
Microchip Technology - A3PN020-1QNG68 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits -

Number of I/O 49

Number of Gates 20000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -20°C ~ 85°C (TJ)

Package / Case 68-VFQFN Exposed Pad

Supplier Device Package 68-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn020-1qng68

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn020-1qng68-4482269
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3 nano FPGA Fabric User’s Guide
Note: Flash*Freeze technology only applies to IGLOO and ProASIC3L families.
Figure 1-5 • IGLOO, IGLOO nano, ProASIC3 nano, and ProASIC3/L Device Architecture Overview with Four

I/O Banks (AGL600 device is shown)

Note: * AGLP030 does not contain a PLL or support AES security.
Figure 1-6 • IGLOO PLUS Device Architecture Overview with Four I/O Banks

ISP AES
Decryption*

User Nonvolatile
FlashRom

Flash*Freeze†

Technology
Charge
Pumps

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC

I/Os

Bank 0
B

an
k

3
B

an
k

3 B
ank 1

B
ank 1

Bank 2

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC*

I/Os

ISP AES
Decryption*

User Nonvolatile
FlashRom

Flash*Freeze
Technology

Charge
Pumps

Bank 0

B
ank 1

B
ank 1B

an
k

3
B

an
k

3

Bank 2
Revision 5 13

ProASIC3 nano FPGA Fabric User’s Guide
You can control the maximum number of shared instances allowed for the legalization to take place using
the Compile Option dialog box shown in Figure 3-17. Refer to Libero SoC / Designer online help for
details on the Compile Option dialog box. A large number of shared instances most likely indicates a
floorplanning problem that you should address.

Designer Flow for Global Assignment
To achieve the desired result, pay special attention to global management during synthesis and place-
and-route. The current Synplify tool does not insert more than six global buffers in the netlist by default.
Thus, the default flow will not assign any signal to the quadrant global network. However, you can use
attributes in Synplify and increase the default global macro assignment in the netlist. Designer v6.2
supports automatic quadrant global assignment, which was not available in Designer v6.1. Layout will
make the choice to assign the correct signals to global. However, you can also utilize PDC and perform
manual global assignment to overwrite any automatic assignment. The following step-by-step
suggestions guide you in the layout of your design and help you improve timing in Designer:

1. Run Compile and check the Compile report. The Compile report has global information in the
"Device Utilization" section that describes the number of chip and quadrant signals in the design.
A "Net Report" section describes chip global nets, quadrant global nets, local clock nets, a list of
nets listed by fanout, and net candidates for local clock assignment. Review this information. Note
that YB or YC are counted as global only when they are used in isolation; if you use YB only and
not GLB, this net is not shown in the global/quadrant nets report. Instead, it appears in the Global
Utilization report.

2. If some signals have a very high fanout and are candidates for global promotion, promote those
signals to global using the compile options or PDC commands. Figure 3-18 on page 54 shows the
Globals Management section of the compile options. Select Promote regular nets whose
fanout is greater than and enter a reasonable value for fanouts.

Figure 3-17 • Shared Instances in the Compile Option Dialog Box
Revision 5 53

Global Resources in Low Power Flash Devices
Using Spines of Occupied Global Networks
When a signal is assigned to a global network, the flash switches are programmed to set the MUX select
lines (explained in the "Clock Aggregation Architecture" section on page 45) to drive the spines of that
network with the global net. However, if the global net is restricted from reaching into the scope of a
spine, the MUX drivers of that spine are available for other high-fanout or critical signals (Figure 3-20).
For example, if you want to limit the CLK1_c signal to the left half of the chip and want to use the right
side of the same global network for CLK2_c, you can add the following PDC commands:
define_region -name region1 -type inclusive 0 0 34 29
assign_net_macros region1 CLK1_c
assign_local_clock –net CLK2_c –type chip B2

Conclusion
IGLOO, Fusion, and ProASIC3 devices contain 18 global networks: 6 chip global networks and 12
quadrant global networks. These global networks can be segmented into local low-skew networks called
spines. The spines provide low-skew networks for the high-fanout signals of a design. These allow you
up to 252 different internal/external clocks in an A3PE3000 device. This document describes the
architecture for the global network, plus guidelines and methodologies in assigning signals to globals and
spines.

