
Microchip Technology - A3PN020-1QNG68I Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits -

Number of I/O 49

Number of Gates 20000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 68-VFQFN Exposed Pad

Supplier Device Package 68-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn020-1qng68i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn020-1qng68i-4482303
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3 nano FPGA Fabric User’s Guide
Figure 3-6 shows all nine global inputs for the location A connected to the top left quadrant global
network via CCC.

Since each bank can have a different I/O standard, the user should be careful to choose the correct
global I/O for the design. There are 54 global pins available to access 18 global networks. For the single-
ended and voltage-referenced I/O standards, you can use any of these three available I/Os to access the
global network. For differential I/O standards such as LVDS and LVPECL, the I/O macro needs to be
placed on (A0, A1), (B0, B1), (C0, C1), or a similar location. The unassigned global I/Os can be used
as regular I/Os. Note that pin names starting with GF and GC are associated with the chip global
networks, and GA, GB, GD, and GE are used for quadrant global networks. Table 3-2 on page 38 and
Table 3-3 on page 39 show the general chip and quadrant global pin names.

Figure 3-6 • Global Inputs

MUX

GAAO/
IOuxwByVz

IOuxwByVz

IOuxwByVz

IOuxwByVz

IOuxwByVz
GAA1/

GAA2/

MUX

GABO/

GAB1/

GAB2/

MUX

GACO/

GAC1/

GAC2/

CLKA

CLKB

CLKC

Quadrant Global for CLKA

Quadrant Global for CLKB

Quadrant Global for CLKC

CCC

IOuxwByVz

IOuxwByVz

IOuxwByVz

IOuxwByVz
Revision 5 37

Global Resources in Low Power Flash Devices
Using Clock Aggregation
Clock aggregation allows for multi-spine clock domains to be assigned using hardwired connections,
without adding any extra skew. A MUX tree, shown in Figure 3-8, provides the necessary flexibility to
allow long lines, local resources, or I/Os to access domains of one, two, or four global spines. Signal
access to the clock aggregation system is achieved through long-line resources in the central rib in the
center of the die, and also through local resources in the north and south ribs, allowing I/Os to feed
directly into the clock system. As Figure 3-9 indicates, this access system is contiguous.
There is no break in the middle of the chip for the north and south I/O VersaNet access. This is different
from the quadrant clocks located in these ribs, which only reach the middle of the rib.

Figure 3-8 • Spine Selection MUX of Global Tree

Figure 3-9 • Clock Aggregation Tree Architecture

Internal/External
Signal

Internal/External
Signal

Internal/External
Signals

Spine

Global Rib

Global Driver MUX

Tree Node MUX

Tree Node MUX

Internal/External
Signals

Tree Node MUX

Global Spine
Global Rib
Global Driver and MUX

I/O Access
Internal Signal Access

I/O Tiles

Global Signal Access
Tree Node MUX
44 Revision 5

Global Resources in Low Power Flash Devices
The following will happen during demotion of a global signal to regular nets:
• CLKBUF_x becomes INBUF_x; CLKINT is removed from the netlist.
• The essential global macro, such as the output of the Clock Conditioning Circuit, cannot be

demoted.
• No automatic buffering will happen.

Since no automatic buffering happens when a signal is demoted, this net may have a high delay due to
large fanout. This may have a negative effect on the quality of the results. Microsemi recommends that
the automatic global demotion only be used on small-fanout nets. Use clock networks for high-fanout
nets to improve timing and routability.

Spine Assignment
The low power flash device architecture allows the global networks to be segmented and used as clock
spines. These spines, also called local clock networks, enable the use of PDC or MVN to assign a signal
to a spine.
PDC syntax to promote a net to a spine/local clock:
assign_local_clock –net netname –type [quadrant|chip] Tn|Bn|Tn:Bm

If the net is driven by a clock macro, Designer automatically demotes the clock net to a regular net before
it is assigned to a spine. Nets driven by a PLL or CLKDLY macro cannot be assigned to a local clock.
When assigning a signal to a spine or quadrant global network using PDC (pre-compile), the Designer
software will legalize the shared instances. The number of shared instances to be legalized can be
controlled by compile options. If these networks are created in MVN (only quadrant globals can be
created), no legalization is done (as it is post-compile). Designer does not do legalization between non-
clock nets.
As an example, consider two nets, net_clk and net_reset, driving the same flip-flop. The following PDC
constraints are used:
assign_local_clock –net net_clk –type chip T3
assign_local_clock –net net_reset –type chip T1:T2

During Compile, Designer adds a buffer in the reset net and places it in the T1 or T2 region, and places
the flip-flop in the T3 spine region (Figure 3-16).

