefore, it is strongly suggested that SmartGen be used to 
generate the correct configuration bit settings for the dynamic PLL core.
After setting all the required parameters, users can generate one or more PLL configurations with HDL or 
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results 
and messages in a log file:
****************
Macro Parameters
****************

Name                            : dyn_pll_hardio
Family                          : ProASIC3E
Output Format                   : VERILOG
Type                            : Dynamic CCC
Input Freq(MHz)                 : 30.000
CLKA Source                     : Hardwired I/O
Feedback Delay Value Index      : 1
Feedback Mux Select             : 1
XDLY Mux Select                 : No
Primary Freq(MHz)               : 33.000
Primary PhaseShift              : 0
Primary Delay Value Index       : 1
Primary Mux Select              : 4
Secondary1 Freq(MHz)            : 40.000
Use GLB                         : YES
Use YB                          : NO
GLB Delay Value Index           : 1
YB Delay Value Index            : 1
Secondary1 PhaseShift           : 0
Secondary1 Mux Select           : 0
Secondary1 Input Freq(MHz)      : 40.000
CLKB Source                     : Hardwired I/O
Secondary2 Freq(MHz)            : 50.000
Use GLC                         : YES
Use YC                          : NO
GLC Delay Value Index           : 1
YC Delay Value Index            : 1
Secondary2 PhaseShift           : 0
Secondary2 Mux Select           : 0
Secondary2 Input Freq(MHz)      : 50.000
CLKC Source                     : Hardwired I/O

Configuration Bits:
FINDIV[6:0]     0000101
FBDIV[6:0]      0100000
OADIV[4:0]      00100
OBDIV[4:0]      00000
OCDIV[4:0]      00000
OAMUX[2:0]      100
OBMUX[2:0]      000
OCMUX[2:0]      000
FBSEL[1:0]      01
FBDLY[4:0]      00000
XDLYSEL         0
DLYGLA[4:0]     00000
DLYGLB[4:0]     00000
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I/O Structures in nano Devices
Refer to Table 7-10 on page 169 for more information about the slew rate and drive strength specification
for LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V, LVCMOS 1.8 V, LVCMOS 1.5 V, and LVCMOS 1.2 V output
buffers.

Simultaneously Switching Outputs (SSOs) and Printed Circuit 
Board Layout

Each I/O voltage bank has a separate ground and power plane for input and output circuits. This isolation
is necessary to minimize simultaneous switching noise from the input and output (SSI and SSO). The
switching noise (ground bounce and power bounce) is generated by the output buffers and transferred
into input buffer circuits, and vice versa.
SSOs can cause signal integrity problems on adjacent signals that are not part of the SSO bus. Both
inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will
transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce
ground bounce noise and VCCI dip noise. These two noise types are caused by rapidly changing
currents through GND and VCCI package pin inductances during switching activities (EQ 1 and EQ 2).

Ground bounce noise voltage = L(GND) × di/dt

EQ 1

VCCI dip noise voltage = L(VCCI) × di/dt

EQ 2
Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The
shielding should be done both on the board and inside the package unless otherwise described. 
In-package shielding can be achieved in several ways; the required shielding will vary depending on
whether pins next to the SSO bus are LVTTL/LVCMOS inputs or LVTTL/LVCMOS outputs. Board traces
in the vicinity of the SSO bus have to be adequately shielded from mutual coupling and inductive noise
that can be generated by the SSO bus. Also, noise generated by the SSO bus needs to be reduced
inside the package. 
PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time,
maintaining signal integrity between devices.
Key issues that need to be considered are as follows:

• Power and ground plane design and decoupling network design
• Transmission line reflections and terminations

For extensive data per package on the SSO and PCB issues, refer to the "ProASIC3/E SSO and Pin
Placement and Guidelines" chapter of the ProASIC3 Device Family User’s Guide. 