Related Documents

User’s Guides
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

Figure 3-20 • Design Example Using Spines of Occupied Global Networks
58 Revision 5

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CLKDLY Macro Usage
When a CLKDLY macro is used in a CCC location, the programmable delay element is used to allow the
clock delays to go to the global network. In addition, the user can bypass the PLL in a CCC location
integrated with a PLL, but use the programmable delay that is associated with the global network by
instantiating the CLKDLY macro. The same is true when using programmable delay elements in a CCC
location with no PLLs (the user needs to instantiate the CLKDLY macro). There is no difference between
the programmable delay elements used for the PLL and the CLKDLY macro. The CCC will be configured
to use the programmable delay elements in accordance with the macro instantiated by the user.
As an example, if the PLL is not used in a particular CCC location, the designer is free to specify up to
three CLKDLY macros in the CCC, each of which can have its own input frequency and delay adjustment
options. If the PLL core is used, assuming output to only one global clock network, the other two global
clock networks are free to be used by either connecting directly from the global inputs or connecting from
one or two CLKDLY macros for programmable delay.
The programmable delay elements are shown in the block diagram of the PLL block shown in Figure 4-6
on page 71. Note that any CCC locations with no PLL present contain only the programmable delay
blocks going to the global networks (labeled "Programmable Delay Type 2"). Refer to the "Clock Delay
Adjustment" section on page 86 for a description of the programmable delay types used for the PLL. Also
refer to Table 4-14 on page 94 for Programmable Delay Type 1 step delay values, and Table 4-15 on
page 94 for Programmable Delay Type 2 step delay values. CCC locations with a PLL present can be
configured to utilize only the programmable delay blocks (Programmable Delay Type 2) going to the
global networks A, B, and C.
Global network A can be configured to use only the programmable delay element (bypassing the PLL) if the
PLL is not used in the design. Figure 4-6 on page 71 shows a block diagram of the PLL, where the
programmable delay elements are used for the global networks (Programmable Delay Type 2).
66 Revision 5

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
PLL Macro Signal Descriptions
The PLL macro supports two inputs and up to six outputs. Table 4-3 gives a description of each signal.

Input Clock
The inputs to the input reference clock (CLKA) of the PLL can come from global input pins, regular I/O
pins, or internally from the core. For Fusion families, the input reference clock can also be from the
embedded RC oscillator or crystal oscillator.

Global Output Clocks
GLA (Primary), GLB (Secondary 1), and GLC (Secondary 2) are the outputs of Global Multiplexer 1,
Global Multiplexer 2, and Global Multiplexer 3, respectively. These signals (GLx) can be used to drive the
high-speed global and quadrant networks of the low power flash devices.
A global multiplexer block consists of the input routing for selecting the input signal for the GLx clock and
the output multiplexer, as well as delay elements associated with that clock.

Core Output Clocks
YB and YC are known as Core Outputs and can be used to drive internal logic without using global
network resources. This is especially helpful when global network resources must be conserved and
utilized for other timing-critical paths.

Table 4-3 • Input and Output Signals of the PLL Block
Signal Name I/O Description
CLKA Reference Clock Input Reference clock input for PLL core; input clock for primary output

clock, GLA
OADIVRST Reset Signal for the

Output Divider A
Input For Fusion only. OADIVRST can be used when you bypass the PLL

core (i.e., OAMUX = 001). The purpose of the OADIVRST signals is
to reset the output of the final clock divider to synchronize it with the
input to that divider when the PLL is bypassed. The signal is active
on a low to high transition. The signal must be low for at least one
divider input. If PLL core is used, this signal is "don't care" and the
internal circuitry will generate the reset signal for the
synchronization purpose.

OADIVHALF Output A Division by
Half

Input For Fusion only. Active high. Division by half feature. This feature
can only be used when users bypass the PLL core (i.e., OAMUX =
001) and the RC Oscillator (RCOSC) drives the CLKA input. This
can be used to divide the 100 MHz RC oscillator by a factor of 1.5,
2.5, 3.5, 4.5 ... 14.5). Refer to Table 4-18 on page 95 for more
information.