Figure 3-16 • Adding a Buffer for Shared Instances

D

CLK

CLR
net_clk

net_reset

T1 T2 T3

D

CLK

CLR
net_clk

net_reset

assign_local_clock -net net_clk -type chip T3
assign_local_clock -net net_reset -type chip T1:T2

Before Compile After Compile

Added
buffer
52 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
During Layout, Designer will assign two of the signals to quadrant global locations.

Step 3 (optional)
You can also assign the QCLK1_c and QCLK2_c nets to quadrant regions using the following PDC
commands:
assign_local_clock –net QCLK1_c –type quadrant UL
assign_local_clock –net QCLK2_c –type quadrant LL

Step 4
Import this PDC with the netlist and run Compile again. You will see the following in the Compile report:
The following nets have been assigned to a global resource:
Fanout Type Name

1536 INT_NET Net : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536 SET/RESET_NET Net : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256 CLK_NET Net : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256 CLK_NET Net : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

The following nets have been assigned to a quadrant clock resource using PDC:
Fanout Type Name

256 CLK_NET Net : QCLK1_c

Driver: QCLK1_pad_CLKINT
Region: quadrant_UL

256 CLK_NET Net : QCLK2_c
Driver: QCLK2_pad_CLKINT
Region: quadrant_LL

Step 5
Run Layout.

Global Management in PLL Design
This section describes the legal global network connections to PLLs in the low power flash devices. For
detailed information on using PLLs, refer to "Clock Conditioning Circuits in Low Power Flash Devices and
Mixed Signal FPGAs" section on page 61. Microsemi recommends that you use the dedicated global
pins to directly drive the reference clock input of the associated PLL for reduced propagation delays and
clock distortion. However, low power flash devices offer the flexibility to connect other signals to
reference clock inputs. Each PLL is associated with three global networks (Figure 3-5 on page 36). There
are some limitations, such as when trying to use the global and PLL at the same time:

• If you use a PLL with only primary output, you can still use the remaining two free global
networks.

• If you use three globals associated with a PLL location, you cannot use the PLL on that location.
• If the YB or YC output is used standalone, it will occupy one global, even though this signal does

not go to the global network.
Revision 5 57

ProASIC3 nano FPGA Fabric User’s Guide
CCC Support in Microsemi’s Flash Devices
The flash FPGAs listed in Table 4-1 support the CCC feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 4-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 4-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 4-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
Revision 5 63

http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
PLL Macro Signal Descriptions
The PLL macro supports two inputs and up to six outputs. Table 4-3 gives a description of each signal.

Input Clock
The inputs to the input reference clock (CLKA) of the PLL can come from global input pins, regular I/O
pins, or internally from the core. For Fusion families, the input reference clock can also be from the
embedded RC oscillator or crystal oscillator.

Global Output Clocks
GLA (Primary), GLB (Secondary 1), and GLC (Secondary 2) are the outputs of Global Multiplexer 1,
Global Multiplexer 2, and Global Multiplexer 3, respectively. These signals (GLx) can be used to drive the
high-speed global and quadrant networks of the low power flash devices.
A global multiplexer block consists of the input routing for selecting the input signal for the GLx clock and
the output multiplexer, as well as delay elements associated with that clock.

Core Output Clocks
YB and YC are known as Core Outputs and can be used to drive internal logic without using global
network resources. This is especially helpful when global network resources must be conserved and
utilized for other timing-critical paths.

