
Microchip Technology - A3PN015-2QNG68 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits -

Number of I/O 49

Number of Gates 15000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -20°C ~ 85°C (TJ)

Package / Case 68-VFQFN Exposed Pad

Supplier Device Package 68-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn015-2qng68

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn015-2qng68-4482268
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each CCC can implement up to three independent global buffers (with or without programmable delay)
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to
three global outputs. Unused global outputs of a PLL can be used to implement independent global
buffers, up to a maximum of three global outputs for a given CCC.

CCC Programming
The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or
through an asynchronous interface. This asynchronous dedicated shift register interface is dynamically
accessible from inside the low power flash devices to permit parameter changes, such as PLL divide
ratios and delays, during device operation.
To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is
determined either by the user during the design process, with configuration data being stored in flash
memory as part of the device programming procedure, or by writing data into a dedicated shift register
during normal device operation.
This latter mode allows the user to dynamically reconfigure the CCC without the need for core
programming. The shift register is accessed through a simple serial interface. Refer to the "UJTAG
Applications in Microsemi’s Low Power Flash Devices" section on page 297 or the application note Using
Global Resources in Actel Fusion Devices.

Global Resources
Low power flash and mixed signal devices provide three global routing networks (GLA, GLB, and GLC)
for each of the CCC locations. There are potentially many I/O locations; each global I/O location can be
chosen from only one of three possibilities. This is controlled by the multiplexer tree circuitry in each
global network. Once the I/O location is selected, the user has the option to utilize the CCCs before the
signals are connected to the global networks. The CCC in each location (up to six) has the same
structure, so generating the CCC macros is always done with an identical software GUI. The CCCs in the
corner locations drive the quadrant global networks, and the CCCs in the middle of the east and west
chip sides drive the chip global networks. The quadrant global networks span only a quarter of the
device, while the chip global networks span the entire device. For more details on global resources
offered in low power flash devices, refer to the "Global Resources in Low Power Flash Devices" section
on page 31.
A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, or
CLKC-GLC) of a given CCC. A PLL macro uses the CLKA CCC input to drive its reference clock. It uses
the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can
also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the
YB (or YC) output is used. Refer to the "PLL Macro Signal Descriptions" section on page 68 for more
information.
Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not supported for IGLOO nano or

ProASIC3 nano devices)
• The FPGA core
62 Revision 5

http://www.microsemi.com/soc/documents/Fusion_GlobalResources_AN.pdf
http://www.microsemi.com/soc/documents/Fusion_GlobalResources_AN.pdf

ProASIC3 nano FPGA Fabric User’s Guide
Each global buffer, as well as the PLL reference clock, can be driven from one of the following:
• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not applicable for IGLOO nano and

ProASIC3 nano devices)
• The FPGA core

Since the architecture of the devices varies as size increases, the following list details I/O types
supported for globals:

IGLOO and ProASIC3
• LVDS-based clock sources are available only on 250 k gate devices and above (IGLOO nano and

ProASIC3 nano devices do not support differential inputs).
• 60 k and 125 k gate devices support single-ended clock sources only.
• 15 k and 30 k gate devices support these inputs for CCC only and do not contain a PLL.
• nano devices:

– 10 k, 15 k, and 20 k devices do not contain PLLs in the CCCs, and support only CLKBUF and
CLKINT.

– 60 k, 125 k, and 250 k devices support one PLL in the middle left CCC position. In the
absence of the PLL, this CCC can be used by CLKBUF, CLKINT, and CLKDLY macros. The
corner CCCs support CLKBUF, CLKINT, and CLKDLY.

Fusion
• AFS600 and AFS1500: All single-ended, differential, and voltage-referenced I/O standards (Pro

I/O).
• AFS090 and AFS250: All single-ended and differential I/O standards.

Clock Sources for PLL and CLKDLY Macros
The input reference clock (CLKA for a PLL macro, CLK for a CLKDLY macro) can be accessed from
different sources via the associated clock multiplexer tree. Each CCC has the option of choosing the
source of the input clock from one of the following:

• Hardwired I/O
• External I/O
• Core Logic
• RC Oscillator (Fusion only)
• Crystal Oscillator (Fusion only)

The SmartGen macro builder tool allows users to easily create the PLL and CLKDLY macros with the
desired settings. Microsemi strongly recommends using SmartGen to generate the CCC macros.