EXTFB External Feedback Input Allows an external signal to be compared to a reference clock in the
PLL core's phase detector.

POWERDOWN Power Down Input Active low input that selects power-down mode and disables the
PLL. With the POWERDOWN signal asserted, the PLL core sends
0 V signals on all of the outputs.

GLA Primary Output Output Primary output clock to respective global/quadrant clock networks
GLB Secondary 1 Output Output Secondary 1 output clock to respective global/quadrant clock

networks
YB Core 1 Output Output Core 1 output clock to local routing network
GLC Secondary 2 Output Output Secondary 2 output clock to respective global/quadrant clock

networks
YC Core 2 Output Output Core 2 output clock to local routing network
LOCK PLL Lock Indicator Output Active high signal indicating that steady-state lock has been

achieved between CLKA and the PLL feedback signal
68 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
External I/O Clock Source
External I/O refers to regular I/O pins. The clock source is instantiated with one of the various INBUF
options and accesses the CCCs via internal routing. The user has the option of assigning this input to
any of the I/Os labeled with the I/O convention IOuxwByVz. Refer to the "User I/O Naming Conventions
in I/O Structures" chapter of the appropriate device user’s guide, and for Fusion, refer to the Fusion
Family of Mixed Signal FPGAs datasheet for more information. Figure 4-11 gives a brief explanation of
external I/O usage. Choosing this option provides the freedom of selecting any user I/O location but
introduces additional delay because the signal connects to the routed clock input through internal routing
before connecting to the CCC reference clock input.
For the External I/O option, the routed signal would be instantiated with a PLLINT macro before
connecting to the CCC reference clock input. This instantiation is conveniently done automatically by
SmartGen when this option is selected. Microsemi recommends using the SmartGen tool to generate the
CCC macro. The instantiation of the PLLINT macro results in the use of the routed clock input of the I/O
to connect to the PLL clock input. If not using SmartGen, manually instantiate a PLLINT macro before the
PLL reference clock to indicate that the regular I/O driving the PLL reference clock should be used (see
Figure 4-11 for an example illustration of the connections, shown in red).
In the above two options, the clock source must be instantiated with one of the various INBUF macros.
The reference clock pins of the CCC functional block core macros must be driven by regular input
macros (INBUFs), not clock input macros.

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input
reference clock of the CCC block.

Figure 4-11 • Illustration of External I/O Usage

PLL or CLKDLY
Macro

Routed Clock
(from FPGA Core)

Gmn*

Gmn*

Gmn*

To Core

IOuxwByVz*

To Global (or Local)
Routing Network

IOuxwByVz*

CLKA

PLLINT

Multiplexer
Tree

+
_

+
_

Gmn* = Global Input Pin
IOuxwByVz = Regular I/O Pin
Revision 5 75

http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/Fusion_DS.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
PLL Core Specifications
PLL core specifications can be found in the DC and Switching Characteristics chapter of the appropriate
family datasheet.

Loop Bandwidth
Common design practice for systems with a low-noise input clock is to have PLLs with small loop
bandwidths to reduce the effects of noise sources at the output. Table 4-6 shows the PLL loop
bandwidth, providing a measure of the PLL's ability to track the input clock and jitter.

PLL Core Operating Principles
This section briefly describes the basic principles of PLL operation. The PLL core is composed of a
phase detector (PD), a low-pass filter (LPF), and a four-phase voltage-controlled oscillator (VCO).
Figure 4-19 illustrates a basic single-phase PLL core with a divider and delay in the feedback path.