Table 4-3 • Input and Output Signals of the PLL Block
Signal Name I/O Description
CLKA Reference Clock Input Reference clock input for PLL core; input clock for primary output

clock, GLA
OADIVRST Reset Signal for the

Output Divider A
Input For Fusion only. OADIVRST can be used when you bypass the PLL

core (i.e., OAMUX = 001). The purpose of the OADIVRST signals is
to reset the output of the final clock divider to synchronize it with the
input to that divider when the PLL is bypassed. The signal is active
on a low to high transition. The signal must be low for at least one
divider input. If PLL core is used, this signal is "don't care" and the
internal circuitry will generate the reset signal for the
synchronization purpose.

OADIVHALF Output A Division by
Half

Input For Fusion only. Active high. Division by half feature. This feature
can only be used when users bypass the PLL core (i.e., OAMUX =
001) and the RC Oscillator (RCOSC) drives the CLKA input. This
can be used to divide the 100 MHz RC oscillator by a factor of 1.5,
2.5, 3.5, 4.5 ... 14.5). Refer to Table 4-18 on page 95 for more
information.

EXTFB External Feedback Input Allows an external signal to be compared to a reference clock in the
PLL core's phase detector.

POWERDOWN Power Down Input Active low input that selects power-down mode and disables the
PLL. With the POWERDOWN signal asserted, the PLL core sends
0 V signals on all of the outputs.

GLA Primary Output Output Primary output clock to respective global/quadrant clock networks
GLB Secondary 1 Output Output Secondary 1 output clock to respective global/quadrant clock

networks
YB Core 1 Output Output Core 1 output clock to local routing network
GLC Secondary 2 Output Output Secondary 2 output clock to respective global/quadrant clock

networks
YC Core 2 Output Output Core 2 output clock to local routing network
LOCK PLL Lock Indicator Output Active high signal indicating that steady-state lock has been

achieved between CLKA and the PLL feedback signal
68 Revision 5

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
PLL Core Specifications
PLL core specifications can be found in the DC and Switching Characteristics chapter of the appropriate
family datasheet.

Loop Bandwidth
Common design practice for systems with a low-noise input clock is to have PLLs with small loop
bandwidths to reduce the effects of noise sources at the output. Table 4-6 shows the PLL loop
bandwidth, providing a measure of the PLL's ability to track the input clock and jitter.

PLL Core Operating Principles
This section briefly describes the basic principles of PLL operation. The PLL core is composed of a
phase detector (PD), a low-pass filter (LPF), and a four-phase voltage-controlled oscillator (VCO).
Figure 4-19 illustrates a basic single-phase PLL core with a divider and delay in the feedback path.

The PLL is an electronic servo loop that phase-aligns the PD feedback signal with the reference input. To
achieve this, the PLL dynamically adjusts the VCO output signal according to the average phase
difference between the input and feedback signals.
The first element is the PD, which produces a voltage proportional to the phase difference between its
inputs. A simple example of a digital phase detector is an Exclusive-OR gate. The second element, the
LPF, extracts the average voltage from the phase detector and applies it to the VCO. This applied voltage
alters the resonant frequency of the VCO, thus adjusting its output frequency.
Consider Figure 4-19 with the feedback path bypassing the divider and delay elements. If the LPF
steadily applies a voltage to the VCO such that the output frequency is identical to the input frequency,
this steady-state condition is known as lock. Note that the input and output phases are also identical. The
PLL core sets a LOCK output signal HIGH to indicate this condition.
Should the input frequency increase slightly, the PD detects the frequency/phase difference between its
reference and feedback input signals. Since the PD output is proportional to the phase difference, the
change causes the output from the LPF to increase. This voltage change increases the resonant
frequency of the VCO and increases the feedback frequency as a result. The PLL dynamically adjusts in
this manner until the PD senses two phase-identical signals and steady-state lock is achieved. The
opposite (decreasing PD output signal) occurs when the input frequency decreases.
Now suppose the feedback divider is inserted in the feedback path. As the division factor M (shown in
Figure 4-20 on page 85) is increased, the average phase difference increases. The average phase

Table 4-6 • –3 dB Frequency of the PLL
Minimum

(Ta = +125°C, VCCA = 1.4 V)
Typical

(Ta = +25°C, VCCA = 1.5 V)
Maximum

(Ta = –55°C, VCCA = 1.6 V)
–3 dB
Frequency

15 kHz 25 kHz 45 kHz

Figure 4-19 • Simplified PLL Core with Feedback Divider and Delay

Frequency
Reference
Input FIN

Phase
Detector

Low-Pass
Filter

Voltage
Controlled
Oscillator

Divide by M
Counter Delay

Frequency
Output
M × FIN
84 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Figure 4-22 • CCC Block Control Bits – Graphical Representation of Assignments