Hardwired I/O Clock Source
Hardwired I/O refers to global input pins that are hardwired to the multiplexer tree, which directly
accesses the CCC global buffers. These global input pins have designated pin locations and are
indicated with the I/O naming convention Gmn (m refers to any one of the positions where the PLL core
is available, and n refers to any one of the three global input MUXes and the pin number of the
associated global location, m). Choosing this option provides the benefit of directly connecting to the
CCC reference clock input, which provides less delay. See Figure 4-9 on page 74 for an example
illustration of the connections, shown in red. If a CLKDLY macro is initiated to utilize the programmable
delay element of the CCC, the clock input can be placed at one of nine dedicated global input pin
locations. In other words, if Hardwired I/O is chosen as the input source, the user can decide to place the
input pin in one of the GmA0, GmA1, GmA2, GmB0, GmB1, GmB2, GmC0, GmC1, or GmC2 locations of
the low power flash devices. When a PLL macro is used to utilize the PLL core in a CCC location, the
clock input of the PLL can only be connected to one of three GmA* global pin locations: GmA0, GmA1, or
GmA2.
Revision 5 73

ProASIC3 nano FPGA Fabric User’s Guide
difference will cause the VCO to increase its frequency until the output signal is phase-identical to the
input after undergoing division. In other words, lock in both frequency and phase is achieved when the
output frequency is M times the input. Thus, clock division in the feedback path results in multiplication at
the output.
A similar argument can be made when the delay element is inserted into the feedback path. To achieve
steady-state lock, the VCO output signal will be delayed by the input period less the feedback delay. For
periodic signals, this is equivalent to time-advancing the output clock by the feedback delay.
Another key parameter of a PLL system is the acquisition time. Acquisition time is the amount of time it
takes for the PLL to achieve lock (i.e., phase-align the feedback signal with the input reference clock).
For example, suppose there is no voltage applied to the VCO, allowing it to operate at its free-running
frequency. Should an input reference clock suddenly appear, a lock would be established within the
maximum acquisition time.

Functional Description
This section provides detailed descriptions of PLL block functionality: clock dividers and multipliers, clock
delay adjustment, phase adjustment, and dynamic PLL configuration.

Clock Dividers and Multipliers
The PLL block contains five programmable dividers. Figure 4-20 shows a simplified PLL block.

Figure 4-20 • PLL Block Diagram

PLL Core
CLKA

Fixed
Delay D1

D2

D2

D1

D2

D1

n

m
u

v

w

GLA

GLB

GLC

Primary

Secondary 1

Secondary 2

YB

YC

System
Delay

Output
Delay

Feedback
Delay Output

Delay

Output
Delay
Output
Delay

Output
Delay

90°
180°
270°

0°

D1 = Programmable Delay Type 1
D2 = Programmable Delay Type 2
Revision 5 85

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
<31:29> OAMUX[2:0] GLA Output Select Selects from the VCO’s four phase outputs for
GLA.

<28:24> OCDIV[4:0] Secondary 2 Output
Divider

Sets the divider value for the GLC/YC outputs.
Also known as divider w in Figure 4-20 on
page 85. The divider value will be OCDIV[4:0]
+ 1.

<23:19> OBDIV[4:0] Secondary 1 Output
Divider

Sets the divider value for the GLB/YB outputs.
Also known as divider v in Figure 4-20 on
page 85. The divider value will be OBDIV[4:0]
+ 1.

<18:14> OADIV[4:0] Primary Output Divider Sets the divider value for the GLA output. Also
known as divider u in Figure 4-20 on page 85.
The divider value will be OADIV[4:0] + 1.

<13:7> FBDIV[6:0] Feedback Divider Sets the divider value for the PLL core
feedback. Also known as divider m in
Figure 4-20 on page 85. The divider value will
be FBDIV[6:0] + 1.

<6:0> FINDIV[6:0] Input Divider Input Clock Divider (/n). Sets the divider value
for the input delay on CLKA. The divider value
will be FINDIV[6:0] + 1.

Table 4-8 • Configuration Bit Descriptions for the CCC Blocks (continued)
Config.
Bits Signal Name Description

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set.

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools >
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
92 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Table 4-9 to Table 4-15 on page 94 provide descriptions of the configuration data for the configuration
bits.

Table 4-9 • Input Clock Divider, FINDIV[6:0] (/n)

FINDIV<6:0> State Divisor New Frequency Factor

0 1 1.00000

1 2 0.50000

… … …

127 128 0.0078125

Table 4-10 • Feedback Clock Divider, FBDIV[6:0] (/m)

FBDIV<6:0> State Divisor New Frequency Factor

0 1 1

1 2 2

… … …

127 128 128

Table 4-11 • Output Frequency Dividers
A Output Divider, OADIV <4:0> (/u);
B Output Divider, OBDIV <4:0> (/v);
C Output Divider, OCDIV <4:0> (/w)

OADIV<4:0>; OBDIV<4:0>;
CDIV<4:0> State Divisor New Frequency Factor

0 1 1.00000

1 2 0.50000

… … …

31 32 0.03125

Table 4-12 • MUXA, MUXB, MUXC
OAMUX<2:0>; OBMUX<2:0>; OCMUX<2:0> State MUX Input Selected
0 None. Six-input MUX and PLL are bypassed.

Clock passes only through global MUX and goes directly
into HC ribs.