The PLL is an electronic servo loop that phase-aligns the PD feedback signal with the reference input. To
achieve this, the PLL dynamically adjusts the VCO output signal according to the average phase
difference between the input and feedback signals.
The first element is the PD, which produces a voltage proportional to the phase difference between its
inputs. A simple example of a digital phase detector is an Exclusive-OR gate. The second element, the
LPF, extracts the average voltage from the phase detector and applies it to the VCO. This applied voltage
alters the resonant frequency of the VCO, thus adjusting its output frequency.
Consider Figure 4-19 with the feedback path bypassing the divider and delay elements. If the LPF
steadily applies a voltage to the VCO such that the output frequency is identical to the input frequency,
this steady-state condition is known as lock. Note that the input and output phases are also identical. The
PLL core sets a LOCK output signal HIGH to indicate this condition.
Should the input frequency increase slightly, the PD detects the frequency/phase difference between its
reference and feedback input signals. Since the PD output is proportional to the phase difference, the
change causes the output from the LPF to increase. This voltage change increases the resonant
frequency of the VCO and increases the feedback frequency as a result. The PLL dynamically adjusts in
this manner until the PD senses two phase-identical signals and steady-state lock is achieved. The
opposite (decreasing PD output signal) occurs when the input frequency decreases.
Now suppose the feedback divider is inserted in the feedback path. As the division factor M (shown in
Figure 4-20 on page 85) is increased, the average phase difference increases. The average phase

Table 4-6 • –3 dB Frequency of the PLL
Minimum

(Ta = +125°C, VCCA = 1.4 V)
Typical

(Ta = +25°C, VCCA = 1.5 V)
Maximum

(Ta = –55°C, VCCA = 1.6 V)
–3 dB
Frequency

15 kHz 25 kHz 45 kHz

Figure 4-19 • Simplified PLL Core with Feedback Divider and Delay

Frequency
Reference
Input FIN

Phase
Detector

Low-Pass
Filter

Voltage
Controlled
Oscillator

Divide by M
Counter Delay

Frequency
Output
M × FIN
84 Revision 5

FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Applications
The SmartGen core generator is used to configure FlashROM content. You can configure each page
independently. SmartGen enables you to create and modify regions within a page; these regions can be
1 to 16 bytes long (Figure 5-4).

The FlashROM content can be changed independently of the FPGA core content. It can be easily
accessed and programmed via JTAG, depending on the security settings of the device. The SmartGen
core generator enables each region to be independently updated (described in the "Programming and
Accessing FlashROM" section on page 122). This enables you to change the FlashROM content on a
per-part basis while keeping some regions "constant" for all parts. These features allow the FlashROM to
be used in diverse system applications. Consider the following possible uses of FlashROM:

• Internet protocol (IP) addressing (wireless or fixed)
• System calibration settings
• Restoring configuration after unpredictable system power-down
• Device serialization and/or inventory control
• Subscription-based business models (e.g., set-top boxes)
• Secure key storage
• Asset management tracking
• Date stamping
• Version management

Figure 5-4 • FlashROM Configuration

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7
6
5
4
3
2
1
0

Byte Number in Page

Pa
ge

 N
um

be
r

120 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
DEVICE_INFO displays the FlashROM content, serial number, Design Name, and checksum, as shown
below:
EXPORT IDCODE[32] = 123261CF
EXPORT SILSIG[32] = 00000000
User information :
CHECKSUM: 61A0
Design Name: TOP
Programming Method: STAPL
Algorithm Version: 1
Programmer: UNKNOWN
===
FlashROM Information :
EXPORT Region_7_0[128] = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
===
Security Setting :
Encrypted FlashROM Programming Enabled.
Encrypted FPGA Array Programming Enabled.
===

The Libero SoC file manager recognizes the UFC and MEM files and displays them in the appropriate
view. Libero SoC also recognizes the multiple programming files if you choose the option to generate
multiple files for multiple FlashROM contents in Designer. These features enable a user-friendly flow for
the FlashROM generation and programming in Libero SoC.

Custom Serialization Using FlashROM
You can use FlashROM for device serialization or inventory control by using the Auto Inc region or Read
From File region. FlashPoint will automatically generate the serial number sequence for the Auto Inc
region with the Start Value, Max Value, and Step Value provided. If you have a unique serial number
generation scheme that you prefer, the Read From File region allows you to import the file with your
serial number scheme programmed into the region. See the FlashPro User's Guide for custom
serialization file format information.
The following steps describe how to perform device serialization or inventory control using FlashROM:

1. Generate FlashROM using SmartGen. From the Properties section in the FlashROM Settings
dialog box, select the Auto Inc or Read From File region. For the Auto Inc region, specify the
desired step value. You will not be able to modify this value in the FlashPoint software.