/w D

C<37:35>

C<28:24>

Internal

C<60:56>

GLCD

C<70:66>

YC

CLKC

CLKB

Internal
C<55:51>

C<23:19>
C<34:32>

GLBD

D YB/v
C<44:40>

C<45>
C<39:38>

D

D

(0)

(1)

(1)

(2)

C<13:7>

C<6:0>

/m

/n
CLKA

PLL
Core

(4)

(2)

(7)
(6)
(5)

C<18:14>

C<31:29>

C<50:46>

Internal

GLAD

/u
M
U
X
A

0°

90°

270°
180°

M
U
X
B

M
U
X
C

Revision 5 89

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Dynamic PLL Configuration
To generate a dynamically reconfigurable CCC, the user should select Dynamic CCC in the
configuration section of the SmartGen GUI (Figure 4-26). This will generate both the CCC core and the
configuration shift register / control bit MUX.

Even if dynamic configuration is selected in SmartGen, the user must still specify the static configuration
data for the CCC (Figure 4-27). The specified static configuration is used whenever the MODE signal is
set to LOW and the CCC is required to function in the static mode. The static configuration data can be
used as the default behavior of the CCC where required.

Figure 4-26 • SmartGen GUI

Figure 4-27 • Dynamic CCC Configuration in SmartGen
100 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Simulation of FlashROM Design
The MEM file has 128 rows of 8 bits, each representing the contents of the FlashROM used for
simulation. For example, the first row represents page 0, byte 0; the next row is page 0, byte 1; and so
the pattern continues. Note that the three MSBs of the address define the page number, and the four
LSBs define the byte number. So, if you send address 0000100 to FlashROM, this corresponds to the
page 0 and byte 4 location, which is the fifth row in the MEM file. SmartGen defaults to 0s for any
unspecified location of the FlashROM. Besides using the MEM file generated by SmartGen, you can
create a binary file with 128 rows of 8 bits each and use this as a MEM file. Microsemi recommends that
you use different file names if you plan to generate multiple MEM files. During simulation, Libero SoC
passes the MEM file used as the generic file in the netlist, along with the design files and testbench. If
you want to use different MEM files during simulation, you need to modify the generic file reference in the
netlist.
…………………
UFROM0: UFROM
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_a.mem")
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_b.mem")
…………………….

The VITAL and Verilog simulation models accept the generics passed by the netlist, read the MEM file,
and perform simulation with the data in the file.

Programming File Generation for FlashROM Design
FlashPoint is the programming software used to generate the programming files for flash devices.
Depending on the applications, you can use the FlashPoint software to generate a STAPL file with
different FlashROM contents. In each case, optional AES decryption is available. To generate a STAPL
file that contains the same FPGA core content and different FlashROM contents, the FlashPoint software
needs an Array Map file for the core and UFC file(s) for the FlashROM. This final STAPL file represents
the combination of the logic of the FPGA core and FlashROM content.
FlashPoint generates the STAPL files you can use to program the desired FlashROM page and/or FPGA
core of the FPGA device contents. FlashPoint supports the encryption of the FlashROM content and/or
FPGA Array configuration data. In the case of using the FlashROM for device serialization, a sequence
of unique FlashROM contents will be generated. When generating a programming file with multiple
unique FlashROM contents, you can specify in FlashPoint whether to include all FlashROM content in a
single STAPL file or generate a different STAPL file for each FlashROM (Figure 5-11). The programming
software (FlashPro) handles the single STAPL file that contains the FlashROM content from multiple
devices. It enables you to program the FlashROM content into a series of devices sequentially
(Figure 5-11). See the FlashPro User’s Guide for information on serial programming.

