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3 – Global Resources in Low Power Flash Devices

Introduction 
IGLOO, Fusion, and ProASIC3 FPGA devices offer a powerful, low-delay VersaNet global network
scheme and have extensive support for multiple clock domains. In addition to the Clock Conditioning
Circuits (CCCs) and phase-locked loops (PLLs), there is a comprehensive global clock distribution
network called a VersaNet global network. Each logical element (VersaTile) input and output port has
access to these global networks. The VersaNet global networks can be used to distribute low-skew clock
signals or high-fanout nets. In addition, these highly segmented VersaNet global networks contain spines
(the vertical branches of the global network tree) and ribs that can reach all the VersaTiles inside their
region. This allows users the flexibility to create low-skew local clock networks using spines. This
document describes VersaNet global networks and discusses how to assign signals to these global
networks and spines in a design flow. Details concerning low power flash device PLLs are described in
the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" section on
page 61. This chapter describes the low power flash devices’ global architecture and uses of these global
networks in designs. 

Global Architecture
Low power flash devices offer powerful and flexible control of circuit timing through the use of global
circuitry. Each chip has up to six CCCs, some with PLLs.

• In IGLOOe, ProASIC3EL, and ProASIC3E devices, all CCCs have PLLs—hence, 6 PLLs per
device (except the PQ208 package, which has only 2 PLLs). 

• In IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, and ProASIC3L devices, the west CCC
contains a PLL core (except in 10 k through 30 k devices). 

• In Fusion devices, the west CCC also contains a PLL core. In the two larger devices (AFS600 and
AFS1500), the west and east CCCs each contain a PLL.

Refer to Table 4-6 on page 84 for details. Each PLL includes delay lines, a phase shifter (0°, 90°, 180°,
270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and
interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to
three chip global lines on each side of the chip (six chip global lines total). The CCCs at the four corners
each have access to three quadrant global lines in each quadrant of the chip (except in 10 k through 30 k
gate devices).
The nano 10 k, 15 k, and 20 k devices support four VersaNet global resources, and 30 k devices support
six global resources. The 10 k through 30 k devices have simplified CCCs called CCC-GLs.
The flexible use of the VersaNet global network allows the designer to address several design
requirements. User applications that are clock-resource-intensive can easily route external or gated
internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay
penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global
network.
Note: Microsemi recommends that you choose the appropriate global pin and use the appropriate global

resource so you can realize these benefits. 
The following sections give an overview of the VersaNet global network, the structure of the global
network, access point for the global networks, and the clock aggregation feature that enables a design to
have very low clock skew using spines.
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Global Resources in Low Power Flash Devices
Step 1
Run Synthesis with default options. The Synplicity log shows the following device utilization: 

Step 2
Run Compile with the Promote regular nets whose fanout is greater than option selected in Designer;
you will see the following in the Compile report:
Device utilization report:
==========================
CORE Used: 1536 Total: 13824 (11.11%)
IO (W/ clocks) Used: 19 Total: 147 (12.93%)
Differential IO Used: 0 Total: 65 (0.00%)
GLOBAL Used: 8 Total: 18 (44.44%)
PLL Used:      2 Total: 2 (100.00%)
RAM/FIFO Used:      0 Total: 24 (0.00%)
FlashROM Used:      0 Total: 1 (0.00%)
……………………
The following nets have been assigned to a global resource:
Fanout  Type          Name
--------------------------
1536    INT_NET Net   : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536    SET/RESET_NET Net   : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET Net   : QCLK1_c
Driver: QCLK1_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET Net   : QCLK2_c
Driver: QCLK2_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET Net   : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET Net   : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256     CLK_NET Net   : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256     CLK_NET Net   : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

Designer will promote five more signals to global due to high fanout. There are eight signals assigned to
global networks. 

Cell usage:

cell count area count*area

DFN1E1C1
BUFF
INBUF
VCC
GND
OUTBUF
CLKBUF
PLL
TOTAL

1536
278
10
9
9
6
3
2

1853

2.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0

3072.0
278.0
0.0
0.0
0.0
0.0
0.0
0.0

3350.0
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CCC Support in Microsemi’s Flash Devices
The flash FPGAs listed in Table 4-1 support the CCC feature and the functions described in this 
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed 
in Table 4-1. Where the information applies to only one product line or limited devices, these exclusions 
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices 
as listed in Table 4-1. Where the information applies to only one product line or limited devices, these 
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s 
Lowest Power FPGAs Portfolio.

