
Microchip Technology - A3PN020-QNG68I Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits -

Number of I/O 49

Number of Gates 20000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 68-VFQFN Exposed Pad

Supplier Device Package 68-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn020-qng68i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn020-qng68i-4494408
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3 nano FPGA Fabric User’s Guide
Figure 1-11 • Efficient Long-Line Resources

Figure 1-12 • Very-Long-Line Resources

LL L L L L

LL L L L L

LL L L L L

LL L L L L

LL L L L L

Spans 1 VersaTile
Spans 2 VersaTiles
Spans 4 VersaTiles

Spans 1 VersaTile
Spans 2 VersaTiles

Spans 4 VersaTiles

VersaTile

High-Speed, Very-Long-Line Resources

Pad Ring

P
ad

 R
in

g
I/O

 R
in

g

I/O
 R

ing

Pad Ring

16×12 Block of VersaTiles

SRAM
Revision 5 19

ProASIC3 nano FPGA Fabric User’s Guide
Figure 3-6 shows all nine global inputs for the location A connected to the top left quadrant global
network via CCC.

Since each bank can have a different I/O standard, the user should be careful to choose the correct
global I/O for the design. There are 54 global pins available to access 18 global networks. For the single-
ended and voltage-referenced I/O standards, you can use any of these three available I/Os to access the
global network. For differential I/O standards such as LVDS and LVPECL, the I/O macro needs to be
placed on (A0, A1), (B0, B1), (C0, C1), or a similar location. The unassigned global I/Os can be used
as regular I/Os. Note that pin names starting with GF and GC are associated with the chip global
networks, and GA, GB, GD, and GE are used for quadrant global networks. Table 3-2 on page 38 and
Table 3-3 on page 39 show the general chip and quadrant global pin names.

Figure 3-6 • Global Inputs

MUX

GAAO/
IOuxwByVz

IOuxwByVz

IOuxwByVz

IOuxwByVz

IOuxwByVz
GAA1/

GAA2/

MUX

GABO/

GAB1/

GAB2/

MUX

GACO/

GAC1/

GAC2/

CLKA

CLKB

CLKC

Quadrant Global for CLKA

Quadrant Global for CLKB

Quadrant Global for CLKC

CCC

IOuxwByVz

IOuxwByVz

IOuxwByVz

IOuxwByVz
Revision 5 37

Global Resources in Low Power Flash Devices
Using Clock Aggregation
Clock aggregation allows for multi-spine clock domains to be assigned using hardwired connections,
without adding any extra skew. A MUX tree, shown in Figure 3-8, provides the necessary flexibility to
allow long lines, local resources, or I/Os to access domains of one, two, or four global spines. Signal
access to the clock aggregation system is achieved through long-line resources in the central rib in the
center of the die, and also through local resources in the north and south ribs, allowing I/Os to feed
directly into the clock system. As Figure 3-9 indicates, this access system is contiguous.
There is no break in the middle of the chip for the north and south I/O VersaNet access. This is different
from the quadrant clocks located in these ribs, which only reach the middle of the rib.

Figure 3-8 • Spine Selection MUX of Global Tree

Figure 3-9 • Clock Aggregation Tree Architecture

Internal/External
Signal

Internal/External
Signal

Internal/External
Signals

Spine

Global Rib

Global Driver MUX

Tree Node MUX

Tree Node MUX

Internal/External
Signals

Tree Node MUX

Global Spine
Global Rib
Global Driver and MUX

I/O Access
Internal Signal Access

I/O Tiles

Global Signal Access
Tree Node MUX
44 Revision 5

Global Resources in Low Power Flash Devices
The following will happen during demotion of a global signal to regular nets:
• CLKBUF_x becomes INBUF_x; CLKINT is removed from the netlist.
• The essential global macro, such as the output of the Clock Conditioning Circuit, cannot be

demoted.
• No automatic buffering will happen.

Since no automatic buffering happens when a signal is demoted, this net may have a high delay due to
large fanout. This may have a negative effect on the quality of the results. Microsemi recommends that
the automatic global demotion only be used on small-fanout nets. Use clock networks for high-fanout
nets to improve timing and routability.