Table 7-14 • nano Output Drive and Slew

I/O Standards 2 mA 4 mA 6 mA 8 mA Slew

LVTTL / LVCMOS 3.3 V ✓ ✓ ✓ ✓ High Low

LVCMOS 2.5 V ✓ ✓ ✓ ✓ High Low

LVCMOS 1.8 V ✓ ✓ – – High Low

LVCMOS 1.5 V ✓ – – – High Low

LVCMOS 1.2 V ✓ – – – High Low
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I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is 

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin 

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero SoC integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero SoC. Refer to the Libero SoC User’s Guide or Libero online help for details on how to set up the
Libero tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 8-6 on page 193).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist. 
192 Revision 5

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/libero_ug.pdf


DDR for Microsemi’s Low Power Flash Devices
module ddr_test(DIN, CLK, CLR, DOUT);

input  DIN, CLK, CLR;
output DOUT;

Inbuf_ddr Inbuf_ddr (.PAD(DIN), .CLR(clr), .CLK(clk), .QR(qr), .QF(qf));
Outbuf_ddr Outbuf_ddr (.DataR(qr),.DataF(qf), .CLR(clr), .CLK(clk),.PAD(DOUT));

INBUF INBUF_CLR (.PAD(CLR), .Y(clr));
INBUF INBUF_CLK (.PAD(CLK), .Y(clk));

endmodule

Simulation Consideration
Microsemi DDR simulation models use inertial delay modeling by default (versus transport delay
modeling). As such, pulses that are shorter than the actual gate delays should be avoided, as they will
not be seen by the simulator and may be an issue in post-routed simulations. The user must be aware of
the default delay modeling and must set the correct delay model in the simulator as needed.

Conclusion
Fusion, IGLOO, and ProASIC3 devices support a wide range of DDR applications with different I/O
standards and include built-in DDR macros. The powerful capabilities provided by SmartGen and its GUI
can simplify the process of including DDR macros in designs and minimize design errors. Additional
considerations should be taken into account by the designer in design floorplanning and placement of I/O
flip-flops to minimize datapath skew and to help improve system timing margins. Other system-related
issues to consider include PLL and clock partitioning. 
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ProASIC3 nano FPGA Fabric User’s Guide
General Flash Programming Information

Programming Basics
When choosing a programming solution, there are a number of options available. This section provides a 
brief overview of those options. The next sections provide more detail on those options as they apply to 
Microsemi FPGAs. 

Reprogrammable or One-Time-Programmable (OTP)
Depending on the technology chosen, devices may be reprogrammable or one-time-programmable. As 
the name implies, a reprogrammable device can be programmed many times. Generally, the contents of 
such a device will be completely overwritten when it is reprogrammed. All Microsemi flash devices are 
reprogrammable.
An OTP device is programmable one time only. Once programmed, no more changes can be made to 
the contents. Microsemi flash devices provide the option of disabling the reprogrammability for security 
purposes. This combines the convenience of reprogrammability during design verification with the 
security of an OTP technology for highly sensitive designs.

Device Programmer or In-System Programming
There are two fundamental ways to program an FPGA: using a device programmer or, if the technology 
permits, using in-system programming. A device programmer is a piece of equipment in a lab or on the 
production floor that is used for programming FPGA devices. The devices are placed into a socket 
mounted in a programming adapter module, and the appropriate electrical interface is applied. The 
programmed device can then be placed on the board. A typical programmer, used during development, 
programs a single device at a time and is referred to as a single-site engineering programmer. 
With ISP, the device is already mounted onto the system printed circuit board when programming occurs. 
Typically, ISD programming is performed via a JTAG interface on the FPGA. The JTAG pins can be 
controlled either by an on-board resource, such as a microprocessor, or by an off-board programmer 
through a header connection. Once mounted, it can be programmed repeatedly and erased. If the 
application requires it, the system can be designed to reprogram itself using a microprocessor, without 
the use of any external programmer.
If multiple devices need to be programmed with the same program, various multi-site programming 
hardware is available in order to program many devices in parallel. Microsemi In House Programming is 
also available for this purpose.

Programming Features for Microsemi Devices 
Flash Devices
The flash devices supplied by Microsemi are reprogrammable by either a generic device programmer or 
ISP. Microsemi supports ISP using JTAG, which is supported by the FlashPro4 and FlashPro3, FlashPro 
Lite, Silicon Sculptor 3, and Silicon Sculptor II programmers.
Levels of ISP support vary depending on the device chosen:

• All SmartFusion, Fusion, IGLOO, and ProASIC3 devices support ISP.
• IGLOO, IGLOOe, IGLOO nano V5, and IGLOO PLUS devices can be programmed in-system 

when the device is using a 1.5 V supply voltage to the FPGA core.
• IGLOO nano V2 devices can be programmed at 1.2 V core voltage (when using FlashPro4 only) 

or 1.5 V. IGLOO nano V5 devices are programmed with a VCC core voltage of 1.5 V.
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Security in Low Power Flash Devices
Choose the High security level to reprogram devices using both the FlashLock Pass Key and AES key
protection (Figure 11-18 on page 255). Enter the AES key and click Next.
A device that has already been secured with FlashLock and has an AES key loaded must recognize the
AES key to program the device and generate a valid bitstream in authentication. The FlashLock Key is
only required to unlock the device and change the security settings. 
This is what makes it possible to program in an untrusted environment. The AES key is protected inside
the device by the FlashLock Key, so you can only program if you have the correct AES key. In fact, the
AES key is not in the programming file either. It is the key used to encrypt the data in the file. The same
key previously programmed with the FlashLock Key matches to decrypt the file. 
An AES-encrypted file programmed to a device without FlashLock would not be secure, since without
FlashLock to protect the AES key, someone could simply reprogram the AES key first, then program with
any AES key desired or no AES key at all. This option is therefore not available in the software. 

Note: The settings in this figure are used to show the generation of an AES-encrypted programming file for the FPGA
array, FlashROM, and FB contents. One or all locations may be selected for encryption.

Figure 11-17 • Settings to Program a Device Secured with FlashLock and using AES Encryption 
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Programming File Header Definition
In each STAPL programming file generated, there will be information about how the AES key and
FlashLock Pass Key are configured. Table 11-8 shows the header definitions in STAPL programming
files for different security levels.

Example File Headers 
STAPL Files Generated with FlashLock Key and AES Key Containing Key Information

• FlashLock Key / AES key indicated in STAPL file header definition
• Intended ONLY for secured/trusted environment programming applications

=============================================
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EDB9";
NOTE "SAVE_DATA" "FRomStream";
NOTE "SECURITY" "KEYED ENCRYPT ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "20000000";
NOTE "SILSIG" "$00000000";
NOTE "PASS_KEY" "$00123456789012345678901234567890";
NOTE "AES_KEY" "$ABCDEFABCDEFABCDEFABCDEFABCDEFAB";
==============================================

Table 11-8 • STAPL Programming File Header Definitions by Security Level

Security Level STAPL File Header Definition 

No security (no FlashLock Pass Key or AES key) NOTE "SECURITY" "Disable"; 

FlashLock Pass Key with no AES key NOTE "SECURITY" "KEYED "; 

FlashLock Pass Key with AES key NOTE "SECURITY" "KEYED ENCRYPT "; 

Permanent Security Settings option enabled NOTE "SECURITY" "PERMLOCK ENCRYPT ";

AES-encrypted FPGA array (for programming updates) NOTE "SECURITY" "ENCRYPT CORE ";

AES-encrypted FlashROM (for programming updates) NOTE "SECURITY" "ENCRYPT FROM ";

AES-encrypted FPGA array and FlashROM (for
programming updates)

NOTE "SECURITY" "ENCRYPT FROM CORE ";
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
3. A single STAPL file or multiple STAPL files with multiple FlashROM contents. A single STAPL file
will be generated if the device serialization feature is not used. You can program the whole
FlashROM or selectively program individual pages. 

4. A single STAPL file to configure the security settings for the device, such as the AES Key and/or
Pass Key.

Programming Solution
For device programming, any IEEE 1532–compliant programmer can be used; however, the
FlashPro4/3/3X programmer must be used to control the low power flash device's rich security features
and FlashROM programming options. The FlashPro4/3/3X programmer is a low-cost portable
programmer for the Microsemi flash families. It can also be used with a powered USB hub for parallel
programming. General specifications for the FlashPro4/3/3X programmer are as follows:

• Programming clock – TCK is used with a maximum frequency of 20 MHz, and the default
frequency is 4 MHz. 

• Programming file – STAPL 
• Daisy chain – Supported. You can use the ChainBuilder software to build the programming file for

the chain.
• Parallel programming – Supported. Multiple FlashPro4/3/3X programmers can be connected

together using a powered USB hub or through the multiple USB ports on the PC.
• Power supply – The target board must provide VCC, VCCI, VPUMP, and VJTAG during

programming. However, if there is only one device on the target board, the FlashPro4/3/3X
programmer can generate the required VPUMP voltage from the USB port. 

Figure 12-4 • Flexible Programming File Generation for Different Applications
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2. VCC rises to 1.5 V before programming begins. 