1 Not available

2 PLL feedback delay line output

3 Not used

4 PLL VCO 0° phase shift

5 PLL VCO 270° phase shift

6 PLL VCO 180° phase shift

7 PLL VCO 90° phase shift
Revision 5 93

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
DLYGLC[4:0] 00000
DLYYB[4:0] 00000
DLYYC[4:0] 00000
VCOSEL[2:0] 100

Primary Clock Frequency 33.000
Primary Clock Phase Shift 0.000
Primary Clock Output Delay from CLKA 1.695

Secondary1 Clock Frequency 40.000
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKB 0.200

Secondary2 Clock Frequency 50.000
Secondary2 Clock Phase Shift 0.000
Secondary2 Clock Global Output Delay from CLKC 0.200

######################################
Dynamic Stream Data
######################################

|NAME |SDIN |VALUE |TYPE |

FINDIV	[6:0]	0000101	EDIT
FBDIV	[13:7]	0100000	EDIT
OADIV	[18:14]	00100	EDIT
OBDIV	[23:19]	00000	EDIT
OCDIV	[28:24]	00000	EDIT
OAMUX	[31:29]	100	EDIT
OBMUX	[34:32]	000	EDIT
OCMUX	[37:35]	000	EDIT
FBSEL	[39:38]	01	EDIT
FBDLY	[44:40]	00000	EDIT
XDLYSEL	[45]	0	EDIT
DLYGLA	[50:46]	00000	EDIT
DLYGLB	[55:51]	00000	EDIT
DLYGLC	[60:56]	00000	EDIT
DLYYB	[65:61]	00000	EDIT
DLYYC	[70:66]	00000	EDIT
STATASEL	[71]	X	MASKED
STATBSEL	[72]	X	MASKED
STATCSEL	[73]	X	MASKED
VCOSEL	[76:74]	100	EDIT
DYNASEL	[77]	X	MASKED
DYNBSEL	[78]	X	MASKED
DYNCSEL	[79]	X	MASKED
RESETEN	[80]	1	READONLY

Below is the resultant Verilog HDL description of a legal dynamic PLL core configuration generated by
SmartGen:
module dyn_pll_macro(POWERDOWN, CLKA, LOCK, GLA, GLB, GLC, SDIN, SCLK, SSHIFT, SUPDATE,

MODE, SDOUT, CLKB, CLKC);

input POWERDOWN, CLKA;
output LOCK, GLA, GLB, GLC;
input SDIN, SCLK, SSHIFT, SUPDATE, MODE;
output SDOUT;
input CLKB, CLKC;

wire VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
102 Revision 5

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
wire VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
CLKDLY Inst1(.CLK(CLK), .GL(GL), .DLYGL0(VCC), .DLYGL1(GND), .DLYGL2(VCC),

.DLYGL3(GND), .DLYGL4(GND));

endmodule

Detailed Usage Information

Clock Frequency Synthesis
Deriving clocks of various frequencies from a single reference clock is known as frequency synthesis.
The PLL has an input frequency range from 1.5 to 350 MHz. This frequency is automatically divided
down to a range between 1.5 MHz and 5.5 MHz by input dividers (not shown in Figure 4-19 on page 84)
between PLL macro inputs and PLL phase detector inputs. The VCO output is capable of an output
range from 24 to 350 MHz. With dividers before the input to the PLL core and following the VCO outputs,
the VCO output frequency can be divided to provide the final frequency range from 0.75 to 350 MHz.
Using SmartGen, the dividers are automatically set to achieve the closest possible matches to the
specified output frequencies.
Users should be cautious when selecting the desired PLL input and output frequencies and the I/O buffer
standard used to connect to the PLL input and output clocks. Depending on the I/O standards used for
the PLL input and output clocks, the I/O frequencies have different maximum limits. Refer to the family
datasheets for specifications of maximum I/O frequencies for supported I/O standards. Desired PLL input
or output frequencies will not be achieved if the selected frequencies are higher than the maximum I/O
frequencies allowed by the selected I/O standards. Users should be careful when selecting the I/O
standards used for PLL input and output clocks. Performing post-layout simulation can help detect this
type of error, which will be identified with pulse width violation errors. Users are strongly encouraged to
perform post-layout simulation to ensure the I/O standard used can provide the desired PLL input or
output frequencies. Users can also choose to cascade PLLs together to achieve the high frequencies
needed for their applications. Details of cascading PLLs are discussed in the "Cascading CCCs" section
on page 109.
In SmartGen, the actual generated frequency (under typical operating conditions) will be displayed
beside the requested output frequency value. This provides the ability to determine the exact frequency
that can be generated by SmartGen, in real time. The log file generated by SmartGen is a useful tool in
determining how closely the requested clock frequencies match the user specifications. For example,
assume a user specifies 101 MHz as one of the secondary output frequencies. If the best output
frequency that could be achieved were 100 MHz, the log file generated by SmartGen would indicate the
actual generated frequency.