Table 4-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable 
analog block, support for ARM® Cortex™-M1 soft processors, and flash 
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, 
and packaging information.
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IGLOO and ProASIC3 CCC Locations
In all IGLOO and ProASIC3 devices (except 10 k through 30 k gate devices, which do not contain PLLs), 
six CCCs are located in the same positions as the IGLOOe and ProASIC3E CCCs. Only one of the 
CCCs has an integrated PLL and is located in the middle of the west (middle left) side of the device. The 
other five CCCs are simplified CCCs and are located in the four corners and the middle of the east side 
of the device (Figure 4-14). 

Note: The number and architecture of the banks are different for some devices.
10 k through 30 k gate devices do not support PLL features. In these devices, there are two CCC-GLs at 
the lower corners (one at the lower right, and one at the lower left). These CCC-GLs do not have 
programmable delays.

Figure 4-14 • CCC Locations in IGLOO and ProASIC3 Family Devices
(except 10 k through 30 k gate devices)
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Table 4-13 • 2-Bit Feedback MUX

FBSEL<1:0> State MUX Input Selected

0 Ground. Used for power-down mode in power-down logic 
block.

1 PLL VCO 0° phase shift 

2 PLL delayed VCO 0° phase shift

3 N/A 

Table 4-14 • Programmable Delay Selection for Feedback Delay and Secondary Core Output Delays

FBDLY<4:0>; DLYYB<4:0>; DLYYC<4:0> State Delay Value

0 Typical delay = 600 ps

1 Typical delay = 760 ps

2 Typical delay = 920 ps

… …
31 Typical delay = 5.56 ns

Table 4-15 • Programmable Delay Selection for Global Clock Output Delays

DLYGLA<4:0>; DLYGLB<4:0>; DLYGLC<4:0> State Delay Value

0 Typical delay = 225 ps

1 Typical delay = 760 ps

2 Typical delay = 920 ps

… …

31 Typical delay = 5.56 ns

Table 4-16 • Fusion Dynamic CCC Clock Source Selection
RXASEL DYNASEL Source of CLKA
1 0 RC Oscillator

1 1 Crystal Oscillator

RXBSEL DYNBSEL Source of CLKB
1 0 RC Oscillator

1 1 Crystal Oscillator

RXBSEL DYNCSEL Source of CLKC
1 0 RC Oscillator

1 1 Crystal Oscillator

Table 4-17 • Fusion Dynamic CCC NGMUX Configuration
GLMUXCFG<1:0> NGMUX Select Signal Supported Input Clocks to NGMUX
00 0 GLA

1 GLC

01 0 GLA

1 GLINT

10 0 GLC

1 GLINT
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Table 6-8 and Table 6-9 show the maximum potential width and depth configuration for each device. Note
that 15 k and 30 k gate devices do not support RAM or FIFO.

 

Table 6-8 • Memory Availability per IGLOO and ProASIC3 Device

Device

RAM 
Block

s

Maximum Potential Width1 Maximum Potential Depth2

IGLOO 
IGLOO nano 
IGLOO PLUS

ProASIC3
ProASIC3 nano

ProASIC3L Depth Width Depth Width

AGL060 
AGLN060 
AGLP060

A3P060
A3PN060

4 256 72 (4×18) 16,384 (4,096×4) 1

AGL125
AGLN125
AGLP125

A3P125 
A3PN125

8 256 144 (8×18) 32,768 (4,094×8) 1

AGL250 
AGLN250

A3P250/L 
A3PN250

8 256 144 (8×18) 32,768 (4,096×8) 1

AGL400 A3P400 12 256 216 (12×18) 49,152 (4,096×12) 1

AGL600 A3P600/L 24 256 432 (24×18) 98,304 (4,096×24) 1

AGL1000 A3P1000/L 32 256 576 (32×18) 131,072 (4,096×32) 1

AGLE600 A3PE600 24 256 432 (24×18) 98,304 (4,096×24) 1

A3PE1500 60 256 1,080 (60×18) 245,760 (4,096×60) 1

AGLE3000 A3PE3000/L 112 256 2,016 (112×18) 458,752 (4,096×112) 1

Notes:
1. Maximum potential width uses the two-port configuration.
2. Maximum potential depth uses the dual-port configuration.