Figure 5-11 • Single or Multiple Programming File Generation

FlashPoint

FPGA Array
Map File

FPGA Array
Map File

Security SettingsSecurity Settings

UFC File for
Multiple FlashROM

Contents

UFC File for
Single FlashROM

Contents

FlashPoint

Single
STAPL

File

Single
STAPL

File

Single
STAPL

File
Revision 5 127

http://www.microsemi.com/soc/documents/flashpro_ug.pdf

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
BLKA and BLKB
These signals are active-low and will enable the respective ports when asserted. When a BLKx signal is
deasserted, that port’s outputs hold the previous value.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, BLKB should

be tied to ground.
WENA and WENB
These signals switch the RAM between read and write modes for the respective ports. A LOW on these
signals indicates a write operation, and a HIGH indicates a read.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WENB should

be tied to ground.
CLKA and CLKB
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.
Note: For Automotive ProASIC3 devices, dual-port mode is supported if the clocks to the two

SRAM ports are the same and 180° out of phase (i.e., the port A clock is the inverse of the
port B clock). For use of this macro as a single-port SRAM, the inputs and clock of one port
should be tied off (grounded) to prevent errors during design compile.

PIPEA and PIPEB
These signals are used to specify pipelined read on the output. A LOW on PIPEA or PIPEB indicates a
nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A HIGH
indicates a pipelined read, and data appears on the corresponding output in the next clock cycle.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, PIPEB should

be tied to ground. For use in dual-port mode, the same clock with an inversion between the
two clock pins of the macro should be used in the design to prevent errors during compile.

WMODEA and WMODEB
These signals are used to configure the behavior of the output when the RAM is in write mode. A LOW
on these signals makes the output retain data from the previous read. A HIGH indicates pass-through
behavior, wherein the data being written will appear immediately on the output. This signal is overridden
when the RAM is being read.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WMODEB

should be tied to ground.

RESET
This active-low signal resets the control logic, forces the output hold state registers to zero, disables
reads and writes from the SRAM block, and clears the data hold registers when asserted. It does not
reset the contents of the memory array.
While the RESET signal is active, read and write operations are disabled. As with any asynchronous
reset signal, care must be taken not to assert it too close to the edges of active read and write clocks.

ADDRA and ADDRB
These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is
specified, the unused high-order bits must be grounded (Table 6-3 on page 139).

Table 6-2 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA[1:0] WIDTHB[1:0] D×W

00 00 4k×1

01 01 2k×2

10 10 1k×4

11 11 512×9

Note: The aspect ratio settings are constant and cannot be changed on the fly.
138 Revision 5

I/O Software Control in Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 The notes in Table 8-2 • Designer State (resulting from I/O attribute modification)
were revised to clarify which device families support programmable input delay
(SAR 39666).

187

June 2011 Figure 8-2 • SmartGen Catalog was updated (SAR 24310). Figure 8-3 • Expanded
I/O Section and the step associated with it were deleted to reflect changes in the
software.

188

The following rule was added to the "VREF Rules for the Implementation of
Voltage-Referenced I/O Standards" section:
Only minibanks that contain input or bidirectional I/Os require a VREF. A VREF is
not needed for minibanks composed of output or tristated I/Os (SAR 24310).

199

July 2010 Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 8-1 • Flash-Based
FPGAs.

186

The notes for Table 8-2 • Designer State (resulting from I/O attribute modification)
were revised to indicate that skew control and input delay do not apply to nano
devices.

187

v1.3
(October 2008)

The "Flash FPGAs I/O Support" section was revised to include new families and
make the information more concise.

186

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 8-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

186

v1.1
(March 2008)

This document was previously part of the I/O Structures in IGLOO and ProASIC3
Devices document. The content was separated and made into a new document.

N/A

Table 8-2 • Designer State (resulting from I/O attribute modification) was updated
to include note 2 for IGLOO PLUS.

187
204 Revision 5

Programming Flash Devices
Types of Programming for Flash Devices
The number of devices to be programmed will influence the optimal programming methodology. Those
available are listed below:

• In-system programming
– Using a programmer
– Using a microprocessor or microcontroller

• Device programmers
– Single-site programmers
– Multi-site programmers, batch programmers, or gang programmers
– Automated production (robotic) programmers

• Volume programming services
– Microsemi in-house programming
– Programming centers

In-System Programming
Device Type Supported: Flash
ISP refers to programming the FPGA after it has been mounted on the system printed circuit board. The
FPGA may be preprogrammed and later reprogrammed using ISP.
The advantage of using ISP is the ability to update the FPGA design many times without any changes to
the board. This eliminates the requirement of using a socket for the FPGA, saving cost and improving
reliability. It also reduces programming hardware expenses, as the ISP methodology is die-/package-
independent.
There are two methods of in-system programming: external and internal.

