
Microchip Technology - A3PN030-Z1QNG68 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits -

Number of I/O 49

Number of Gates 30000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -20°C ~ 85°C (TJ)

Package / Case 68-VFQFN Exposed Pad

Supplier Device Package 68-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn030-z1qng68

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn030-z1qng68-4494414
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3 nano FPGA Fabric User’s Guide
Note: Flash*Freeze technology only applies to IGLOO and ProASIC3L families.
Figure 1-5 • IGLOO, IGLOO nano, ProASIC3 nano, and ProASIC3/L Device Architecture Overview with Four

I/O Banks (AGL600 device is shown)

Note: * AGLP030 does not contain a PLL or support AES security.
Figure 1-6 • IGLOO PLUS Device Architecture Overview with Four I/O Banks

ISP AES
Decryption*

User Nonvolatile
FlashRom

Flash*Freeze†

Technology
Charge
Pumps

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC

I/Os

Bank 0
B

an
k

3
B

an
k

3 B
ank 1

B
ank 1

Bank 2

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC*

I/Os

ISP AES
Decryption*

User Nonvolatile
FlashRom

Flash*Freeze
Technology

Charge
Pumps

Bank 0

B
ank 1

B
ank 1B

an
k

3
B

an
k

3

Bank 2
Revision 5 13

Global Resources in Low Power Flash Devices
Step 1
Run Synthesis with default options. The Synplicity log shows the following device utilization:

Step 2
Run Compile with the Promote regular nets whose fanout is greater than option selected in Designer;
you will see the following in the Compile report:
Device utilization report:
==========================
CORE Used: 1536 Total: 13824 (11.11%)
IO (W/ clocks) Used: 19 Total: 147 (12.93%)
Differential IO Used: 0 Total: 65 (0.00%)
GLOBAL Used: 8 Total: 18 (44.44%)
PLL Used: 2 Total: 2 (100.00%)
RAM/FIFO Used: 0 Total: 24 (0.00%)
FlashROM Used: 0 Total: 1 (0.00%)
……………………
The following nets have been assigned to a global resource:
Fanout Type Name

1536 INT_NET Net : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536 SET/RESET_NET Net : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : QCLK1_c
Driver: QCLK1_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : QCLK2_c
Driver: QCLK2_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256 CLK_NET Net : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256 CLK_NET Net : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

Designer will promote five more signals to global due to high fanout. There are eight signals assigned to
global networks.

Cell usage:

cell count area count*area

DFN1E1C1
BUFF
INBUF
VCC
GND
OUTBUF
CLKBUF
PLL
TOTAL

1536
278
10
9
9
6
3
2

1853

2.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0

3072.0
278.0
0.0
0.0
0.0
0.0
0.0
0.0

3350.0
56 Revision 5

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Figure 4-7 • Clock Input Sources (30 k gates devices and below)

Notes:
1. Represents the global input pins. Globals have direct access to the clock conditioning block and are

not routed via the FPGA fabric. Refer to the "User I/O Naming Conventions in I/O Structures" chapter
of the appropriate device user’s guide.

2. Instantiate the routed clock source input as follows:
a) Connect the output of a logic element to the clock input of a PLL, CLKDLY, or CLKINT macro.
b) Do not place a clock source I/O (INBUF or INBUF_LVPECL/LVDS/B-LVDS/M-LVDS/DDR) in

a relevant global pin location.
3. IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Figure 4-8 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT (60 k

gates devices and above)

Routed Clock
(from FPGA core)

Drives the global
network directly
(GLA or GLC)

Dedicated I/O Pad

Sample Pin Names

GEC0/IO37RSB1

To Core

+

+

Source for CCC
(CLKA or CLKB or CLKC)

Each shaded box represents an
INBUF or INBUF_LVDS/LVPECL
macro, as appropriate. To Core

Routed Clock
(from FPGA core)

Sample Pin Names

GAA0/IO0NDB0V01

GAA1/IO00PDB0V01

GAA2/IO13PDB7V11

GAA[0:2]: GA represents global in the northwest corner
of the device. A[0:2]: designates specific A clock source.