The oscilloscope plot in Figure 13-3 shows a wider time interval for the programming algorithm and
includes the TDI and TMS signals from the FlashPro3. These signals carry the programming information
that is programmed into the device and should only start toggling after the VCC core voltage reaches 1.5
V. Again, TRST from FlashPro3 and the VCC core voltage of the IGLOO device are labeled. As shown in
Figure 13-3, TDI and TMS are floating initially, and the core voltage is 1.2 V. When a programming
command on the FlashPro3 is executed, TRST is driven HIGH and TDI is momentarily driven to ground.
In response to the HIGH TRST signal, the circuit responds and pulls the core voltage to 1.5 V. After
100 ms, TRST is briefly driven LOW by the FlashPro software. This is expected behavior that ensures
the device JTAG state machine is in Reset prior to programming. TRST remains HIGH for the duration of
the programming. It can be seen in Figure 13-3 that the VCC core voltage signal remains at 1.5 V for
approximately 50 ms before information starts passing through on TDI and TMS. This confirms that the
voltage switching circuit drives the VCC core supply voltage to 1.5 V prior to programming.

Figure 13-3 • Programming Algorithm
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14 – Microprocessor Programming of Microsemi’s 
Low Power Flash Devices

Introduction
The Fusion, IGLOO, and ProASIC3 families of flash FPGAs support in-system programming (ISP) with
the use of a microprocessor. Flash-based FPGAs store their configuration information in the actual cells
within the FPGA fabric. SRAM-based devices need an external configuration memory, and hybrid
nonvolatile devices store the configuration in a flash memory inside the same package as the SRAM
FPGA. Since the programming of a true flash FPGA is simpler, requiring only one stage, it makes sense
that programming with a microprocessor in-system should be simpler than with other SRAM FPGAs.
This reduces bill-of-materials costs and printed circuit board (PCB) area, and increases system reliability.
Nonvolatile flash technology also gives the low power flash devices the advantage of a secure, low
power, live-at-power-up, and single-chip solution. Low power flash devices are reprogrammable and offer
time-to-market benefits at an ASIC-level unit cost. These features enable engineers to create high-
density systems using existing ASIC or FPGA design flows and tools.
This document is an introduction to microprocessor programming only. To explain the difference between
the options available, user's guides for DirectC and STAPL provide more detail on implementing each
style.

Figure 14-1 • ISP Using Microprocessor 
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UJTAG Applications in Microsemi’s Low Power Flash Devices
Typical UJTAG Applications
Bidirectional access to the JTAG port from VersaTiles—without putting the device into test mode—
creates flexibility to implement many different applications. This section describes a few of these. All are
based on importing/exporting data through the UJTAG tiles. 

Clock Conditioning Circuitry—Dynamic Reconfiguration
In low power flash devices, CCCs, which include PLLs, can be configured dynamically through either an
81-bit embedded shift register or static flash programming switches. These 81 bits control all the
characteristics of the CCC: routing MUX architectures, delay values, divider values, etc. Table 16-3 lists
the 81 configuration bits in the CCC. 

The embedded 81-bit shift register (for the dynamic configuration of the CCC) is accessible to the
VersaTiles, which, in turn, have access to the UJTAG tiles. Therefore, the CCC configuration shift
register can receive and load the new configuration data stream from JTAG. 
Dynamic reconfiguration eliminates the need to reprogram the device when reconfiguration of the CCC
functional blocks is needed. The CCC configuration can be modified while the device continues to
operate. Employing the UJTAG core requires the user to design a module to provide the configuration
data and control the CCC configuration shift register. In essence, this is a user-designed TAP Controller
requiring chip resources. 
Similar reconfiguration capability exists in the ProASICPLUS® family. The only difference is the number of
shift register bits controlling the CCC (27 in ProASICPLUS and 81 in IGLOO, ProASIC3, and Fusion). 