Table 6-9 • Memory Availability per Fusion Device 

Device RAM Blocks
Maximum Potential Width1 Maximum Potential Depth2

Depth Width Depth Width
AFS090 6 256 108 (6×18)  24,576 (4,094×6) 1

AFS250 8 256 144 (8×18) 32,768 (4,094×8) 1

AFS600 24 256 432 (24×18) 98,304 (4,096×24) 1

AFS1500 60 256 1,080 (60×18) 245,760 (4,096×60) 1

Notes:
1. Maximum potential width uses the two-port configuration.
2. Maximum potential depth uses the dual-port configuration.
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recommended, since it reduces the complexity of the user interface block and the board-level JTAG
driver.
Moreover, using an internal counter for address generation speeds up the initialization procedure, since
the user only needs to import the data through the JTAG port.
The designer may use different methods to select among the multiple RAM blocks. Using counters along
with demultiplexers is one approach to set the write enable signals. Basically, the number of RAM blocks
needing initialization determines the most efficient approach. For example, if all the blocks are initialized
with the same data, one enable signal is enough to activate the write procedure for all of them at the
same time. Another alternative is to use different opcodes to initialize each memory block. For a small
number of RAM blocks, using counters is an optimal choice. For example, a ring counter can be used to
select from multiple RAM blocks. The clock driver of this counter needs to be controlled by the address
generation process.
Once the addressing of one block is finished, a clock pulse is sent to the (ring) counter to select the next
memory block.
Figure 6-9 illustrates a simple block diagram of an interface block between UJTAG and RAM blocks. 

In the circuit shown in Figure 6-9, the shift register is enabled by the UDRSH output of the UJTAG macro.
The counters and chip select outputs are controlled by the value of the TAP Instruction Register. The
comparison block compares the UIREG value with the "start initialization" opcode value (defined by the
user). If the result is true, the counters start to generate addresses and activate the WEN inputs of
appropriate RAM blocks.
The UDRUPD output of the UJTAG macro, also shown in Figure 6-9, is used for generating the write
clock (WCLK) and synchronizing the data register and address counter with WCLK. UDRUPD is HIGH
when the TAP Controller is in the Data Register Update state, which is an indication of completing the
loading of one data word. Once the TAP Controller goes into the Data Register Update state, the
UDRUPD output of the UJTAG macro goes HIGH. Therefore, the pipeline register and the address
counter place the proper data and address on the outputs of the interface block. Meanwhile, WCLK is
defined as the inverted UDRUPD. This will provide enough time (equal to the UDRUPD HIGH time) for
the data and address to be placed at the proper ports of the RAM block before the rising edge of WCLK.
The inverter is not required if the RAM blocks are clocked at the falling edge of the write clock. An
example of this is described in the "Example of RAM Initialization" section on page 150.

Figure 6-9 • Block Diagram of a Sample User Interface
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For Level 3 and Level 4 compliance with the nano devices, cards with two levels of staging should have
the following sequence:

• Grounds
• Powers, I/Os, and other pins

Table 7-10 • Hot-Swap Level 3

Description Hot-swap while bus idle

Power Applied to Device Yes

Bus State Held idle (no ongoing I/O processes during
insertion/removal)

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application Board bus shared with card bus is "frozen," and
there is no toggling activity on the bus. It is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of nano Devices Compliant

Table 7-11 • Hot-Swap Level 4

Description Hot-swap on an active bus

Power Applied to Device Yes

Bus State Bus may have active I/O processes ongoing, but
device being inserted or removed must be idle.

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application There is activity on the system bus, and it is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of nano Devices Compliant
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– If one of the registers has a PRE pin, all the other registers that are candidates for combining
in the I/O must have a PRE pin.

– If one of the registers has neither a CLR nor a PRE pin, all the other registers that are
candidates for combining must have neither a CLR nor a PRE pin.

– If the clear or preset pins are present, they must have the same polarity.
– If the clear or preset pins are present, they must be driven by the same signal (net).

3. For single-tile devices (10 k, 15 k, and 20 k): Registers connected to an I/O on the Output and
Output Enable pins must have the same clock function (both CLR and CLK are shared among all
registers):
– Both the Output and Output Enable registers must not have an E pin (clock enable).