Simulation Verification
The integration of the generated PLL and CLKDLY modules is similar to any VHDL component or Verilog
module instantiation in a larger design; i.e., there is no special requirement that users need to take into
account to successfully synthesize their designs.
For simulation purposes, users need to refer to the VITAL or Verilog library that includes the functional
description and associated timing parameters. Refer to the Software Tools section of the Microsemi SoC
Products Group website to obtain the family simulation libraries. If Designer is installed, these libraries
are stored in the following locations:

<Designer_Installation_Directory>\lib\vtl\95\proasic3.vhd
<Designer_Installation_Directory>\lib\vtl\95\proasic3e.vhd
<Designer_Installation_Directory>\lib\vlog\proasic3.v
<Designer_Installation_Directory>\lib\vlog\proasic3e.v

For Libero users, there is no need to compile the simulation libraries, as they are conveniently pre-
compiled in the ModelSim® Microsemi simulation tool.
104 Revision 5

http://www.microsemi.com/soc/products/tools/sw.aspx

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
v1.4
(December 2008)

The"CCC Support in Microsemi’s Flash Devices" section was updated to include
IGLOO nano and ProASIC3 nano devices.

63

Figure 4-2 • CCC Options: Global Buffers with No Programmable Delay was revised to
add the CLKBIBUF macro.

64

The description of the reference clock was revised in Table 4-2 • Input and Output
Description of the CLKDLY Macro.

65

Figure 4-7 • Clock Input Sources (30 k gates devices and below) is new. Figure 4-8 •
Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT (60 k
gates devices and above) applies to 60 k gate devices and above.

72

The "IGLOO and ProASIC3" section was updated to include information for IGLOO
nano devices.

73

A note regarding Fusion CCCs was added to Figure 4-9 • Illustration of Hardwired I/O
(global input pins) Usage for IGLOO and ProASIC3 devices 60 k Gates and Larger
and the name of the figure was changed from Figure 4-8 • Illustration of Hardwired I/O
(global input pins) Usage. Figure 4-10 • Illustration of Hardwired I/O (global input pins)
Usage for IGLOO and ProASIC3 devices 30 k Gates and Smaller is new.

74

Table 4-5 • Number of CCCs by Device Size and Package was updated to include
IGLOO nano and ProASIC3 nano devices. Entries were added to note differences for
the CS81, CS121, and CS201 packages.

78

The "Clock Conditioning Circuits without Integrated PLLs" section was rewritten. 79

The "IGLOO and ProASIC3 CCC Locations" section was updated for nano devices. 81

Figure 4-13 • CCC Locations in the 15 k and 30 k Gate Devices was deleted. 4-20

v1.3
(October 2008)

This document was updated to include Fusion and RT ProASIC3 device information.
Please review the document very carefully.

N/A

The "CCC Support in Microsemi’s Flash Devices" section was updated. 63

In the "Global Buffer with Programmable Delay" section, the following sentence was
changed from:
"In this case, the I/O must be placed in one of the dedicated global I/O locations."
To
"In this case, the software will automatically place the dedicated global I/O in the
appropriate locations."

64

Figure 4-4 • CCC Options: Global Buffers with PLL was updated to include OADIVRST
and OADIVHALF.

67

In Figure 4-6 • CCC with PLL Block "fixed delay" was changed to "programmable
delay".

67

Table 4-3 • Input and Output Signals of the PLL Block was updated to include
OADIVRST and OADIVHALF descriptions.

68

Table 4-8 • Configuration Bit Descriptions for the CCC Blocks was updated to include
configuration bits 88 to 81. Note 2 is new. In addition, the description for bit <76:74>
was updated.

90

Table 4-16 • Fusion Dynamic CCC Clock Source Selection and Table 4-17 • Fusion
Dynamic CCC NGMUX Configuration are new.

94

Table 4-18 • Fusion Dynamic CCC Division by Half Configuration and Table 4-19 •
Configuration Bit <76:75> / VCOSEL<2:1> Selection for All Families are new.

95

Date Changes Page
114 Revision 5

FlashROM in Microsemi’s Low Power Flash Devices
Conclusion
The Fusion, IGLOO, and ProASIC3 families are the only FPGAs that offer on-chip FlashROM support.
This document presents information on the FlashROM architecture, possible applications, programming,
access through the JTAG and UJTAG interface, and integration into your design. In addition, the Libero
tool set enables easy creation and modification of the FlashROM content.
The nonvolatile FlashROM block in the FPGA can be customized, enabling multiple applications.
Additionally, the security offered by the low power flash devices keeps both the contents of FlashROM
and the FPGA design safe from system over-builders, system cloners, and IP thieves.

Related Documents

User’s Guides
FlashPro User’s Guide
http://www.microsemi.com/documents/FlashPro_UG.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 5-1 • Flash-Based
FPGAs.

118

v1.3
(October 2008)

The "FlashROM Support in Flash-Based Devices" section was revised to include
new families and make the information more concise.

118

Figure 5-2 • Fusion Device Architecture Overview (AFS600) was replaced.
Figure 5-5 • Programming FlashROM Using AES was revised to change "Fusion" to
"Flash Device."

119, 121

The FlashPoint User’s Guide was removed from the "User’s Guides" section, as its
content is now part of the FlashPro User’s Guide.