2

72 Revision 5

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
PLL Core Specifications
PLL core specifications can be found in the DC and Switching Characteristics chapter of the appropriate
family datasheet.

Loop Bandwidth
Common design practice for systems with a low-noise input clock is to have PLLs with small loop
bandwidths to reduce the effects of noise sources at the output. Table 4-6 shows the PLL loop
bandwidth, providing a measure of the PLL's ability to track the input clock and jitter.

PLL Core Operating Principles
This section briefly describes the basic principles of PLL operation. The PLL core is composed of a
phase detector (PD), a low-pass filter (LPF), and a four-phase voltage-controlled oscillator (VCO).
Figure 4-19 illustrates a basic single-phase PLL core with a divider and delay in the feedback path.

The PLL is an electronic servo loop that phase-aligns the PD feedback signal with the reference input. To
achieve this, the PLL dynamically adjusts the VCO output signal according to the average phase
difference between the input and feedback signals.
The first element is the PD, which produces a voltage proportional to the phase difference between its
inputs. A simple example of a digital phase detector is an Exclusive-OR gate. The second element, the
LPF, extracts the average voltage from the phase detector and applies it to the VCO. This applied voltage
alters the resonant frequency of the VCO, thus adjusting its output frequency.
Consider Figure 4-19 with the feedback path bypassing the divider and delay elements. If the LPF
steadily applies a voltage to the VCO such that the output frequency is identical to the input frequency,
this steady-state condition is known as lock. Note that the input and output phases are also identical. The
PLL core sets a LOCK output signal HIGH to indicate this condition.
Should the input frequency increase slightly, the PD detects the frequency/phase difference between its
reference and feedback input signals. Since the PD output is proportional to the phase difference, the
change causes the output from the LPF to increase. This voltage change increases the resonant
frequency of the VCO and increases the feedback frequency as a result. The PLL dynamically adjusts in
this manner until the PD senses two phase-identical signals and steady-state lock is achieved. The
opposite (decreasing PD output signal) occurs when the input frequency decreases.
Now suppose the feedback divider is inserted in the feedback path. As the division factor M (shown in
Figure 4-20 on page 85) is increased, the average phase difference increases. The average phase

Table 4-6 • –3 dB Frequency of the PLL
Minimum

(Ta = +125°C, VCCA = 1.4 V)
Typical

(Ta = +25°C, VCCA = 1.5 V)
Maximum

(Ta = –55°C, VCCA = 1.6 V)
–3 dB
Frequency

15 kHz 25 kHz 45 kHz

Figure 4-19 • Simplified PLL Core with Feedback Divider and Delay

Frequency
Reference
Input FIN

Phase
Detector

Low-Pass
Filter

Voltage
Controlled
Oscillator

Divide by M
Counter Delay

Frequency
Output
M × FIN
84 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Phase Adjustment
The four phases available (0, 90, 180, 270) are phases with respect to VCO (PLL output). The
VCO is divided to achieve the user's CCC required output frequency (GLA, YB/GLB, YC/GLC). The
division happens after the selection of the VCO phase. The effective phase shift is actually the VCO
phase shift divided by the output divider. This is why the visual CCC shows both the actual achievable
phase and more importantly the actual delay that is equivalent to the phase shift that can be
achieved.

Dynamic PLL Configuration
The CCCs can be configured both statically and dynamically.
In addition to the ports available in the Static CCC, the Dynamic CCC has the dynamic shift register
signals that enable dynamic reconfiguration of the CCC. With the Dynamic CCC, the ports CLKB and
CLKC are also exposed. All three clocks (CLKA, CLKB, and CLKC) can be configured independently.
The CCC block is fully configurable. The following two sources can act as the CCC configuration bits.

Flash Configuration Bits
The flash configuration bits are the configuration bits associated with programmed flash switches. These
bits are used when the CCC is in static configuration mode. Once the device is programmed, these bits
cannot be modified. They provide the default operating state of the CCC.