• Programmer ISP—Refer to the "In-System Programming (ISP) of Microsemi’s Low Power Flash
Devices Using FlashPro4/3/3X" section on page 261 for more information.
Using an external programmer and a cable, the device can be programmed through a header on
the system board. In Microsemi SoC Products Group documentation, this is referred to as
external ISP. Microsemi provides FlashPro4, FlashPro3, FlashPro Lite, or Silicon Sculptor 3 to
perform external ISP. Note that Silicon Sculptor II and Silicon Sculptor 3 can only provide ISP for
ProASIC and ProASICPLUS® families, not for SmartFusion, Fusion, IGLOO, or ProASIC3. Silicon
Sculptor II and Silicon Sculptor 3 can be used for programming ProASIC and ProASICPLUS
devices by using an adapter module (part number SMPA-ISP-ACTEL-3).
– Advantages: Allows local control of programming and data files for maximum security. The

programming algorithms and hardware are available from Microsemi. The only hardware
required on the board is a programming header.

– Limitations: A negligible board space requirement for the programming header and JTAG
signal routing

• Microprocessor ISP—Refer to the "Microprocessor Programming of Microsemi’s Low Power
Flash Devices" chapter of an appropriate FPGA fabric user’s guide for more information.
Using a microprocessor and an external or internal memory, you can store the program in
memory and use the microprocessor to perform the programming. In Microsemi documentation,
this is referred to as internal ISP. Both the code for the programming algorithm and the FPGA
programming file must be stored in memory on the board. Programming voltages must also be
generated on the board.
– Advantages: The programming code is stored in the system memory. An external programmer

is not required during programming.
– Limitations: This is the approach that requires the most design work, since some way of

getting and/or storing the data is needed; a system interface to the device must be designed;
and the low-level API to the programming firmware must be written and linked into the code
provided by Microsemi. While there are benefits to this methodology, serious thought and
planning should go into the decision.
224 Revision 5

11 – Security in Low Power Flash Devices

Security in Programmable Logic
The need for security on FPGA programmable logic devices (PLDs) has never been greater than today.
If the contents of the FPGA can be read by an external source, the intellectual property (IP) of the system
is vulnerable to unauthorized copying. Fusion, IGLOO, and ProASIC3 devices contain state-of-the-art
circuitry to make the flash-based devices secure during and after programming. Low power flash devices
have a built-in 128-bit Advanced Encryption Standard (AES) decryption core (except for 30 k gate
devices and smaller). The decryption core facilitates secure in-system programming (ISP) of the FPGA
core array fabric, the FlashROM, and the Flash Memory Blocks (FBs) in Fusion devices. The FlashROM,
Flash Blocks, and FPGA core fabric can be programmed independently of each other, allowing the
FlashROM or Flash Blocks to be updated without the need for change to the FPGA core fabric.
Microsemi has incorporated the AES decryption core into the low power flash devices and has also
included the Microsemi flash-based lock technology, FlashLock.® Together, they provide leading-edge
security in a programmable logic device. Configuration data loaded into a device can be decrypted prior
to being written to the FPGA core using the AES 128-bit block cipher standard. The AES encryption key
is stored in on-chip, nonvolatile flash memory.
This document outlines the security features offered in low power flash devices, some applications and
uses, as well as the different software settings for each application.