Spine Assignment
The low power flash device architecture allows the global networks to be segmented and used as clock
spines. These spines, also called local clock networks, enable the use of PDC or MVN to assign a signal
to a spine.
PDC syntax to promote a net to a spine/local clock:
assign_local_clock –net netname –type [quadrant|chip] Tn|Bn|Tn:Bm

If the net is driven by a clock macro, Designer automatically demotes the clock net to a regular net before
it is assigned to a spine. Nets driven by a PLL or CLKDLY macro cannot be assigned to a local clock.
When assigning a signal to a spine or quadrant global network using PDC (pre-compile), the Designer
software will legalize the shared instances. The number of shared instances to be legalized can be
controlled by compile options. If these networks are created in MVN (only quadrant globals can be
created), no legalization is done (as it is post-compile). Designer does not do legalization between non-
clock nets.
As an example, consider two nets, net_clk and net_reset, driving the same flip-flop. The following PDC
constraints are used:
assign_local_clock –net net_clk –type chip T3
assign_local_clock –net net_reset –type chip T1:T2

During Compile, Designer adds a buffer in the reset net and places it in the T1 or T2 region, and places
the flip-flop in the T3 spine region (Figure 3-16).

Figure 3-16 • Adding a Buffer for Shared Instances

D

CLK

CLR
net_clk

net_reset

T1 T2 T3

D

CLK

CLR
net_clk

net_reset

assign_local_clock -net net_clk -type chip T3
assign_local_clock -net net_reset -type chip T1:T2

Before Compile After Compile

Added
buffer
52 Revision 5

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each CCC can implement up to three independent global buffers (with or without programmable delay)
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to
three global outputs. Unused global outputs of a PLL can be used to implement independent global
buffers, up to a maximum of three global outputs for a given CCC.

CCC Programming
The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or
through an asynchronous interface. This asynchronous dedicated shift register interface is dynamically
accessible from inside the low power flash devices to permit parameter changes, such as PLL divide
ratios and delays, during device operation.
To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is
determined either by the user during the design process, with configuration data being stored in flash
memory as part of the device programming procedure, or by writing data into a dedicated shift register
during normal device operation.
This latter mode allows the user to dynamically reconfigure the CCC without the need for core
programming. The shift register is accessed through a simple serial interface. Refer to the "UJTAG
Applications in Microsemi’s Low Power Flash Devices" section on page 297 or the application note Using
Global Resources in Actel Fusion Devices.

Global Resources
Low power flash and mixed signal devices provide three global routing networks (GLA, GLB, and GLC)
for each of the CCC locations. There are potentially many I/O locations; each global I/O location can be
chosen from only one of three possibilities. This is controlled by the multiplexer tree circuitry in each
global network. Once the I/O location is selected, the user has the option to utilize the CCCs before the
signals are connected to the global networks. The CCC in each location (up to six) has the same
structure, so generating the CCC macros is always done with an identical software GUI. The CCCs in the
corner locations drive the quadrant global networks, and the CCCs in the middle of the east and west
chip sides drive the chip global networks. The quadrant global networks span only a quarter of the
device, while the chip global networks span the entire device. For more details on global resources
offered in low power flash devices, refer to the "Global Resources in Low Power Flash Devices" section
on page 31.
A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, or
CLKC-GLC) of a given CCC. A PLL macro uses the CLKA CCC input to drive its reference clock. It uses
the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can
also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the
YB (or YC) output is used. Refer to the "PLL Macro Signal Descriptions" section on page 68 for more
information.
Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not supported for IGLOO nano or

ProASIC3 nano devices)
• The FPGA core
62 Revision 5

http://www.microsemi.com/soc/documents/Fusion_GlobalResources_AN.pdf
http://www.microsemi.com/soc/documents/Fusion_GlobalResources_AN.pdf

ProASIC3 nano FPGA Fabric User’s Guide
SmartGen also allows the user to select the various delays and phase shift values necessary to adjust
the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB, GLC, YB, and YC).
SmartGen allows the user to select the input clock source. SmartGen automatically instantiates the
special macro, PLLINT, when needed.

Global Input Selections
Low power flash devices provide the flexibility of choosing one of the three global input pad locations
available to connect to a CCC functional block or to a global / quadrant global network. Figure 4-7 on
page 72 and Figure 4-8 on page 72 show the detailed architecture of each global input structure for 30 k
gate devices and below, as well as 60 k gate devices and above, respectively. For 60 k gate devices and
above (Figure 4-7 on page 72), if the single-ended I/O standard is chosen, there is flexibility to choose
one of the global input pads (the first, second, and fourth input). Once chosen, the other I/O locations are
used as regular I/Os. If the differential I/O standard is chosen (not applicable for IGLOO nano and
ProASIC3 nano devices), the first and second inputs are considered as paired, and the third input is
paired with a regular I/O.
The user then has the choice of selecting one of the two sets to be used as the clock input source to the
CCC functional block. There is also the option to allow an internal clock signal to feed the global network
or the CCC functional block. A multiplexer tree selects the appropriate global input for routing to the
desired location. Note that the global I/O pads do not need to feed the global network; they can also be
used as regular I/O pads.