2. Go through the regular design flow and finish place-and-route.
3. Select Programming File in Designer and open Generate Programming File (Figure 5-12 on

page 128).
4. Click Program FlashROM, browse to the UFC file, and click Next. The FlashROM Settings

window appears, as shown in Figure 5-13 on page 128.
5. Select the FlashROM page you want to program and the data value for the configured regions.

The STAPL file generated will contain only the data that targets the selected FlashROM page.
6. Modify properties for the serialization.

– For the Auto Inc region, specify the Start and Max values.
– For the Read From File region, select the file name of the custom serialization file.

7. Select the FlashROM programming file type you want to generate from the two options below:
– Single programming file for all devices: generates one programming file with all FlashROM

values.
– One programming file per device: generates a separate programming file for each FlashROM

value.
8. Enter the number of devices you want to program and generate the required programming file.
9. Open the programming software and load the programming file. The programming software,

FlashPro3 and Silicon Sculptor II, supports the device serialization feature. If, for some reason,
the device fails to program a part during serialization, the software allows you to reuse or skip the
serial data. Refer to the FlashPro User’s Guide for details.
Revision 5 129

http://www.microsemi.com/soc/documents/flashpro_ug.pdf
http://www.microsemi.com/soc/documents/flashpro_ug.pdf

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
v1.1
(continued)

Table 6-1 • Flash-Based FPGAs and associated text were updated to include the
IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

134

The text introducing Table 6-8 • Memory Availability per IGLOO and ProASIC3
Device was updated to replace "A3P030 and AGL030" with "15 k and 30 k gate
devices." Table 6-8 • Memory Availability per IGLOO and ProASIC3 Device was
updated to remove AGL400 and AGLE1500 and include IGLOO PLUS and
ProASIC3L devices.

146

Date Changes Page
158 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
I/O Bank Architecture and CCC Naming Conventions
The nano products feature varying bank architectures which have been optimized to balance silicon area
with I/O and clocking flexibility. The A standard naming scheme is used to illustrate the I/O Bank
architecture and the CCCs associated with each architecture.

Table 7-16 • A Standard Naming Scheme

Name Description

Bank x Refers to the specific bank number within which an I/O resides

CCC Clock Condition Circuit with simple clock delay operations as well as clock spine
access

CCC-GL Clock Condition Circuit with Global Locations for chip reach clocking. These CCCs
support programmable delays but do not have an integrated PLL.

CCC-PLL Clock Condition Circuit with integrated PLL and programmable delays

Chip Reach Access to chip global lines

Quadrant Reach Access to quadrant global lines

Figure 7-9 • I/O Bank Architecture of AGLN010 and A3PN010 Devices

Legend

Chip Reach CCC-GL = CCC with no PLL
 (does not support programmable delays)

AGLN010
A3PN010

Bank 0

CCC-
GL

Bank 1

Bank 1

CCC-
GLBank 1
Revision 5 179

I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero SoC integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero SoC. Refer to the Libero SoC User’s Guide or Libero online help for details on how to set up the
Libero tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 8-6 on page 193).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist.
192 Revision 5

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/libero_ug.pdf

I/O Software Control in Low Power Flash Devices
Assigning VREF Pins for a Bank
The user can use default pins for VREF. In this case, select the Use default pins for VREFs check box
(Figure 8-13). This option guarantees full VREF coverage of the bank. The equivalent PDC command is
as follows:
set_vref_default [bank name]

To be able to choose VREF pins, adequate VREF pins must be created to allow legal placement of the
compatible voltage-referenced I/Os.
To assign VREF pins manually, the PDC command is as follows:
set_vref –bank [bank name] [package pin numbers]

For ChipPlanner/PinEditor to show the range of a VREF pin, perform the following steps:
1. Assign VCCI to a bank using MVN > Edit > I/O Bank Settings.
2. Open ChipPlanner. Zoom in on an I/O package pin in that bank.
3. Highlight the pin and then right-click. Choose Use Pin for VREF.