Figure 11-1 • Overview on Security
Revision 5 235

Security in Low Power Flash Devices
Security Features
IGLOO and ProASIC3 devices have two entities inside: FlashROM and the FPGA core fabric. Fusion
devices contain three entities: FlashROM, FBs, and the FPGA core fabric. The parts can be programmed
or updated independently with a STAPL programming file. The programming files can be AES-encrypted
or plaintext. This allows maximum flexibility in providing security to the entire device. Refer to the
"Programming Flash Devices" section on page 221 for information on the FlashROM structure.
Unlike SRAM-based FPGA devices, which require a separate boot PROM to store programming data,
low power flash devices are nonvolatile, and the secured configuration data is stored in on-chip flash
cells that are part of the FPGA fabric. Once programmed, this data is an inherent part of the FPGA array
and does not need to be loaded at system power-up. SRAM-based FPGAs load the configuration
bitstream upon power-up; therefore, the configuration is exposed and can be read easily.
The built-in FPGA core, FBs, and FlashROM support programming files encrypted with the 128-bit AES
(FIPS-192) block ciphers. The AES key is stored in dedicated, on-chip flash memory and can be
programmed before the device is shipped to other parties (allowing secure remote field updates).

Security in ARM-Enabled Low Power Flash Devices
There are slight differences between the regular flash devices and the ARM®-enabled flash devices,
which have the M1 and M7 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design is encrypted along with the ARM IP, according to the details below.

Figure 11-3 • Block Representation of the AES Decryption Core in a Fusion AFS600 FPGA

VersaTile

CCC

CCC

I/Os

OSC

CCC/PLL

Bank 0

B
an

k
4 B

ank 2

Bank 1

Bank 3

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

Flash Memory Blocks Flash Memory BlocksADC

Analog
Quad

ISP AES
Decryption

User Nonvolatile
FlashROM Charge Pumps

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad
238 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
FlashLock
Additional Options for IGLOO and ProASIC3 Devices
The user also has the option of prohibiting Write operations to the FPGA array but allowing Verify
operations on the FPGA array and/or Read operations on the FlashROM without the use of the
FlashLock Pass Key. This option provides the user the freedom of verifying the FPGA array and/or
reading the FlashROM contents after the device is programmed, without having to provide the FlashLock
Pass Key. The user can incorporate AES encryption on the programming files to better enhance the level
of security used.

Permanent Security Setting Options
In applications where a permanent lock is not desired, yet the security settings should not be modifiable,
IGLOO and ProASIC3 devices can accommodate this requirement.
This application is particularly useful in cases where a device is located at a remote location and must be
reprogrammed with a design or data update. Refer to the "Application 3: Nontrusted Environment—Field
Updates/Upgrades" section on page 244 for further discussion and examples of how this can be
achieved.
The user must be careful when considering the Permanent FlashLock or Permanent Security Settings
option. Once the design is programmed with the permanent settings, it is not possible to reconfigure the
security settings already employed on the device. Therefore, exercise careful consideration before
programming permanent settings.

Permanent FlashLock
The purpose of the permanent lock feature is to provide the benefits of the highest level of security to
IGLOO and ProASIC3 devices. If selected, the permanent FlashLock feature will create a permanent
barrier, preventing any access to the contents of the device. This is achieved by permanently disabling
Write and Verify access to the array, and Write and Read access to the FlashROM. After permanently
locking the device, it has been effectively rendered one-time-programmable. This feature is useful if the
intended applications do not require design or system updates to the device.

Figure 11-5 • Example Application Scenario Using AES in Fusion Devices

Designer
Software

Programming
File Generation

with AES
Encryption

Fusion

Decrypted
 Bitstream

MAC
Validation

AES
Decryption Core

Transmit Medium /
Public Network

Encrypted Bitstream

FlashROMAES
Key

FPGA
Core FBs
Revision 5 241

Security in Low Power Flash Devices
Choose the High security level to reprogram devices using both the FlashLock Pass Key and AES key
protection (Figure 11-18 on page 255). Enter the AES key and click Next.
A device that has already been secured with FlashLock and has an AES key loaded must recognize the
AES key to program the device and generate a valid bitstream in authentication. The FlashLock Key is
only required to unlock the device and change the security settings.
This is what makes it possible to program in an untrusted environment. The AES key is protected inside
the device by the FlashLock Key, so you can only program if you have the correct AES key. In fact, the
AES key is not in the programming file either. It is the key used to encrypt the data in the file. The same
key previously programmed with the FlashLock Key matches to decrypt the file.
An AES-encrypted file programmed to a device without FlashLock would not be secure, since without
FlashLock to protect the AES key, someone could simply reprogram the AES key first, then program with
any AES key desired or no AES key at all. This option is therefore not available in the software.