Note: Clock divider and clock multiplier blocks are not shown in this figure or in SmartGen. They are automatically
configured based on the user's required frequencies.

Figure 4-6 • CCC with PLL Block

PLL Core
Phase
Select

Phase
Select

Phase
Select

GLA

CLKA

GLB

YB

GLC

YC

Programmable Delay
Programmable
 Delay Type 1

Programmable
 Delay Type 2

Programmable
 Delay Type 2

Programmable
 Delay Type 1

Programmable
 Delay Type 2

Programmable
 Delay Type 1

Four-Phase Output

EXTFB
Revision 5 71

ProASIC3 nano FPGA Fabric User’s Guide
Place-and-Route Stage Considerations
Several considerations must be noted to properly place the CCC macros for layout.
For CCCs with clock inputs configured with the Hardwired I/O–Driven option:

• PLL macros must have the clock input pad coming from one of the GmA* locations.
• CLKDLY macros must have the clock input pad coming from one of the Global I/Os.

If a PLL with a Hardwired I/O input is used at a CCC location and a Hardwired I/O–Driven CLKDLY
macro is used at the same CCC location, the clock input of the CLKDLY macro must be chosen from one
of the GmB* or GmC* pin locations. If the PLL is not used or is an External I/O–Driven or Core Logic–
Driven PLL, the clock input of the CLKDLY macro can be sourced from the GmA*, GmB*, or GmC* pin
locations.
For CCCs with clock inputs configured with the External I/O–Driven option, the clock input pad can be
assigned to any regular I/O location (IO******** pins). Note that since global I/O pins can also be used as
regular I/Os, regardless of CCC function (CLKDLY or PLL), clock inputs can also be placed in any of
these I/O locations.
By default, the Designer layout engine will place global nets in the design at one of the six chip globals.
When the number of globals in the design is greater than six, the Designer layout engine will
automatically assign additional globals to the quadrant global networks of the low power flash devices. If
the user wishes to decide which global signals should be assigned to chip globals (six available) and
which to the quadrant globals (three per quadrant for a total of 12 available), the assignment can be
achieved with PinEditor, ChipPlanner, or by importing a placement constraint file. Layout will fail if the

Figure 4-31 • Static Timing Analysis Using SmartTime
Revision 5 107

ProASIC3 nano FPGA Fabric User’s Guide
Figure 4-37 shows the simulation results, where the first PLL’s output period is 3.9 ns (~256 MHz), and
the stage 2 (final) output period is 3.56 ns (~280 MHz).

Figure 4-36 • Second-Stage PLL Showing Input of 256 MHz from First Stage and Final Output of 280 MHz

Figure 4-37 • ModelSim Simulation Results

Stage 1 Output Clock Period Stage 2 Output Clock Period
Revision 5 111

ProASIC3 nano FPGA Fabric User’s Guide
I/O Features
Both IGLOO nano and ProASIC3 nano devices support multiple I/O features that make board design
easier. For example, an I/O feature like Schmitt Trigger in the input buffer saves the board space that
would be used by an external Schmitt trigger for a slow or noisy input signal. These features are also
programmable for each I/O, which in turn gives flexibility in interfacing with other components. The
following is a detailed description of all available features in nano devices.

I/O Programmable Features
Low power flash devices offer many flexible I/O features to support a wide variety of board designs.
Some of the features are programmable, with a range for selection. Table 7-7 lists programmable I/O
features and their ranges.

Hot-Swap Support
All nano devices are hot-swappable.
The hot-swap feature appears as a read-only check box in the I/O Attribute Editor that shows whether an
I/O is hot-swappable or not. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices"
section on page 307 for details on hot-swapping.
Hot-swapping is the operation of hot insertion or hot removal of a card in a powered-up system. The
levels of hot-swap support and examples of related applications are described in Table 7-8 on page 168
to Table 7-11 on page 169. The I/Os also need to be configured in hot-insertion mode if hot-plugging
compliance is required. nano devices have an I/O structure that allows the support of Level 3 and Level 4
hot-swap with only two levels of staging.

Table 7-7 • Programmable I/O Features (user control via I/O Attribute Editor)

Feature Description Range

Slew Control Output slew rate HIGH, LOW

Output Drive (mA) Output drive strength Depends on I/O type

Resistor Pull Weak resistor pull circuit Up, Down, None

Schmitt Trigger Schmitt trigger for input only ON, OFF
Revision 5 167

I/O Structures in nano Devices
Table 7-8 • Hot-Swap Level 1

Description Cold-swap

Power Applied to Device No

Bus State –

Card Ground Connection –

Device Circuitry Connected to Bus Pins –

Example Application System and card with Microsemi FPGA chip are
powered down, and the card is plugged into the
system. Then the power supplies are turned on for
the system but not for the FPGA on the card.