4. For dual-tile devices (60 k, 125 k, and 250 k): Registers connected to an I/O on the Output and
Output Enable pins must have the same clock and enable function:
– Both the Output and Output Enable registers must have an E pin (clock enable), or none at all.
– If the E pins are present, they must have the same polarity. The CLK pins must also have the

same polarity.
In some cases, the user may want registers to be combined with the input of a bibuf while
maintaining the output as-is. This can be achieved by using PDC commands as follows:

set_io <signal name> -REGISTER yes ------register will combine
set_preserve <signal name> ----register will not combine

Weak Pull-Up and Weak Pull-Down Resistors
nano devices support optional weak pull-up and pull-down resistors on each I/O pin. When the I/O is
pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled down, it is
connected to GND. Refer to the datasheet for more information.
For low power applications and when using IGLOO nano devices, configuration of the pull-up or pull-
down of the I/O can be used to set the I/O to a known state while the device is in Flash*Freeze mode.
Refer to "Flash*Freeze Technology and Low Power Modes" in an applicable FPGA fabric user’s guide for
more information.
The Flash*Freeze (FF) pin cannot be configured with a weak pull-down or pull-up I/O attribute, as the
signal needs to be driven at all times.

Output Slew Rate Control
The slew rate is the amount of time an input signal takes to get from logic LOW to logic HIGH or vice
versa.
It is commonly defined as the propagation delay between 10% and 90% of the signal's voltage swing.
Slew rate control is available for the output buffers of low power flash devices. The output buffer has a
programmable slew rate for both HIGH-to-LOW and LOW-to-HIGH transitions. 
The slew rate can be implemented by using a PDC command (Table 7-5 on page 163), setting it "High"
or "Low" in the I/O Attribute Editor in Designer, or instantiating a special I/O macro. The default slew rate
value is "High."
Microsemi recommends the high slew rate option to minimize the propagation delay. This high-speed
option may introduce noise into the system if appropriate signal integrity measures are not adopted.
Selecting a low slew rate reduces this kind of noise but adds some delays in the system. Low slew rate is
recommended when bus transients are expected. 

Output Drive
The output buffers of nano devices can provide multiple drive strengths to meet signal integrity
requirements. The LVTTL and LVCMOS (except 1.2 V LVCMOS) standards have selectable drive
strengths. 
Drive strength should also be selected according to the design requirements and noise immunity of the
system.
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I/O Software Control in Low Power Flash Devices
Implementing I/Os in Microsemi Software
Microsemi Libero SoC software is integrated with design entry tools such as the SmartGen macro
builder, the ViewDraw schematic entry tool, and an HDL editor. It is also integrated with the synthesis and
Designer tools. In this section, all necessary steps to implement the I/Os are discussed.

Design Entry
There are three ways to implement I/Os in a design:

1. Use the SmartGen macro builder to configure I/Os by generating specific I/O library macros and
then instantiating them in top-level code. This is especially useful when creating I/O bus
structures.

2. Use an I/O buffer cell in a schematic design.
3. Manually instantiate specific I/O macros in the top-level code.

If technology-specific macros, such as INBUF_LVCMOS33 and OUTBUF_PCI, are used in the HDL
code or schematic, the user will not be able to change the I/O standard later on in Designer. If generic I/O
macros are used, such as INBUF, OUTBUF, TRIBUF, CLKBUF, and BIBUF, the user can change the I/O
standard using the Designer I/O Attribute Editor tool. 

Using SmartGen for I/O Configuration
The SmartGen tool in Libero SoC provides a GUI-based method of configuring the I/O attributes. The
user can select certain I/O attributes while configuring the I/O macro in SmartGen. The steps to configure
an I/O macro with specific I/O attributes are as follows:

1. Open Libero SoC.
2. On the left-hand side of the Catalog View, select I/O, as shown in Figure 8-2. 

Figure 8-2 • SmartGen Catalog
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Rules for the DDR I/O Function
• The fanout between an I/O pin (D or Y) and a DDR (DDR_REG or DDR_OUT) macro must be

equal to one for the combining to happen on that pin.
• If a DDR_REG macro and a DDR_OUT macro are combined on the same bidirectional I/O, they

must share the same clear signal.
• Registers will not be combined in an I/O in the presence of DDR combining on the same I/O. 

Using the I/O Buffer Schematic Cell
Libero SoC software includes the ViewDraw schematic entry tool. Using ViewDraw, the user can insert
any supported I/O buffer cell in the top-level schematic. Figure 8-5 shows a top-level schematic with
different I/O buffer cells. When synthesized, the netlist will contain the same I/O macro.

Figure 8-5 • I/O Buffer Schematic Cell Usage
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4. Right-click and then choose Highlight VREF range. All the pins covered by that VREF pin will be
highlighted (Figure 8-14).  