Dynamic Shift Register Outputs
This source does not require core reprogramming and allows core-driven dynamic CCC reconfiguration.
When the dynamic register drives the configuration bits, the user-defined core circuit takes full control
over SDIN, SDOUT, SCLK, SSHIFT, and SUPDATE. The configuration bits can consequently be
dynamically changed through shift and update operations in the serial register interface. Access to the
logic core is accomplished via the dynamic bits in the specific tiles assigned to the PLLs.
Figure 4-21 illustrates a simplified block diagram of the MUX architecture in the CCCs.

The selection between the flash configuration bits and the bits from the configuration register is made
using the MODE signal shown in Figure 4-21. If the MODE signal is logic HIGH, the dynamic shift
register configuration bits are selected. There are 81 control bits to configure the different functions of the
CCC.

Note: *For Fusion, bit <88:81> is also needed.
Figure 4-21 • The CCC Configuration MUX Architecture

SDIN

SCLK

RESET_ENABLE

SDOUT

SSHIFT

MODE

SUPDATE

Configuration Bits

Dynamic Shift
Register

Flash
Programming
Configuration

Bits

<80:0>*

<80>
<79:0> <79:0>*
Revision 5 87

ProASIC3 nano FPGA Fabric User’s Guide
Table 4-9 to Table 4-15 on page 94 provide descriptions of the configuration data for the configuration
bits.

Table 4-9 • Input Clock Divider, FINDIV[6:0] (/n)

FINDIV<6:0> State Divisor New Frequency Factor

0 1 1.00000

1 2 0.50000

… … …

127 128 0.0078125

Table 4-10 • Feedback Clock Divider, FBDIV[6:0] (/m)

FBDIV<6:0> State Divisor New Frequency Factor

0 1 1

1 2 2

… … …

127 128 128

Table 4-11 • Output Frequency Dividers
A Output Divider, OADIV <4:0> (/u);
B Output Divider, OBDIV <4:0> (/v);
C Output Divider, OCDIV <4:0> (/w)

OADIV<4:0>; OBDIV<4:0>;
CDIV<4:0> State Divisor New Frequency Factor

0 1 1.00000

1 2 0.50000

… … …

31 32 0.03125

Table 4-12 • MUXA, MUXB, MUXC
OAMUX<2:0>; OBMUX<2:0>; OCMUX<2:0> State MUX Input Selected
0 None. Six-input MUX and PLL are bypassed.

Clock passes only through global MUX and goes directly
into HC ribs.

1 Not available

2 PLL feedback delay line output

3 Not used

4 PLL VCO 0° phase shift

5 PLL VCO 270° phase shift

6 PLL VCO 180° phase shift

7 PLL VCO 90° phase shift
Revision 5 93

ProASIC3 nano FPGA Fabric User’s Guide
DYNCCC Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN), .GLA(GLA), .LOCK(LOCK),
.CLKB(CLKB), .GLB(GLB), .YB(), .CLKC(CLKC), .GLC(GLC), .YC(), .SDIN(SDIN),
.SCLK(SCLK), .SSHIFT(SSHIFT), .SUPDATE(SUPDATE), .MODE(MODE), .SDOUT(SDOUT),
.OADIV0(GND), .OADIV1(GND), .OADIV2(VCC), .OADIV3(GND), .OADIV4(GND), .OAMUX0(GND),
.OAMUX1(GND), .OAMUX2(VCC), .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND),
.DLYGLA3(GND), .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND),
.OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND), .OBMUX2(GND), .DLYYB0(GND),
.DLYYB1(GND), .DLYYB2(GND), .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND),
.DLYGLB1(GND), .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND),
.OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND), .OCMUX0(GND), .OCMUX1(GND),
.OCMUX2(GND), .DLYYC0(GND), .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND),
.DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND), .DLYGLC4(GND),
.FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(VCC), .FINDIV3(GND), .FINDIV4(GND),
.FINDIV5(GND), .FINDIV6(GND), .FBDIV0(GND), .FBDIV1(GND), .FBDIV2(GND),
.FBDIV3(GND), .FBDIV4(GND), .FBDIV5(VCC), .FBDIV6(GND), .FBDLY0(GND), .FBDLY1(GND),
.FBDLY2(GND), .FBDLY3(GND), .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND),
.XDLYSEL(GND), .VCOSEL0(GND), .VCOSEL1(GND), .VCOSEL2(VCC));