Table 16-3 • Configuration Bits of Fusion, IGLOO, and ProASIC3 CCC Blocks
Bit Number(s) Control Function
80 RESET ENABLE

79 DYNCSEL

78 DYNBSEL

77 DYNASEL

<76:74> VCOSEL [2:0]

73 STATCSEL

72 STATBSEL

71 STATASEL

<70:66> DLYC [4:0]

<65:61> DLYB {4:0]

<60:56> DLYGLC [4:0]

<55:51> DLYGLB [4:0]

<50:46> DLYGLA [4:0]

45 XDLYSEL

<44:40> FBDLY [4:0]

<39:38> FBSEL

<37:35> OCMUX [2:0]

<34:32> OBMUX [2:0]

<31:29> OAMUX [2:0]

<28:24> OCDIV [4:0]

<23:19> OBDIV [4:0]

<18:14> OADIV [4:0]

<13:7> FBDIV [6:0]

<6:0> FINDIV [6:0]
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Fine Tuning
In some applications, design constants or parameters need to be modified after programming the original
design. The tuning process can be done using the UJTAG tile without reprogramming the device with
new values. If the parameters or constants of a design are stored in distributed registers or embedded
SRAM blocks, the new values can be shifted onto the JTAG TAP Controller pins, replacing the old
values. The UJTAG tile is used as the “bridge” for data transfer between the JTAG pins and the FPGA
VersaTiles or SRAM logic. Figure 16-5 shows a flow chart example for fine-tuning application steps using
the UJTAG tile.
In Figure 16-5, the TMS signal sets the TAP Controller state machine to the appropriate states. The flow
mainly consists of two steps: a) shifting the defined instruction and b) shifting the new data. If the target
parameter is constantly used in the design, the new data can be shifted into a temporary shift register
from UTDI. The UDRSH output of UJTAG can be used as a shift-enable signal, and UDRCK is the shift
clock to the shift register. Once the shift process is completed and the TAP Controller state is moved to
the Update_DR state, the UDRUPD output of the UJTAG can latch the new parameter value from the
temporary register into a permanent location. This avoids any interruption or malfunctioning during the
serial shift of the new value. 

Figure 16-5 • Flow Chart Example of Fine-Tuning an Application Using UJTAG

Yes

No

TAP Controller in
Test_Logic_Reset

State

Set TAP state to
SHIFT_IR

Shift the user-defined
instruction of tuning

application

Set TAP state to
Update_IR

Latch the recorded data
onto the location of stored

parameter
UIREG Equal to
the user-defined

instruction

Set TAP state to
SHIFT_DR

Shift data into TDI and
record UTDI in a shift

register

Set TAP state in
Update_DR
Revision 5 303



Index
architecture of user nonvolatile 117
configuration 120
custom serialization 129
design flow 124
generation 125
programming and accessing 122
programming file 127
programming files 267
SmartGen 126

FlashROM read-back 305

G
global architecture 31
global buffers

no programmable delays 64
with PLL function 67
with programmable delays 64

global macros
Synplicity 50

globals
designer flow 53
networks 58
spines and rows 41

H
HLD code

instantiating 192
hot-swap 167
hot-swapping 317

I
I/O banks

standards 40
standards compatibility 162

I/O standards 77
global macros 46
single-ended 166

I/Os
assigning technologies 198
assignments defined in PDC file 193
automatically assigning 202
behavior at power-up/-down 311
board-level considerations 181
buffer schematic cell 191
cell architecture 207
configuration with SmartGen 188
features 163, 164, 167
global, naming 35
manually assigning technologies 198
nano standard 162
register combining 174
simplified buffer circuitry 165
software support 177
software-controlled attributes 187
user I/O assignment flow chart 185
user naming convention 178
wide range support 166

ISP 223, 224
architecture 261
board-level considerations 271
circuit 277
microprocessor 283

J
JTAG 1532 261
JTAG interface 285

L
layout

device-specific 78
LTC3025 linear voltage regulator 277

M
MAC validation/authentication 288
macros

CLKBUF 77
CLKBUF_LVDS/LVPECL 77
CLKDLY 65, 73
FIFO4KX18 141
PLL 73
PLL macro signal descriptions 68
RAM4K9 137
RAM512X18 139
supported basic RAM macros 136
UJTAG 299

MCU FPGA programming model 286
memory availability 146
memory blocks 135
microprocessor programming 283
Microsemi SoC Products Group

email 321
web-based technical support 321
website 321

O
OTP 223
output slew rate 175

P
PDC

global promotion and demotion 51
place-and-route 193
PLL

behavior at brownout condition 315
configuration bits 90
core specifications 84
dynamic PLL configuration 87
functional description 85
power supply decoupling scheme 112

PLL block signals 68
PLL macro block diagram 69
product support

customer service 321
324 Revision 5