Using PinEditor or ChipPlanner, VREF pins can also be assigned (Figure 8-15).  

To unassign a VREF pin:
1. Select the pin to unassign.
2. Right-click and choose Use Pin for VREF. The check mark next to the command disappears. The

VREF pin is now a regular pin.
Resetting the pin may result in unassigning I/O cores, even if they are locked. In this case, a warning
message appears so you can cancel the operation.
After you assign the VREF pins, right-click a VREF pin and choose Highlight VREF Range to see how
many I/Os are covered by that pin. To unhighlight the range, choose Unhighlight All from the Edit
menu.

Figure 8-14 • VREF Range

Figure 8-15 • Assigning VREF from PinEditor
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 9-1 • Flash-Based
FPGAs.

206

The "I/O Cell Architecture" section was updated with information applicable to nano
devices.

207

The output buffer (OUTBUF_SSTL3_I) input was changed to D, instead of Q, in
Figure 9-1 • DDR Support in Low Power Flash Devices, Figure 9-3 • DDR Output
Register (SSTL3 Class I), Figure 9-6 • DDR Output Register (SSTL3 Class I),
Figure 9-7 • DDR Tristate Output Register, LOW Enable, 8 mA, Pull-Up (LVTTL), and
the output from the DDR_OUT macro was connected to the input of the TRIBUFF
macro in Figure 9-7 • DDR Tristate Output Register, LOW Enable, 8 mA, Pull-Up
(LVTTL).

205, 
209, 

212, 213

v1.3
(October 2008)

The "Double Data Rate (DDR) Architecture" section was updated to include mention
of the AFS600 and AFS1500 devices.

205

The "DDR Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

206

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 9-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

206

v1.1
(March 2008)

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 206
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Programming Solutions 
Details for the available programmers can be found in the programmer user's guides listed in the 
"Related Documents" section on page 231. 
All the programmers except FlashPro4, FlashPro3, FlashPro Lite, and FlashPro require adapter 
modules, which are designed to support device packages. All modules are listed on the Microsemi SoC 
Products Group website at 
http://www.microsemi.com/soc/products/hardware/program_debug/ss/modules.aspx. They are not listed 
in this document, since this list is updated frequently with new package options and any upgrades 
required to improve programming yield or support new families.

Table 10-3 • Programming Solutions

Programmer Vendor ISP
Single
Device Multi-Device Availability

FlashPro4 Microsemi Only Yes Yes1 Available

FlashPro3 Microsemi Only Yes Yes1 Available

FlashPro Lite2 Microsemi Only Yes Yes1 Available

FlashPro Microsemi Only Yes Yes1 Discontinued

Silicon Sculptor 3 Microsemi Yes3 Yes Cascade option 
(up to two)

Available

Silicon Sculptor II Microsemi Yes3 Yes Cascade option 
(up to two)

Available

Silicon Sculptor Microsemi Yes Yes Cascade option 
(up to four)

Discontinued

Sculptor 6X Microsemi No Yes Yes Discontinued

BP MicroProgrammers BP 
Microsystems

No Yes Yes Contact BP 
Microsystems at

www.bpmicro.com

Notes:
1. Multiple devices can be connected in the same JTAG chain for programming.
2. If FlashPro Lite is used for programming, the programmer derives all of its power from the target pc 

board's VDD supply. The FlashPro Lite's VPP and VPN power supplies use the target pc board's 
VDD as a power source. The target pc board must supply power to both the VDDP and VDD power 
pins of the ProASICPLUS device in addition to supplying VDD to the FlashPro Lite. The target pc 
board needs to provide at least 500 mA of current to the FlashPro Lite VDD connection for 
programming.

3. Silicon Sculptor II and Silicon Sculptor 3 can only provide ISP for ProASIC and ProASICPLUS 
families, not for Fusion, IGLOO, or ProASIC3 devices.
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
IEEE 1532 (JTAG) Interface 
The supported industry-standard IEEE 1532 programming interface builds on the IEEE 1149.1 (JTAG)
standard. IEEE 1532 defines the standardized process and methodology for ISP. Both silicon and
software issues are addressed in IEEE 1532 to create a simplified ISP environment. Any IEEE 1532
compliant programmer can be used to program low power flash devices. Device serialization is not
supported when using the IEEE1532 standard. Refer to the standard for detailed information about IEEE
1532.