Compliance of nano Devices Compliant

Table 7-9 • Hot-Swap Level 2

Description Hot-swap while reset

Power Applied to Device Yes

Bus State Held in reset state

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins –

Example Application In the PCI hot-plug specification, reset control
circuitry isolates the card busses until the card
supplies are at their nominal operating levels and
stable.

Compliance of nano Devices Compliant
168 Revision 5

I/O Structures in nano Devices
5 V Output Tolerance
nano Standard I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL
receivers. It is also critical that there be NO external I/O pull-up resistor to 5 V, since this resistor would
pull the I/O pad voltage beyond the 3.6 V absolute maximum value and consequently cause damage to
the I/O.
When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, the I/Os can directly drive signals into 5 V TTL
receivers. In fact, VOL = 0.4 V and VOH = 2.4 V in both 3.3 V LVTTL and 3.3 V LVCMOS modes exceeds
the VIL = 0.8 V and VIH = 2 V level requirements of 5 V TTL receivers. Therefore, level 1 and level 0 will
be recognized correctly by 5 V TTL receivers.

Schmitt Trigger
A Schmitt trigger is a buffer used to convert a slow or noisy input signal into a clean one before passing it
to the FPGA. Using Schmitt trigger buffers guarantees a fast, noise-free input signal to the FPGA.
nano devices have Schmitt triggers built into their I/O circuitry. Schmitt Trigger is available on all I/O
configurations.
This feature can be implemented by using a Physical Design Constraints (PDC) command (Table 7-5 on
page 163) or by selecting a check box in the I/O Attribute Editor in Designer. The check box is cleared by
default.

I/O Register Combining
Every I/O has several embedded registers in the I/O tile that are close to the I/O pads. Rather than using
the internal register from the core, the user has the option of using these registers for faster clock-to-out
timing, and external hold and setup. When combining these registers at the I/O buffer, some architectural
rules must be met. Provided these rules are met, the user can enable register combining globally during
Compile (as shown in the "Compiling the Design" section in the "I/O Software Control in Low Power
Flash Devices" section on page 185.
This feature is supported by all I/O standards.

Rules for Registered I/O Function:
1. The fanout between an I/O pin (D, Y, or E) and a register must be equal to one for combining to be

considered on that pin.
2. All registers (Input, Output, and Output Enable) connected to an I/O must share the same clear or

preset function:
– If one of the registers has a CLR pin, all the other registers that are candidates for combining

in the I/O must have a CLR pin.

Table 7-13 • Comparison Table for 5 V–Compliant Receiver Solutions

Solution Board Components Speed Current Limitations

1 Two resistors Low to High1 Limited by transmitter's drive strength

2 Resistor and Zener 3.3 V Medium Limited by transmitter's drive strength

3 Bus switch High N/A

Notes:
1. Speed and current consumption increase as the board resistance values decrease.
2. Resistor values ensure I/O diode long-term reliability.
3. At 70°C, customers could still use 420 Ω on every I/O.
4. At 85°C, a 5 V solution on every other I/O is permitted, since the resistance is lower (150 Ω) and

the current is higher. Also, the designer can still use 420 Ω and use the solution on every I/O.
5. At 100°C, the 5 V solution on every I/O is permitted, since 420 Ω are used to limit the current to

5.9 mA.
174 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_BiDir_HSTL_I_LowEnb is
port(DataR, DataF, CLR, CLK, Trien : in std_logic; QR, QF : out std_logic;

PAD : inout std_logic) ;
end DDR_BiDir_HSTL_I_LowEnb;

architecture DEF_ARCH of DDR_BiDir_HSTL_I_LowEnb is

component INV
port(A : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component DDR_REG
port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic) ;

end component;

component BIBUF_HSTL_I
port(PAD : inout std_logic := 'U'; D, E : in std_logic := 'U'; Y : out std_logic) ;

end component;

signal TrienAux, D, Q : std_logic ;

begin

Inv_Tri : INV
port map(A => Trien, Y => TrienAux);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
DDR_REG_0_inst : DDR_REG
port map(D => D, CLK => CLK, CLR => CLR, QR => QR, QF => QF);
BIBUF_HSTL_I_0_inst : BIBUF_HSTL_I
port map(PAD => PAD, D => Q, E => TrienAux, Y => D);

end DEF_ARCH;
Revision 5 215

Programming Flash Devices
Types of Programming for Flash Devices
The number of devices to be programmed will influence the optimal programming methodology. Those
available are listed below:

• In-system programming
– Using a programmer
– Using a microprocessor or microcontroller

• Device programmers
– Single-site programmers
– Multi-site programmers, batch programmers, or gang programmers
– Automated production (robotic) programmers

• Volume programming services
– Microsemi in-house programming
– Programming centers

In-System Programming
Device Type Supported: Flash
ISP refers to programming the FPGA after it has been mounted on the system printed circuit board. The
FPGA may be preprogrammed and later reprogrammed using ISP.
The advantage of using ISP is the ability to update the FPGA design many times without any changes to
the board. This eliminates the requirement of using a socket for the FPGA, saving cost and improving
reliability. It also reduces programming hardware expenses, as the ISP methodology is die-/package-
independent.
There are two methods of in-system programming: external and internal.

• Programmer ISP—Refer to the "In-System Programming (ISP) of Microsemi’s Low Power Flash
Devices Using FlashPro4/3/3X" section on page 261 for more information.
Using an external programmer and a cable, the device can be programmed through a header on
the system board. In Microsemi SoC Products Group documentation, this is referred to as
external ISP. Microsemi provides FlashPro4, FlashPro3, FlashPro Lite, or Silicon Sculptor 3 to
perform external ISP. Note that Silicon Sculptor II and Silicon Sculptor 3 can only provide ISP for
ProASIC and ProASICPLUS® families, not for SmartFusion, Fusion, IGLOO, or ProASIC3. Silicon
Sculptor II and Silicon Sculptor 3 can be used for programming ProASIC and ProASICPLUS
devices by using an adapter module (part number SMPA-ISP-ACTEL-3).
– Advantages: Allows local control of programming and data files for maximum security. The

programming algorithms and hardware are available from Microsemi. The only hardware
required on the board is a programming header.

– Limitations: A negligible board space requirement for the programming header and JTAG
signal routing

• Microprocessor ISP—Refer to the "Microprocessor Programming of Microsemi’s Low Power
Flash Devices" chapter of an appropriate FPGA fabric user’s guide for more information.
Using a microprocessor and an external or internal memory, you can store the program in
memory and use the microprocessor to perform the programming. In Microsemi documentation,
this is referred to as internal ISP. Both the code for the programming algorithm and the FPGA
programming file must be stored in memory on the board. Programming voltages must also be
generated on the board.
– Advantages: The programming code is stored in the system memory. An external programmer

is not required during programming.
– Limitations: This is the approach that requires the most design work, since some way of

getting and/or storing the data is needed; a system interface to the device must be designed;
and the low-level API to the programming firmware must be written and linked into the code
provided by Microsemi. While there are benefits to this methodology, serious thought and
planning should go into the decision.
224 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Cortex-M1 Device Security
Cortex-M1–enabled devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted Write and Verify
• Fusion Embedded Flash Memory enabled for AES-encrypted Write

AES Encryption of Programming Files
Low power flash devices employ AES as part of the security mechanism that prevents invasive and
noninvasive attacks. The mechanism entails encrypting the programming file with AES encryption and
then passing the programming file through the AES decryption core, which is embedded in the device.
The file is decrypted there, and the device is successfully programmed. The AES master key is stored in
on-chip nonvolatile memory (flash). The AES master key can be preloaded into parts in a secure
programming environment (such as the Microsemi In-House Programming center), and then "blank"
parts can be shipped to an untrusted programming or manufacturing center for final personalization with
an AES-encrypted bitstream. Late-stage product changes or personalization can be implemented easily
and securely by simply sending a STAPL file with AES-encrypted data. Secure remote field updates over
public networks (such as the Internet) are possible by sending and programming a STAPL file with AES-
encrypted data.
The AES key protects the programming data for file transfer into the device with 128-bit AES encryption.
If AES encryption is used, the AES key is stored or preprogrammed into the device. To program, you
must use an AES-encrypted file, and the encryption used on the file must match the encryption key
already in the device.
The AES key is protected by a FlashLock security Pass Key that is also implemented in each device. The
AES key is always protected by the FlashLock Key, and the AES-encrypted file does NOT contain the
FlashLock Key. This FlashLock Pass Key technology is exclusive to the Microsemi flash-based device
families. FlashLock Pass Key technology can also be implemented without the AES encryption option,
providing a choice of different security levels.
In essence, security features can be categorized into the following three options:

• AES encryption with FlashLock Pass Key protection
• FlashLock protection only (no AES encryption)
• No protection

Each of the above options is explained in more detail in the following sections with application examples
and software implementation options.

