
Microchip Technology - A3PN020-QNG68 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits -

Number of I/O 49

Number of Gates 20000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -20°C ~ 85°C (TJ)

Package / Case 68-VFQFN Exposed Pad

Supplier Device Package 68-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn020-qng68

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn020-qng68-4491309
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf
http://www.microsemi.com/soc/products/pa3/default.aspx


ProASIC3 nano FPGA Fabric User�s Guide
Clock Aggregation Architecture
This clock aggregation feature allows a balanced clock tree, which improves clock skew. The physical
regions for clock aggregation are defined from left to right and shift by one spine. For chip global
networks, there are three types of clock aggregation available, as shown in Figure 3-10:

� Long lines that can drive up to four adjacent spines (A)
� Long lines that can drive up to two adjacent spines (B)
� Long lines that can drive one spine (C)

There are three types of clock aggregation available for the quadrant spines, as shown in Figure 3-10:
� I/Os or local resources that can drive up to four adjacent spines
� I/Os or local resources that can drive up to two adjacent spines
� I/Os or local resources that can drive one spine

As an example, A3PE600 and AFS600 devices have twelve spine locations: T1, T2, T3, T4, T5, T6, B1,
B2, B3, B4, B5, and B6. Table 3-7 shows the clock aggregation you can have in A3PE600 and
AFS600.

The clock aggregation for the quadrant spines can cross over from the left to right quadrant, but not from
top to bottom. The quadrant spine assignment T1:T4 is legal, but the quadrant spine assignment T1:B1
is not legal. Note that this clock aggregation is hardwired. You can always assign signals to spine T1 and
B2 by instantiating a buffer, but this may add skew in the signal.

Figure 3-10 � Four Spines Aggregation

Tn Tn + 1 Tn + 2 Tn + 4

A

B

C

Tn + 3

Table 3-7 � Spine Aggregation in A3PE600 or AFS600

Clock Aggregation Spine

1 spine T1, T2, T3, T4, T5, T6, B1, B2, B3, B4, B5, B6

2 spines T1:T2, T2:T3, T3:T4, T4:T5, T5:T6, B1:B2, B2:B3, B3:B4, B4:B5, B5:B6

4 spines B1:B4, B2:B5, B3:B6, T1:T4, T2:T5, T3:T6 
Revision 5 45



Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Dividers n and m (the input divider and feedback divider, respectively) provide integer frequency division 
factors from 1 to 128. The output dividers u, v, and w provide integer division factors from 1 to 32. 
Frequency scaling of the reference clock CLKA is performed according to the following formulas:

fGLA = fCLKA × m / (n × u) � GLA Primary PLL Output Clock

EQ 4-1

fGLB = fYB = fCLKA × m / (n × v) � GLB Secondary 1 PLL Output Clock(s)

EQ 4-2

fGLC = fYC = fCLKA × m / (n × w) � GLC Secondary 2 PLL Output Clock(s)

EQ 4-3
SmartGen provides a user-friendly method of generating the configured PLL netlist, which includes 
automatically setting the division factors to achieve the closest possible match to the requested 
frequencies. Since the five output clocks share the n and m dividers, the achievable output frequencies 
are interdependent and related according to the following formula:

fGLA = fGLB × (v / u) = f GLC × (w / u)

EQ 4-4

Clock Delay Adjustment
There are a total of seven configurable delay elements implemented in the PLL architecture. 
Two of the delays are located in the feedback path, entitled System Delay and Feedback Delay. System 
Delay provides a fixed delay of 2 ns (typical), and Feedback Delay provides selectable delay values from 
0.6 ns to 5.56 ns in 160 ps increments (typical). For PLLs, delays in the feedback path will effectively 
advance the output signal from the PLL core with respect to the reference clock. Thus, the System and 
Feedback delays generate negative delay on the output clock. Additionally, each of these delays can be 
independently bypassed if necessary.
The remaining five delays perform traditional time delay and are located at each of the outputs of the 
PLL. Besides the fixed global driver delay of 0.755 ns for each of the global networks, the global 
multiplexer outputs (GLA, GLB, and GLC) each feature an additional selectable delay value, as given in 
Table 4-7.

The additional YB and YC signals have access to a selectable delay from 0.6 ns to 5.56 ns in 160 ps 
increments (typical). This is the same delay value as the CLKDLY macro. It is similar to CLKDLY, which 
bypasses the PLL core just to take advantage of the phase adjustment option with the delay value.
The following parameters must be taken into consideration to achieve minimum delay at the outputs 
(GLA, GLB, GLC, YB, and YC) relative to the reference clock: routing delays from the PLL core to CCC 
outputs, core outputs and global network output delays, and the feedback path delay. The feedback path 
delay acts as a time advance of the input clock and will offset any delays introduced beyond the PLL core 
output. The routing delays are determined from back-annotated simulation and are configuration-
dependent. 