Security
Unlike SRAM-based FPGAs that require loading at power-up from an external source such as a
microcontroller or boot PROM, Microsemi nonvolatile devices are live at power-up, and there is no
bitstream required to load the device when power is applied. The unique flash-based architecture
prevents reverse engineering of the programmed code on the device, because the programmed data is
stored in nonvolatile memory cells. Each nonvolatile memory cell is made up of small capacitors and any
physical deconstruction of the device will disrupt stored electrical charges.
Each low power flash device has a built-in 128-bit Advanced Encryption Standard (AES) decryption core,
except for the 30 k gate devices and smaller. Any FPGA core or FlashROM content loaded into the
device can optionally be sent as encrypted bitstream and decrypted as it is loaded. This is particularly
suitable for applications where device updates must be transmitted over an unsecured network such as
the Internet. The embedded AES decryption core can prevent sensitive data from being intercepted
(Figure 12-1 on page 265). A single 128-bit AES Key (32 hex characters) is used to encrypt FPGA core
programming data and/or FlashROM programming data in the Microsemi tools. The low power flash
devices also decrypt with a single 128-bit AES Key. In addition, low power flash devices support a
Message Authentication Code (MAC) for authentication of the encrypted bitstream on-chip. This allows
the encrypted bitstream to be authenticated and prevents erroneous data from being programmed into
the device. The FPGA core, FlashROM, and Flash Memory Blocks (FBs), in Fusion only, can be updated
independently using a programming file that is AES-encrypted (cipher text) or uses plain text.
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Fine Tuning
In some applications, design constants or parameters need to be modified after programming the original
design. The tuning process can be done using the UJTAG tile without reprogramming the device with
new values. If the parameters or constants of a design are stored in distributed registers or embedded
SRAM blocks, the new values can be shifted onto the JTAG TAP Controller pins, replacing the old
values. The UJTAG tile is used as the “bridge” for data transfer between the JTAG pins and the FPGA
VersaTiles or SRAM logic. Figure 16-5 shows a flow chart example for fine-tuning application steps using
the UJTAG tile.
In Figure 16-5, the TMS signal sets the TAP Controller state machine to the appropriate states. The flow
mainly consists of two steps: a) shifting the defined instruction and b) shifting the new data. If the target
parameter is constantly used in the design, the new data can be shifted into a temporary shift register
from UTDI. The UDRSH output of UJTAG can be used as a shift-enable signal, and UDRCK is the shift
clock to the shift register. Once the shift process is completed and the TAP Controller state is moved to
the Update_DR state, the UDRUPD output of the UJTAG can latch the new parameter value from the
temporary register into a permanent location. This avoids any interruption or malfunctioning during the
serial shift of the new value. 

Figure 16-5 • Flow Chart Example of Fine-Tuning an Application Using UJTAG

Yes

No

TAP Controller in
Test_Logic_Reset

State

Set TAP state to
SHIFT_IR
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instruction of tuning

application
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UIREG Equal to
the user-defined

instruction

Set TAP state to
SHIFT_DR

Shift data into TDI and
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Conclusion
Microsemi low power flash FPGAs offer many unique advantages, such as security, nonvolatility,
reprogrammablity, and low power—all in a single chip. In addition, Fusion, IGLOO, and ProASIC3
devices provide access to the JTAG port from core VersaTiles while the device is in normal operating
mode. A wide range of available user-defined JTAG opcodes allows users to implement various types of
applications, exploiting this feature of these devices. The connection between the JTAG port and core
tiles is implemented through an embedded and hardwired UJTAG tile. A UJTAG tile can be instantiated in
designs using the UJTAG library cell. This document presents multiple examples of UJTAG applications,
such as dynamic reconfiguration, silicon test and debug, fine-tuning of the design, and RAM initialization.
Each of these applications offers many useful advantages. 

Related Documents

Application Notes
RAM Initialization and ROM Emulation in ProASICPLUS Devices
http://www.microsemi.com/soc/documents/APA_RAM_Initd_AN.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

December 2011 Information on the drive strength and slew rate of TDO pins was added to the
"Silicon Testing and Debugging" section (SAR 31749).

304

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 16-1 • Flash-Based
FPGAs.

298

v1.3
(October 2008)

The "UJTAG Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

298

The title of Table 16-3 • Configuration Bits of Fusion, IGLOO, and ProASIC3 CCC
Blocks was revised to include Fusion.

302

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 16-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

298

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices.

N/A

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 298
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