Advanced Encryption Standard
The 128-bit AES standard (FIPS-192) block cipher is the NIST (National Institute of Standards and
Technology) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to
protect sensitive government information well into the 21st century. It replaces the aging DES, which
NIST adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (securely) in low power flash devices in nonvolatile flash
memory. All programming files sent to the device can be authenticated by the part prior to programming
to ensure that bad programming data is not loaded into the part that may possibly damage it. All
programming verification is performed on-chip, ensuring that the contents of low power flash devices
remain secure.
Microsemi has implemented the 128-bit AES (Rijndael) algorithm in low power flash devices. With this
key size, there are approximately 3.4 × 1038 possible 128-bit keys. DES has a 56-bit key size, which
provides approximately 7.2 × 1016 possible keys. In their AES fact sheet, the National Institute of
Standards and Technology uses the following hypothetical example to illustrate the theoretical security
provided by AES. If one were to assume that a computing system existed that could recover a DES key
in a second, it would take that same machine approximately 149 trillion years to crack a 128-bit AES key.
NIST continues to make their point by stating the universe is believed to be less than 20 billion years
old.1
Revision 5 239

Security in Low Power Flash Devices
3. Choose the desired settings for the FlashROM configurations to be programmed (Figure 11-13).
Click Finish to generate the STAPL programming file for the design.

Generation of Security Header Programming File Only—
Application 2
As mentioned in the "Application 2: Nontrusted Environment—Unsecured Location" section on page 243,
the designer may employ FlashLock Pass Key protection or FlashLock Pass Key with AES encryption on
the device before sending it to a nontrusted or unsecured location for device programming. To achieve
this, the user needs to generate a programming file containing only the security settings desired (Security
Header programming file).
Note: If AES encryption is configured, FlashLock Pass Key protection must also be configured.
The available security options are indicated in Table 11-4 and Table 11-5 on page 251.

Figure 11-13 • FlashROM Configuration Settings for Low Power Flash Devices

Table 11-4 • FlashLock Security Options for IGLOO and ProASIC3

Security Option FlashROM Only FPGA Core Only
Both FlashROM

and FPGA

No AES / no FlashLock – – –

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓
250 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Programming Voltage (VPUMP) and VJTAG
Low-power flash devices support on-chip charge pumps, and therefore require only a single 3.3 V
programming voltage for the VPUMP pin during programming. When the device is not being
programmed, the VPUMP pin can be left floating or can be tied (pulled up) to any voltage between 0 V
and 3.6 V2. During programming, the target board or the FlashPro4/3/3X programmer can provide
VPUMP. FlashPro4/3/3X is capable of supplying VPUMP to a single device. If more than one device is to
be programmed using FlashPro4/3/3X on a given board, FlashPro4/3/3X should not be relied on to
supply the VPUMP voltage. A FlashPro4/3/3X programmer is not capable of providing reliable VJTAG
voltage. The board must supply VJTAG voltage to the device and the VJTAG pin of the programmer
header must be connected to the device VJTAG pin. Microsemi recommends that VPUMP3 and VJTAG
power supplies be kept separate with independent filtering capacitors rather than supplying them from a
common rail. Refer to the "Board-Level Considerations" section on page 271 for capacitor requirements.
Low power flash device I/Os support a bank-based, voltage-supply architecture that simultaneously
supports multiple I/O voltage standards (Table 12-2). By isolating the JTAG power supply in a separate
bank from the user I/Os, low power flash devices provide greater flexibility with supply selection and
simplify power supply and printed circuit board (PCB) design. The JTAG pins can be run at any voltage
from 1.5 V to 3.3 V (nominal). Microsemi recommends that TCK be tied to GND through a 200 ohm to 1
Kohm resistor. This prevents a possible totempole current on the input buffer stage. For TDI, TMS, and
TRST pins, the devices provide an internal nominal 10 Kohm pull-up resistor. During programming, all
I/O pins, except for JTAG interface pins, are tristated and weakly pulled up to VCCI. This isolates the part
and prevents the signals from floating. The JTAG interface pins are driven by the FlashPro4/3/3X during
programming, including the TRST pin, which is driven HIGH.

Nonvolatile Memory (NVM) Programming Voltage
SmartFusion and Fusion devices need stable VCCNVM/VCCENVM3 (1.5 V power supply to the
embedded nonvolatile memory blocks) and VCCOSC/VCCROSC4 (3.3 V power supply to the integrated
RC oscillator). The tolerance of VCCNVM/VCCENVM is ± 5% and VCCOSC/VCCROSC is ± 5%.
Unstable supply voltage on these pins can cause an NVM programming failure due to NVM page
corruption. The NVM page can also be corrupted if the NVM reset pin has noise. This signal must be tied
off properly.
Microsemi recommends installing the following capacitors5 on the VCCNVM/VCCENVM and
VCCOSC/VCCROSC pins:

• Add one bypass capacitor of 10 µF for each power supply plane followed by an array of
decoupling capacitors of 0.1 µF.