Table 4-7 � Delay Values in Libero SoC Software per Device Family

Device Typical Starting Values Increments Ending Value

ProASIC3 200 ps 0 to 735 ps 200 ps 6.735 ns

IGLOO/ProASIC3L 1.5 V 360 ps 0 to 1.610 ns 360 ps 12.410 ns

IGLOO/ProASIC3L 1.2 V 580 ps 0 to 2.880 ns 580 ps 20.280 ns
86 Revis ion 5



Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each group of control bits is assigned a specific location in the configuration shift register. For a list of the 
81 configuration bits (C[80:0]) in the CCC and a description of each, refer to "PLL Configuration Bits 
Description" on page 90. The configuration register can be serially loaded with the new configuration 
data and programmed into the CCC using the following ports:

� SDIN: The configuration bits are serially loaded into a shift register through this port. The LSB of 
the configuration data bits should be loaded first. 

� SDOUT: The shift register contents can be shifted out (LSB first) through this port using the shift 
operation.

� SCLK: This port should be driven by the shift clock.
� SSHIFT: The active-high shift enable signal should drive this port. The configuration data will be 

shifted into the shift register if this signal is HIGH. Once SSHIFT goes LOW, the data shifting will 
be halted. 

� SUPDATE: The SUPDATE signal is used to configure the CCC with the new configuration bits 
when shifting is complete.

To access the configuration ports of the shift register (SDIN, SDOUT, SSHIFT, etc.), the user should 
instantiate the CCC macro in his design with appropriate ports. Microsemi recommends that users 
choose SmartGen to generate the CCC macros with the required ports for dynamic reconfiguration. 
Users must familiarize themselves with the architecture of the CCC core and its input, output, and 
configuration ports to implement the desired delay and output frequency in the CCC structure. 
Figure 4-22 shows a model of the CCC with configurable blocks and switches. 
88 Revis ion 5





Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Software Configuration
SmartGen automatically generates the desired CCC functional block by configuring the control bits, and 
allows the user to select two CCC modes: Static PLL and Delayed Clock (CLKDLY).

Static PLL Configuration
The newly implemented Visual PLL Configuration Wizard feature provides the user a quick and easy way 
to configure the PLL with the desired settings (Figure 4-23). The user can invoke SmartGen to set the 
parameters and generate the netlist file with the appropriate flash configuration bits set for the CCCs. As 
mentioned in "PLL Macro Block Diagram" on page 69, the input reference clock CLKA can be configured 
to be driven by Hardwired I/O, External I/O, or Core Logic. The user enters the desired settings for all the 
parameters (output frequency, output selection, output phase adjustment, clock delay, feedback delay, 
and system delay). Notice that the actual values (divider values, output frequency, delay values, and 
phase) are shown to aid the user in reaching the desired design frequency in real time. These values are 
typical-case data. Best- and worst-case data can be observed through static timing analysis in 
SmartTime within Designer.
For dynamic configuration, the CCC parameters are defined using either the external JTAG port or an 
internally defined serial interface via the built-in dynamic shift register. This feature provides the ability to 
compensate for changes in the external environment. 

Figure 4-23 � Visual PLL Configuration Wizard

Input
Selection

Fixed System Delay

Feedback Selection (Feedback MUX)

VCO Clock Frequency Programmable Output Delay Elements

Output
Selection
96 Revis ion 5









SRAM and FIFO Memories in Microsemi’s Low Power Flash Devices
without reprogramming the device. Dynamic flag settings are determined by register values and can be
altered without reprogramming the device by reloading the register values either from the design or
through the UJTAG interface described in the "Initializing the RAM/FIFO" section on page 148.
SmartGen can also configure the FIFO to continue counting after the FIFO is full. In this configuration,
the FIFO write counter will wrap after the counter is full and continue to write data. With the FIFO
configured to continue to read after the FIFO is empty, the read counter will also wrap and re-read data
that was previously read. This mode can be used to continually read back repeating data patterns stored
in the FIFO (Figure 6-15).

FIFOs configured using SmartGen can also make use of the port mapping feature to configure the
names of the ports.

Limitations
Users should be aware of the following limitations when configuring SRAM blocks for low power flash
devices:

� SmartGen does not track the target device in a family, so it cannot determine if a configured
memory block will fit in the target device.

� Dual-port RAMs with different read and write aspect ratios are not supported.
� Cascaded memory blocks can only use a maximum of 64 blocks of RAM. 
� The Full flag of the FIFO is sensitive to the maximum depth of the actual physical FIFO block, not

the depth requested in the SmartGen interface. 

Figure 6-15 � SmartGen FIFO Configuration Interface
156 Revis ion 5





















http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/
http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