130

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 5-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

118

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

N/A
130 Revision 5

http://www.microsemi.com/soc/documents/FlashPro_UG.pdf
http://www.microsemi.com/soc/documents/FlashPro_UG.pdf

ProASIC3 nano FPGA Fabric User’s Guide
SRAM and FIFO Architecture
To meet the needs of high-performance designs, the memory blocks operate strictly in synchronous
mode for both read and write operations. The read and write clocks are completely independent, and
each can operate at any desired frequency up to 250 MHz.

• 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—2 read / 2 write or 1 read / 1 write)
• 512×9, 256×18 (2-port RAM—1 read / 1 write)
• Sync write, sync pipelined / nonpipelined read

Automotive ProASIC3 devices support single-port SRAM capabilities or dual-port SRAM only under
specific conditions. Dual-port mode is supported if the clocks to the two SRAM ports are the same and
180° out of phase (i.e., the port A clock is the inverse of the port B clock). The Libero SoC software
macro libraries support a dual-port macro only. For use of this macro as a single-port SRAM, the inputs
and clock of one port should be tied off (grounded) to prevent errors during design compile. For use in
dual-port mode, the same clock with an inversion between the two clock pins of the macro should be
used in the design to prevent errors during compile.
The memory block includes dedicated FIFO control logic to generate internal addresses and external flag
logic (FULL, EMPTY, AFULL, AEMPTY).
Simultaneous dual-port read/write and write/write operations at the same address are allowed when
certain timing requirements are met.
During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by
internal MUXes.
The low power flash device architecture enables the read and write sizes of RAMs to be organized
independently, allowing for bus conversion. For example, the write size can be set to 256×18 and the
read size to 512×9.
Both the write width and read width for the RAM blocks can be specified independently with the WW
(write width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4,
2k×2, and 4k×1. When widths of one, two, or four are selected, the ninth bit is unused. For example,
when writing nine-bit values and reading four-bit values, only the first four bits and the second four bits of
each nine-bit value are addressable for read operations. The ninth bit is not accessible.
Conversely, when writing four-bit values and reading nine-bit values, the ninth bit of a read operation will
be undefined. The RAM blocks employ little-endian byte order for read and write operations.

Memory Blocks and Macros
Memory blocks can be configured with many different aspect ratios, but are generically supported in the
macro libraries as one of two memory elements: RAM4K9 or RAM512X18. The RAM4K9 is configured
as a true dual-port memory block, and the RAM512X18 is configured as a two-port memory block. Dual-
port memory allows the RAM to both read from and write to either port independently. Two-port memory
allows the RAM to read from one port and write to the other using a common clock or independent read
and write clocks. If needed, the RAM4K9 blocks can be configured as two-port memory blocks. The
memory block can be configured as a FIFO by combining the basic memory block with dedicated FIFO
controller logic. The FIFO macro is named FIFO4KX18 (Figure 6-3 on page 136).
Clocks for the RAM blocks can be driven by the VersaNet (global resources) or by regular nets. When
using local clock segments, the clock segment region that encompasses the RAM blocks can drive the
RAMs. In the dual-port configuration (RAM4K9), each memory block port can be driven by either rising-
edge or falling-edge clocks. Each port can be driven by clocks with different edges. Though only a rising-
edge clock can drive the physical block itself, the Microsemi Designer software will automatically bubble-
push the inversion to properly implement the falling-edge trigger for the RAM block.
Revision 5 135

ProASIC3 nano FPGA Fabric User’s Guide
Related Documents

Application Notes
Board-Level Considerations
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf

User’s Guides
Libero SoC User’s Guide
http://www.microsemi.com/soc/documents/libero_ug.pdf
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
SmartGen Core Reference Guide
http://www.microsemi.com/soc/documents/genguide_ug.pdf

List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 Figure 7-2 • I/O Block Logical Representation for Dual-Tile Designs (60 k,125 k,
and 250 k Devices) was revised to indicate that resets on registers 1, 3, 4, and 5
are active high rather than active low (SAR 40698).

160

The hyperlink for the Board-Level Considerations application note was corrected
(SAR 36663).

181, 183

June 2011 Figure 7-2 • I/O Block Logical Representation for Dual-Tile Designs (60 k,125 k,
and 250 k Devices) was revised so that the I/O_CLR and I/O_OCLK nets are no
longer joined in front of Input Register 3 but instead on the branch of the CLR/PRE
signal (SAR 26052).

160

The following sentence was removed from the "LVCMOS (Low-Voltage CMOS)"
section (SAR 22634): "All these versions use a 3.3 V–tolerant CMOS input buffer
and a push-pull output buffer."

166

The "5 V Input Tolerance" section was revised to state that 5 V input tolerance can
be used with LVTTL 3.3 V and LVCMOS 3.3 V configurations. LVCMOS 2.5 V,
LVCMOS 1.8 V, LVCMOS 1.5 V, and LVCMOS 1.2 V were removed from the
sentence listing supported configurations (SAR 22427).