• Add one 0.1 µF capacitor near each pin.

2. During sleep mode in IGLOO devices connect VPUMP to GND.
3. VPUMP has to be quiet for successful programming. Therefore VPUMP must be separate and required capacitors must be

installed close to the FPGA VPUMP pin.

Table 12-2 • Power Supplies

Power Supply Programming Mode
Current during
Programming

VCC 1.2 V / 1.5 V < 70 mA

VCCI 1.2 V / 1.5 V / 1.8 V / 2.5 V / 3.3 V
(bank-selectable)

I/Os are weakly pulled up.

VJTAG 1.2 V / 1.5 V / 1.8 V / 2.5 V / 3.3 V < 20 mA

VPUMP 3.15 V to 3.45 V < 80 mA

Note: All supply voltages should be at 1.5 V or higher, regardless of the setting during normal
operation, except for IGLOO nano, where 1.2 V VCC and VJTAG programming is allowed.

4. VCCROSC is for SmartFusion.
5. The capacitors cannot guarantee reliable operation of the device if the board layout is not done properly.
Revision 5 263

Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming
3. VCC switches from 1.5 V to 1.2 V when TRST is LOW.

In Figure 13-4, the TRST signal and the VCC core voltage signal are labeled. As TRST is pulled to
ground, the core voltage is observed to switch from 1.5 V to 1.2 V. The observed fall time is
approximately 2 ms.

DirectC
The above analysis is based on FlashPro3, but there are other solutions to ISP, such as DirectC. DirectC
is a microprocessor program that can be run in-system to program Microsemi flash devices. For
FlashPro3, TRST is the most convenient control signal to use for the recommended circuit. However, for
DirectC, users may use any signal to control the FET. For example, the DirectC code can be edited so
that a separate non-JTAG signal can be asserted from the microcontroller that signals the board that it is
about to start programming the device. After asserting the N-Channel Digital FET control signal, the
programming algorithm must allow sufficient time for the supply to rise to 1.5 V before initiating DirectC
programming. As seen in Figure 13-3 on page 279, 50 ms is adequate time. Depending on the size of
the PCB and the capacitance on the VCC supply, results may vary from system to system. Microsemi
recommends using a conservative value for the wait time to make sure that the VCC core voltage is at
the right level.

Conclusion
For applications using IGLOO and ProASIC3L low power FPGAs and taking advantage of the low core
voltage power supplies with less than 1.5 V operation, there must be a way for the core voltage to switch
from 1.2 V (or other voltage) to 1.5 V, which is required during in-system programming. The circuit
explained in this document illustrates one simple, cost-effective way of handling this requirement. A
JTAG signal from the FlashPro3 programmer allows the circuit to sense when programming is in
progress, enabling it to switch to the correct core voltage.

Figure 13-4 • TRST Toggled LOW

TRST Signal

VCC Core Signal
280 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
UJTAG Macro
The UJTAG tiles can be instantiated in a design using the UJTAG macro from the Fusion, IGLOO, or
ProASIC3 macro library. Note that "UJTAG" is a reserved name and cannot be used for any other user-
defined blocks. A block symbol of the UJTAG tile macro is presented in Figure 16-2. In this figure, the
ports on the left side of the block are connected to the JTAG TAP Controller, and the right-side ports are
accessible by the FPGA core VersaTiles. The TDI, TMS, TDO, TCK, and TRST ports of UJTAG are only
provided for design simulation purposes and should be treated as external signals in the design netlist.
However, these ports must NOT be connected to any I/O buffer in the netlist. Figure 16-3 on page 300
illustrates the correct connection of the UJTAG macro to the user design netlist. Microsemi Designer
software will automatically connect these ports to the TAP during place-and-route. Table 16-2 gives the
port descriptions for the rest of the UJTAG ports:

Table 16-2 • UJTAG Port Descriptions

Port Description
UIREG [7:0] This 8-bit bus carries the contents of the JTAG Instruction Register of each device. Instruction Register

values 16 to 127 are not reserved and can be employed as user-defined instructions.
URSTB URSTB is an active-low signal and will be asserted when the TAP Controller is in Test-Logic-Reset

mode. URSTB is asserted at power-up, and a power-on reset signal resets the TAP Controller. URSTB
will stay asserted until an external TAP access changes the TAP Controller state.