Figure 8-13 • Selecting VREF Voltage for the I/O Bank

VREF for GTL+ 3.3 V
200 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Verilog
module Inbuf_ddr(PAD,CLR,CLK,QR,QF);

input PAD, CLR, CLK;
output QR, QF;

wire Y;

DDR_REG DDR_REG_0_inst(.D(Y), .CLK(CLK), .CLR(CLR), .QR(QR), .QF(QF));
INBUF INBUF_0_inst(.PAD(PAD), .Y(Y));

endmodule

module Outbuf_ddr(DataR,DataF,CLR,CLK,PAD);

input DataR, DataF, CLR, CLK;
output PAD;

wire Q, VCC;

VCC VCC_1_net(.Y(VCC));
DDR_OUT DDR_OUT_0_inst(.DR(DataR), .DF(DataF), .CLK(CLK), .CLR(CLR), .Q(Q));
OUTBUF OUTBUF_0_inst(.D(Q), .PAD(PAD));

endmodule

Figure 9-11 • DDR Input/Output Cells as Seen by ChipPlanner for IGLOO/e Devices
Revision 5 217

Security in Low Power Flash Devices
Security Features
IGLOO and ProASIC3 devices have two entities inside: FlashROM and the FPGA core fabric. Fusion
devices contain three entities: FlashROM, FBs, and the FPGA core fabric. The parts can be programmed
or updated independently with a STAPL programming file. The programming files can be AES-encrypted
or plaintext. This allows maximum flexibility in providing security to the entire device. Refer to the
"Programming Flash Devices" section on page 221 for information on the FlashROM structure.
Unlike SRAM-based FPGA devices, which require a separate boot PROM to store programming data,
low power flash devices are nonvolatile, and the secured configuration data is stored in on-chip flash
cells that are part of the FPGA fabric. Once programmed, this data is an inherent part of the FPGA array
and does not need to be loaded at system power-up. SRAM-based FPGAs load the configuration
bitstream upon power-up; therefore, the configuration is exposed and can be read easily.
The built-in FPGA core, FBs, and FlashROM support programming files encrypted with the 128-bit AES
(FIPS-192) block ciphers. The AES key is stored in dedicated, on-chip flash memory and can be
programmed before the device is shipped to other parties (allowing secure remote field updates).

Security in ARM-Enabled Low Power Flash Devices
There are slight differences between the regular flash devices and the ARM®-enabled flash devices,
which have the M1 and M7 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design is encrypted along with the ARM IP, according to the details below.

Figure 11-3 • Block Representation of the AES Decryption Core in a Fusion AFS600 FPGA

VersaTile

CCC

CCC

I/Os

OSC

CCC/PLL

Bank 0

B
an

k
4 B

ank 2

Bank 1

Bank 3

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

Flash Memory Blocks Flash Memory BlocksADC

Analog
Quad

ISP AES
Decryption

User Nonvolatile
FlashROM Charge Pumps

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad
238 Revision 5

Security in Low Power Flash Devices
Choose the High security level to reprogram devices using both the FlashLock Pass Key and AES key
protection (Figure 11-18 on page 255). Enter the AES key and click Next.
A device that has already been secured with FlashLock and has an AES key loaded must recognize the
AES key to program the device and generate a valid bitstream in authentication. The FlashLock Key is
only required to unlock the device and change the security settings.
This is what makes it possible to program in an untrusted environment. The AES key is protected inside
the device by the FlashLock Key, so you can only program if you have the correct AES key. In fact, the
AES key is not in the programming file either. It is the key used to encrypt the data in the file. The same
key previously programmed with the FlashLock Key matches to decrypt the file.
An AES-encrypted file programmed to a device without FlashLock would not be secure, since without
FlashLock to protect the AES key, someone could simply reprogram the AES key first, then program with
any AES key desired or no AES key at all. This option is therefore not available in the software.

Note: The settings in this figure are used to show the generation of an AES-encrypted programming file for the FPGA
array, FlashROM, and FB contents. One or all locations may be selected for encryption.