171
Revision 5 183

http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf
http://www.microsemi.com/soc/documents/libero_ug.pdf
http://www.microsemi.com/soc/documents/libero_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/genguide_ug.pdf
http://www.microsemi.com/soc/documents/genguide_ug.pdf

I/O Software Control in Low Power Flash Devices
Implementing I/Os in Microsemi Software
Microsemi Libero SoC software is integrated with design entry tools such as the SmartGen macro
builder, the ViewDraw schematic entry tool, and an HDL editor. It is also integrated with the synthesis and
Designer tools. In this section, all necessary steps to implement the I/Os are discussed.

Design Entry
There are three ways to implement I/Os in a design:

1. Use the SmartGen macro builder to configure I/Os by generating specific I/O library macros and
then instantiating them in top-level code. This is especially useful when creating I/O bus
structures.

2. Use an I/O buffer cell in a schematic design.
3. Manually instantiate specific I/O macros in the top-level code.

If technology-specific macros, such as INBUF_LVCMOS33 and OUTBUF_PCI, are used in the HDL
code or schematic, the user will not be able to change the I/O standard later on in Designer. If generic I/O
macros are used, such as INBUF, OUTBUF, TRIBUF, CLKBUF, and BIBUF, the user can change the I/O
standard using the Designer I/O Attribute Editor tool.

Using SmartGen for I/O Configuration
The SmartGen tool in Libero SoC provides a GUI-based method of configuring the I/O attributes. The
user can select certain I/O attributes while configuring the I/O macro in SmartGen. The steps to configure
an I/O macro with specific I/O attributes are as follows:

1. Open Libero SoC.
2. On the left-hand side of the Catalog View, select I/O, as shown in Figure 8-2.

Figure 8-2 • SmartGen Catalog
188 Revision 5

I/O Software Control in Low Power Flash Devices
Output Buffers
There are two variations: Regular and Special.
If the Regular variation is selected, only the Width (1 to 128) needs to be entered. The default value for
Width is 1.
The Special variation has Width, Technology, Output Drive, and Slew Rate options.

Bidirectional Buffers
There are two variations: Regular and Special.
The Regular variation has Enable Polarity (Active High, Active Low) in addition to the Width option.
The Special variation has Width, Technology, Output Drive, Slew Rate, and Resistor Pull-Up/-Down
options.

Tristate Buffers
Same as Bidirectional Buffers.

DDR
There are eight variations: DDR with Regular Input Buffers, Special Input Buffers, Regular Output
Buffers, Special Output Buffers, Regular Tristate Buffers, Special Tristate Buffers, Regular Bidirectional
Buffers, and Special Bidirectional Buffers.
These variations resemble the options of the previous I/O macro. For example, the Special Input Buffers
variation has Width, Technology, Voltage Level, and Resistor Pull-Up/-Down options. DDR is not
available on IGLOO PLUS devices.

4. Once the desired configuration is selected, click the Generate button. The Generate Core
window opens (Figure 8-4).

5. Enter a name for the macro. Click OK. The core will be generated and saved to the appropriate
location within the project files (Figure 8-5 on page 191).

6. Instantiate the I/O macro in the top-level code.
The user must instantiate the DDR_REG or DDR_OUT macro in the design. Use SmartGen to
generate both these macros and then instantiate them in your top level. To combine the DDR
macros with the I/O, the following rules must be met:

Figure 8-4 • Generate Core Window
190 Revision 5

Security in Low Power Flash Devices
Security Features
IGLOO and ProASIC3 devices have two entities inside: FlashROM and the FPGA core fabric. Fusion
devices contain three entities: FlashROM, FBs, and the FPGA core fabric. The parts can be programmed
or updated independently with a STAPL programming file. The programming files can be AES-encrypted
or plaintext. This allows maximum flexibility in providing security to the entire device. Refer to the
"Programming Flash Devices" section on page 221 for information on the FlashROM structure.
Unlike SRAM-based FPGA devices, which require a separate boot PROM to store programming data,
low power flash devices are nonvolatile, and the secured configuration data is stored in on-chip flash
cells that are part of the FPGA fabric. Once programmed, this data is an inherent part of the FPGA array
and does not need to be loaded at system power-up. SRAM-based FPGAs load the configuration
bitstream upon power-up; therefore, the configuration is exposed and can be read easily.
The built-in FPGA core, FBs, and FlashROM support programming files encrypted with the 128-bit AES
(FIPS-192) block ciphers. The AES key is stored in dedicated, on-chip flash memory and can be
programmed before the device is shipped to other parties (allowing secure remote field updates).

Security in ARM-Enabled Low Power Flash Devices
There are slight differences between the regular flash devices and the ARM®-enabled flash devices,
which have the M1 and M7 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design is encrypted along with the ARM IP, according to the details below.