UTDI This port is directly connected to the TAP's TDI signal.
UTDO This port is the user TDO output. Inputs to the UTDO port are sent to the TAP TDO output MUX when

the IR address is in user range.
UDRSH Active-high signal enabled in the ShiftDR TAP state
UDRCAP Active-high signal enabled in the CaptureDR TAP state
UDRCK This port is directly connected to the TAP's TCK signal.
UDRUPD Active-high signal enabled in the UpdateDR TAP state

Figure 16-2 • UJTAG Tile Block Symbol

TDI

TCK

TDO

TMS

TRST

UIREG0
UIREG1
UIREG2
UIREG3
UIREG4
UIREG5
UIREG6
UIREG7

UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD

URSTB
Revision 5 299

UJTAG Applications in Microsemi’s Low Power Flash Devices
Typical UJTAG Applications
Bidirectional access to the JTAG port from VersaTiles—without putting the device into test mode—
creates flexibility to implement many different applications. This section describes a few of these. All are
based on importing/exporting data through the UJTAG tiles.

Clock Conditioning Circuitry—Dynamic Reconfiguration
In low power flash devices, CCCs, which include PLLs, can be configured dynamically through either an
81-bit embedded shift register or static flash programming switches. These 81 bits control all the
characteristics of the CCC: routing MUX architectures, delay values, divider values, etc. Table 16-3 lists
the 81 configuration bits in the CCC.

The embedded 81-bit shift register (for the dynamic configuration of the CCC) is accessible to the
VersaTiles, which, in turn, have access to the UJTAG tiles. Therefore, the CCC configuration shift
register can receive and load the new configuration data stream from JTAG.
Dynamic reconfiguration eliminates the need to reprogram the device when reconfiguration of the CCC
functional blocks is needed. The CCC configuration can be modified while the device continues to
operate. Employing the UJTAG core requires the user to design a module to provide the configuration
data and control the CCC configuration shift register. In essence, this is a user-designed TAP Controller
requiring chip resources.
Similar reconfiguration capability exists in the ProASICPLUS® family. The only difference is the number of
shift register bits controlling the CCC (27 in ProASICPLUS and 81 in IGLOO, ProASIC3, and Fusion).

Table 16-3 • Configuration Bits of Fusion, IGLOO, and ProASIC3 CCC Blocks
Bit Number(s) Control Function
80 RESET ENABLE

79 DYNCSEL

78 DYNBSEL

77 DYNASEL

<76:74> VCOSEL [2:0]

73 STATCSEL

72 STATBSEL

71 STATASEL

<70:66> DLYC [4:0]

<65:61> DLYB {4:0]

<60:56> DLYGLC [4:0]

<55:51> DLYGLB [4:0]

<50:46> DLYGLA [4:0]

45 XDLYSEL

<44:40> FBDLY [4:0]

<39:38> FBSEL

<37:35> OCMUX [2:0]

<34:32> OBMUX [2:0]

<31:29> OAMUX [2:0]

<28:24> OCDIV [4:0]

<23:19> OBDIV [4:0]

<18:14> OADIV [4:0]

<13:7> FBDIV [6:0]

<6:0> FINDIV [6:0]
302 Revision 5

Power-Up/-Down Behavior of Low Power Flash Devices
Figure 17-5 • I/O State as a Function of VCCI and VCC Voltage Levels for IGLOO V2, IGLOO nano V2,
IGLOO PLUS V2, and ProASIC3L Devices Running at VCC = 1.2 V ± 0.06 V

Region 1: I/O buffers are OFF

Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI/VCC are below
specification. For the same reason, input
buffers do not meet VIH/VIL levels, and
output buffers do not meet VOH/VOL levels.

Min VCCI datasheet specification
voltage at a selected I/O

standard; i.e., 1.14 V,1.425 V, 1.7 V,
2.3 V, or 3.0 V

VCC

VCC = 1.14 V

Region 1: I/O Buffers are OFF

Activation trip point:
Va = 0.85 V ± 0.2 V

Deactivation trip point:
Vd = 0.75 V ± 0.2 V

Activation trip point:
Va = 0.9 V ± 0.15 V

Deactivation trip point:
Vd = 0.8 V ± 0.15 V

VCC = 1.575 V

Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH / VIL , VOH / VOL , etc.

Region 4: I/O
buffers are ON.

I/Os are functional
(except differential

 but slower because VCCI is
below specification. For the

same reason, input buffers do not
meet VIH / VIL levels, and output

buffers do not meet VOH / VOL levels.

Region 4: I/O
buffers are ON.

I/Os are functional
(except differential inputs)

where VT can be from 0.58 V to 0.9 V (typically 0.75 V)

VCCI

Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.

VCC = VCCI + VT
314 Revision 5