Figure 11-17 • Settings to Program a Device Secured with FlashLock and using AES Encryption
254 Revision 5

In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
July 2010
(continued)

The "Chain Integrity Test Error Analyze Chain Failure" section was renamed to the
"Scan Chain Failure" section, and the Analyze Chain command was changed to
Scan Chain. It was noted that occasionally a faulty programmer can cause scan
chain failures.

272

v1.5
(August 2009)

The "CoreMP7 Device Security" section was removed from "Security in ARM-
Enabled Low Power Flash Devices", since M7-enabled devices are no longer
supported.

265

v1.4
(December 2008)

The "ISP Architecture" section was revised to include information about core
voltage for IGLOO V2 and ProASIC3L devices, as well as 50 mV increments
allowable in Designer software.

261

IGLOO nano and ProASIC3 nano devices were added to Table 12-1 • Flash-Based
FPGAs Supporting ISP.

262

A second capacitor was added to Figure 12-6 • Board Layout and Programming
Header Top View.

271

v1.3
(October 2008)

The "ISP Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

262

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 12-1 • Flash-
Based FPGAs Supporting ISP:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

262

v1.1
(March 2008)

The "ISP Architecture" section was updated to included the IGLOO PLUS family in
the discussion of family-specific support. The text, "When 1.2 V is used, the device
can be reprogrammed in-system at 1.5 V only," was revised to state, "Although the
device can operate at 1.2 V core voltage, the device can only be reprogrammed
when all supplies (VCC, VCCI, and VJTAG) are at 1.5 V."

261

The "ISP Support in Flash-Based Devices" section and Table 12-1 • Flash-Based
FPGAs Supporting ISP were updated to include the IGLOO PLUS family. The
"IGLOO Terminology" section and "ProASIC3 Terminology" section are new.

262

The "Security" section was updated to mention that 15 k gate devices do not have a
built-in 128-bit decryption core.

264

Table 12-2 • Power Supplies was revised to remove the Normal Operation column
and add a table note stating, "All supply voltages should be at 1.5 V or higher,
regardless of the setting during normal operation."

263

The "ISP Programming Header Information" section was revised to change
FP3-26PIN-ADAPTER to FP3-10PIN-ADAPTER-KIT. Table 12-3 • Programming
Header Ordering Codes was updated with the same change, as well as adding the
part number FFSD-05-D-06.00-01-N, a 10-pin cable with 50-mil-pitch sockets.

269

The "Board-Level Considerations" section was updated to describe connecting two
capacitors in parallel across VPUMP and GND for proper programming.

271

v1.0
(January 2008)

Information was added to the "Programming Voltage (VPUMP) and VJTAG" section
about the JTAG interface pin.

263

51900055-2/7.06 ACTgen was changed to SmartGen. N/A

In Figure 12-6 • Board Layout and Programming Header Top View, the order of the
text was changed to:
VJTAG from the target board
VCCI from the target board
VCC from the target board

271

Date Changes Page
274 Revision 5

14 – Microprocessor Programming of Microsemi’s
Low Power Flash Devices

Introduction
The Fusion, IGLOO, and ProASIC3 families of flash FPGAs support in-system programming (ISP) with
the use of a microprocessor. Flash-based FPGAs store their configuration information in the actual cells
within the FPGA fabric. SRAM-based devices need an external configuration memory, and hybrid
nonvolatile devices store the configuration in a flash memory inside the same package as the SRAM
FPGA. Since the programming of a true flash FPGA is simpler, requiring only one stage, it makes sense
that programming with a microprocessor in-system should be simpler than with other SRAM FPGAs.
This reduces bill-of-materials costs and printed circuit board (PCB) area, and increases system reliability.
Nonvolatile flash technology also gives the low power flash devices the advantage of a secure, low
power, live-at-power-up, and single-chip solution. Low power flash devices are reprogrammable and offer
time-to-market benefits at an ASIC-level unit cost. These features enable engineers to create high-
density systems using existing ASIC or FPGA design flows and tools.
This document is an introduction to microprocessor programming only. To explain the difference between
the options available, user's guides for DirectC and STAPL provide more detail on implementing each
style.