Figure 11-3 • Block Representation of the AES Decryption Core in a Fusion AFS600 FPGA

VersaTile

CCC

CCC

I/Os

OSC

CCC/PLL

Bank 0

B
an

k
4 B

ank 2

Bank 1

Bank 3

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

Flash Memory Blocks Flash Memory BlocksADC

Analog
Quad

ISP AES
Decryption

User Nonvolatile
FlashROM Charge Pumps

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad
238 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Cortex-M1 Device Security
Cortex-M1–enabled devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted Write and Verify
• Fusion Embedded Flash Memory enabled for AES-encrypted Write

AES Encryption of Programming Files
Low power flash devices employ AES as part of the security mechanism that prevents invasive and
noninvasive attacks. The mechanism entails encrypting the programming file with AES encryption and
then passing the programming file through the AES decryption core, which is embedded in the device.
The file is decrypted there, and the device is successfully programmed. The AES master key is stored in
on-chip nonvolatile memory (flash). The AES master key can be preloaded into parts in a secure
programming environment (such as the Microsemi In-House Programming center), and then "blank"
parts can be shipped to an untrusted programming or manufacturing center for final personalization with
an AES-encrypted bitstream. Late-stage product changes or personalization can be implemented easily
and securely by simply sending a STAPL file with AES-encrypted data. Secure remote field updates over
public networks (such as the Internet) are possible by sending and programming a STAPL file with AES-
encrypted data.
The AES key protects the programming data for file transfer into the device with 128-bit AES encryption.
If AES encryption is used, the AES key is stored or preprogrammed into the device. To program, you
must use an AES-encrypted file, and the encryption used on the file must match the encryption key
already in the device.
The AES key is protected by a FlashLock security Pass Key that is also implemented in each device. The
AES key is always protected by the FlashLock Key, and the AES-encrypted file does NOT contain the
FlashLock Key. This FlashLock Pass Key technology is exclusive to the Microsemi flash-based device
families. FlashLock Pass Key technology can also be implemented without the AES encryption option,
providing a choice of different security levels.
In essence, security features can be categorized into the following three options:

• AES encryption with FlashLock Pass Key protection
• FlashLock protection only (no AES encryption)
• No protection

Each of the above options is explained in more detail in the following sections with application examples
and software implementation options.

Advanced Encryption Standard
The 128-bit AES standard (FIPS-192) block cipher is the NIST (National Institute of Standards and
Technology) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to
protect sensitive government information well into the 21st century. It replaces the aging DES, which
NIST adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (securely) in low power flash devices in nonvolatile flash
memory. All programming files sent to the device can be authenticated by the part prior to programming
to ensure that bad programming data is not loaded into the part that may possibly damage it. All
programming verification is performed on-chip, ensuring that the contents of low power flash devices
remain secure.
Microsemi has implemented the 128-bit AES (Rijndael) algorithm in low power flash devices. With this
key size, there are approximately 3.4 × 1038 possible 128-bit keys. DES has a 56-bit key size, which
provides approximately 7.2 × 1016 possible keys. In their AES fact sheet, the National Institute of
Standards and Technology uses the following hypothetical example to illustrate the theoretical security
provided by AES. If one were to assume that a computing system existed that could recover a DES key
in a second, it would take that same machine approximately 149 trillion years to crack a 128-bit AES key.
NIST continues to make their point by stating the universe is believed to be less than 20 billion years
old.1
Revision 5 239

Security in Low Power Flash Devices
Security in Action
This section illustrates some applications of the security advantages of Microsemi’s devices (Figure 11-6).

.

Note: Flash blocks are only used in Fusion devices
Figure 11-6 • Security Options

Plaintext
Source File

AES
Encryption

Cipher Text
Source File

Public
Domain

AES Decryption Core

FlashROM Flash Blocks

Flash Device
A

pp
lic

at
io

n
3

A
pp

lic
at

io
n

2

A
pp

lic
at

io
n

1

FPGA Core
242 Revision 5

Microprocessor Programming of Microsemi’s Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

September 2012 The "Security" section was modified to clarify that Microsemi does not support
read-back of FPGA core-programmed data (SAR 41235).

288

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 14-1 • Flash-
Based FPGAs.

284

v1.3
(October 2008)

The "Microprocessor Programming Support in Flash Devices" section was
revised to include new families and make the information more concise.

284

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 14-1 •
Flash-Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

284

v1.1
(March 2008)

The "Microprocessor Programming Support in Flash Devices" section was
updated to include information on the IGLOO PLUS family. The "IGLOO
Terminology" section and "ProASIC3 Terminology" section are new.

284
290 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Advanced Boundary Scan Register Settings
You will not be able to control the order in which I/Os are released from boundary scan control. Testing
has produced cases where, depending on I/O placement and FPGA routing, a 5 ns glitch has been seen
on exiting programming mode. The following setting is recommended to prevent such I/O glitches:

1. In the FlashPro software, configure the advanced BSR settings for Specify I/O Settings During
Programming.

2. Set the input BSR cell to Low for the input I/O.

Note: TCK is correctly wired with an equivalent tie-off resistance of 500 Ω, which satisfies the table for
VJTAG of 1.5 V. The resistor values for TRST are not appropriate in this case, as the tie-off
resistance of 375 Ω is below the recommended minimum for VJTAG = 1.5 V, but would be
appropriate for a VJTAG setting of 2.5 V or 3.3 V.