Note: The settings in this figure are used to show the generation of an AES-encrypted programming file for the FPGA
array, FlashROM, and FB contents. One or all locations may be selected for encryption.

Figure 11-17 • Settings to Program a Device Secured with FlashLock and using AES Encryption
254 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Programming with this file is intended for an unsecured environment. The AES key encrypts the
programming file with the same AES key already used in the device and utilizes it to program the device.

Reprogramming Devices
Previously programmed devices can be reprogrammed using the steps in the "Generation of the
Programming File in a Trusted Environment—Application 1" section on page 247 and "Generation of
Security Header Programming File Only—Application 2" section on page 250. In the case where a
FlashLock Pass Key has been programmed previously, the user must generate the new programming file
with a FlashLock Pass Key that matches the one previously programmed into the device. The software
will check the FlashLock Pass Key in the programming file against the FlashLock Pass Key in the device.
The keys must match before the device can be unlocked to perform further programming with the new
programming file.
Figure 11-10 on page 248 and Figure 11-11 on page 248 show the option Programming previously
secured device(s), which the user should select before proceeding. Upon going to the next step, the
user will be notified that the same FlashLock Pass Key needs to be entered, as shown in Figure 11-19 on
page 256.

Figure 11-18 • Security Level Set High to Reprogram Device with AES Key
Revision 5 255

Boundary Scan in Low Power Flash Devices
Microsemi’s Flash Devices Support the JTAG Feature
The flash-based FPGAs listed in Table 15-1 support the JTAG feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 15-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 15-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 15-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC®3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
292 Revision 5

http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf

UJTAG Applications in Microsemi’s Low Power Flash Devices
Typical UJTAG Applications
Bidirectional access to the JTAG port from VersaTiles—without putting the device into test mode—
creates flexibility to implement many different applications. This section describes a few of these. All are
based on importing/exporting data through the UJTAG tiles.

Clock Conditioning Circuitry—Dynamic Reconfiguration
In low power flash devices, CCCs, which include PLLs, can be configured dynamically through either an
81-bit embedded shift register or static flash programming switches. These 81 bits control all the
characteristics of the CCC: routing MUX architectures, delay values, divider values, etc. Table 16-3 lists
the 81 configuration bits in the CCC.

The embedded 81-bit shift register (for the dynamic configuration of the CCC) is accessible to the
VersaTiles, which, in turn, have access to the UJTAG tiles. Therefore, the CCC configuration shift
register can receive and load the new configuration data stream from JTAG.
Dynamic reconfiguration eliminates the need to reprogram the device when reconfiguration of the CCC
functional blocks is needed. The CCC configuration can be modified while the device continues to
operate. Employing the UJTAG core requires the user to design a module to provide the configuration
data and control the CCC configuration shift register. In essence, this is a user-designed TAP Controller
requiring chip resources.
Similar reconfiguration capability exists in the ProASICPLUS® family. The only difference is the number of
shift register bits controlling the CCC (27 in ProASICPLUS and 81 in IGLOO, ProASIC3, and Fusion).

Table 16-3 • Configuration Bits of Fusion, IGLOO, and ProASIC3 CCC Blocks
Bit Number(s) Control Function
80 RESET ENABLE

79 DYNCSEL

78 DYNBSEL

77 DYNASEL

<76:74> VCOSEL [2:0]

73 STATCSEL

72 STATBSEL

71 STATASEL

<70:66> DLYC [4:0]

<65:61> DLYB {4:0]

<60:56> DLYGLC [4:0]

<55:51> DLYGLB [4:0]

<50:46> DLYGLA [4:0]

45 XDLYSEL

<44:40> FBDLY [4:0]

<39:38> FBSEL

<37:35> OCMUX [2:0]

<34:32> OBMUX [2:0]

<31:29> OAMUX [2:0]

<28:24> OCDIV [4:0]

<23:19> OBDIV [4:0]

<18:14> OADIV [4:0]

<13:7> FBDIV [6:0]

<6:0> FINDIV [6:0]
302 Revision 5