Figure 14-1 • ISP Using Microprocessor

Microprocessor

Internal RAM

I/O Functions

JTAG Bus

Flash
Device

Internal/External
Memory Running

DirectC

On-Board
Memory
Device
.dat file
Revision 5 283

17 – Power-Up/-Down Behavior of Low Power
Flash Devices

Introduction
Microsemi’s low power flash devices are flash-based FPGAs manufactured on a 0.13 µm process node.
These devices offer a single-chip, reprogrammable solution and support Level 0 live at power-up (LAPU)
due to their nonvolatile architecture.
Microsemi's low power flash FPGA families are optimized for logic area, I/O features, and performance.
IGLOO® devices are optimized for power, making them the industry's lowest power programmable
solution. IGLOO PLUS FPGAs offer enhanced I/O features beyond those of the IGLOO ultra-low power
solution for I/O-intensive low power applications. IGLOO nano devices are the industry's lowest-power
cost-effective solution. ProASIC3®L FPGAs balance low power with high performance. The ProASIC3
family is Microsemi's high-performance flash FPGA solution. ProASIC3 nano devices offer the lowest-
cost solution with enhanced I/O capabilities.
Microsemi’s low power flash devices exhibit very low transient current on each power supply during
power-up. The peak value of the transient current depends on the device size, temperature, voltage
levels, and power-up sequence.
The following devices can have inputs driven in while the device is not powered:

• IGLOO (AGL015 and AGL030)
• IGLOO nano (all devices)
• IGLOO PLUS (AGLP030, AGLP060, AGLP125)
• IGLOOe (AGLE600, AGLE3000)
• ProASIC3L (A3PE3000L)
• ProASIC3 (A3P015, A3P030)
• ProASIC3 nano (all devices)
• ProASIC3E (A3PE600, A3PE1500, A3PE3000)
• Military ProASIC3EL (A3PE600L, A3PE3000L, but not A3P1000)
• RT ProASIC3 (RT3PE600L, RT3PE3000L)

The driven I/Os do not pull up power planes, and the current draw is limited to very small leakage current,
making them suitable for applications that require cold-sparing. These devices are hot-swappable,
meaning they can be inserted in a live power system.1

1. For more details on the levels of hot-swap compatibility in Microsemi’s low power flash devices, refer to the "Hot-Swap
Support" section in the I/O Structures chapter of the FPGA fabric user’s guide for the device you are using.
Revision 5 307

Power-Up/-Down Behavior of Low Power Flash Devices
Power-Up to Functional Time
At power-up, device I/Os exit the tristate mode and become functional once the last voltage supply in the
power-up sequence (VCCI or VCC) reaches its functional activation level. The power-up–to–functional
time is the time it takes for the last supply to power up from zero to its functional level. Note that the
functional level of the power supply during power-up may vary slightly within the specification at different
ramp-rates. Refer to Table 17-2 for the functional level of the voltage supplies at power-up.
Typical I/O behavior during power-up–to–functional time is illustrated in Figure 17-2 on page 311 and
Figure 17-3.

Microsemi’s low power flash devices meet Level 0 LAPU; that is, they can be functional prior to VCC
reaching the regulated voltage required. This important advantage distinguishes low power flash devices
from their SRAM-based counterparts. SRAM-based FPGAs, due to their volatile technology, require
hundreds of milliseconds after power-up to configure the design bitstream before they become
functional. Refer to Figure 17-4 on page 313 and Figure 17-5 on page 314 for more information.

Figure 17-3 • I/O State when VCCI Is Powered before VCC

Table 17-2 • Power-Up Functional Activation Levels for VCC and VCCI

Device
VCC Functional

Activation Level (V)
VCCI Functional

Activation Level (V)

ProASIC3, ProASIC3 nano, IGLOO, IGLOO nano,
IGLOO PLUS, and ProASIC3L devices running at
VCC = 1.5 V*

0.85 V ± 0.25 V 0.9 V ± 0.3 V

IGLOO, IGLOO nano, IGLOO PLUS, and
ProASIC3L devices running at VCC = 1.2 V*

0.85 V ± 0.2 V 0.9 V ± 0.15 V

Note: *V5 devices will require a 1.5 V VCC supply, whereas V2 devices can utilize either a 1.2 V or 1.5 V
VCC.
312 Revision 5