Figure 15-3 • Parallel Resistance on JTAG Chain of Devices

TDI

TDI

TDI

TDI

TDO

TDO

TDO

TDO

JTAG
Header

Microsemi
FPGA 1

Microsemi
FPGA 2

Microsemi
FPGA3

Microsemi
FPGA 4

2 kΩ

2 kΩ

2 kΩ

2 kΩ

1.5 V

TCK
TRST
VJTAG

GND

1.5 kΩ

1.5 kΩ

1.5 kΩ

1.5 kΩ
Revision 5 295

UJTAG Applications in Microsemi’s Low Power Flash Devices
Typical UJTAG Applications
Bidirectional access to the JTAG port from VersaTiles—without putting the device into test mode—
creates flexibility to implement many different applications. This section describes a few of these. All are
based on importing/exporting data through the UJTAG tiles.

Clock Conditioning Circuitry—Dynamic Reconfiguration
In low power flash devices, CCCs, which include PLLs, can be configured dynamically through either an
81-bit embedded shift register or static flash programming switches. These 81 bits control all the
characteristics of the CCC: routing MUX architectures, delay values, divider values, etc. Table 16-3 lists
the 81 configuration bits in the CCC.

The embedded 81-bit shift register (for the dynamic configuration of the CCC) is accessible to the
VersaTiles, which, in turn, have access to the UJTAG tiles. Therefore, the CCC configuration shift
register can receive and load the new configuration data stream from JTAG.
Dynamic reconfiguration eliminates the need to reprogram the device when reconfiguration of the CCC
functional blocks is needed. The CCC configuration can be modified while the device continues to
operate. Employing the UJTAG core requires the user to design a module to provide the configuration
data and control the CCC configuration shift register. In essence, this is a user-designed TAP Controller
requiring chip resources.
Similar reconfiguration capability exists in the ProASICPLUS® family. The only difference is the number of
shift register bits controlling the CCC (27 in ProASICPLUS and 81 in IGLOO, ProASIC3, and Fusion).

Table 16-3 • Configuration Bits of Fusion, IGLOO, and ProASIC3 CCC Blocks
Bit Number(s) Control Function
80 RESET ENABLE

79 DYNCSEL

78 DYNBSEL

77 DYNASEL

<76:74> VCOSEL [2:0]

73 STATCSEL

72 STATBSEL

71 STATASEL

<70:66> DLYC [4:0]

<65:61> DLYB {4:0]

<60:56> DLYGLC [4:0]

<55:51> DLYGLB [4:0]

<50:46> DLYGLA [4:0]

45 XDLYSEL

<44:40> FBDLY [4:0]

<39:38> FBSEL

<37:35> OCMUX [2:0]

<34:32> OBMUX [2:0]

<31:29> OAMUX [2:0]

<28:24> OCDIV [4:0]

<23:19> OBDIV [4:0]

<18:14> OADIV [4:0]

<13:7> FBDIV [6:0]

<6:0> FINDIV [6:0]
302 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
The following devices and families do not support cold-sparing:
• IGLOO: AGL060, AGL125, AGL250, AGL600, AGL1000
• ProASIC3: A3P060, A3P125, A3P250, A3P400, A3P600, A3P1000
• ProASIC3L: A3P250L, A3P600L, A3P1000L
• Military ProASIC3: A3P1000

Hot-Swapping
Hot-swapping is the operation of hot insertion or hot removal of a card in a powered-up system. The I/Os
need to be configured in hot-insertion mode if hot-swapping compliance is required. For more details on
the levels of hot-swap compatibility in low power flash devices, refer to the "Hot-Swap Support" section in
the I/O Structures chapter of the user’s guide for the device you are using.
The following devices and families support hot-swapping:

• IGLOO: AGL015 and AGL030
• All IGLOO nano
• All IGLOO PLUS
• All IGLOOe
• ProASIC3L: A3PE3000L
• ProASIC3: A3P015 and A3P030
• All ProASIC3 nano
• All ProASIC3E
• Military ProASIC3EL: A3PE600L and A3PE3000L
• RT ProASIC3: RT3PE600L and RT3PE3000L

The following devices and families do not support hot-swapping:
• IGLOO: AGL060, AGL125, AGL250, AGL400, AGL600, AGL1000
• ProASIC3: A3P060, A3P125, A3P250, A3P400, A3P600, A3P1000
• ProASIC3L: A3P250L, A3P600L, A3P1000L
• Military ProASIC3: A3P1000

Conclusion
Microsemi's low power flash FPGAs provide an excellent programmable logic solution for a broad range
of applications. In addition to high performance, low cost, security, nonvolatility, and single chip, they are
live at power-up (meet Level 0 of the LAPU classification) and offer clear and easy-to-use power-up/-
down characteristics. Unlike SRAM FPGAs, low power flash devices do not require any specific power-
up/-down sequencing and have extremely low power-up inrush current in any power-up sequence.
Microsemi low power flash FPGAs also support both cold-sparing and hot-swapping for applications
requiring these capabilities.
Revision 5 317