defparam Core.VCOFREQUENCY = 165.000;

endmodule

Delayed Clock Configuration
The CLKDLY macro can be generated with the desired delay and input clock source (Hardwired I/O,
External I/O, or Core Logic), as in Figure 4-28.

After setting all the required parameters, users can generate one or more PLL configurations with HDL or
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results
and messages in a log file:

Macro Parameters

Name : delay_macro
Family : ProASIC3
Output Format : Verilog
Type : Delayed Clock
Delay Index : 2
CLKA Source : Hardwired I/O

Total Clock Delay = 0.935 ns.

The resultant CLKDLY macro Verilog netlist is as follows:

module delay_macro(GL,CLK);

output GL;
input CLK;

Figure 4-28 • Delayed Clock Configuration Dialog Box
Revision 5 103

ProASIC3 nano FPGA Fabric User’s Guide
Place-and-Route Stage Considerations
Several considerations must be noted to properly place the CCC macros for layout.
For CCCs with clock inputs configured with the Hardwired I/O–Driven option:

• PLL macros must have the clock input pad coming from one of the GmA* locations.
• CLKDLY macros must have the clock input pad coming from one of the Global I/Os.

If a PLL with a Hardwired I/O input is used at a CCC location and a Hardwired I/O–Driven CLKDLY
macro is used at the same CCC location, the clock input of the CLKDLY macro must be chosen from one
of the GmB* or GmC* pin locations. If the PLL is not used or is an External I/O–Driven or Core Logic–
Driven PLL, the clock input of the CLKDLY macro can be sourced from the GmA*, GmB*, or GmC* pin
locations.
For CCCs with clock inputs configured with the External I/O–Driven option, the clock input pad can be
assigned to any regular I/O location (IO******** pins). Note that since global I/O pins can also be used as
regular I/Os, regardless of CCC function (CLKDLY or PLL), clock inputs can also be placed in any of
these I/O locations.
By default, the Designer layout engine will place global nets in the design at one of the six chip globals.
When the number of globals in the design is greater than six, the Designer layout engine will
automatically assign additional globals to the quadrant global networks of the low power flash devices. If
the user wishes to decide which global signals should be assigned to chip globals (six available) and
which to the quadrant globals (three per quadrant for a total of 12 available), the assignment can be
achieved with PinEditor, ChipPlanner, or by importing a placement constraint file. Layout will fail if the

Figure 4-31 • Static Timing Analysis Using SmartTime
Revision 5 107

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
global assignments are not allocated properly. See the "Physical Constraints for Quadrant Clocks"
section for information on assigning global signals to the quadrant clock networks.
Promoted global signals will be instantiated with CLKINT macros to drive these signals onto the global
network. This is automatically done by Designer when the Auto-Promotion option is selected. If the user
wishes to assign the signals to the quadrant globals instead of the default chip globals, this can done by
using ChipPlanner, by declaring a physical design constraint (PDC), or by importing a PDC file.

Physical Constraints for Quadrant Clocks
If it is necessary to promote global clocks (CLKBUF, CLKINT, PLL, CLKDLY) to quadrant clocks, the user
can define PDCs to execute the promotion. PDCs can be created using PDC commands (pre-compile) or
the MultiView Navigator (MVN) interface (post-compile). The advantage of using the PDC flow over the
MVN flow is that the Compile stage is able to automatically promote any regular net to a global net before
assigning it to a quadrant. There are three options to place a quadrant clock using PDC commands:

• Place a clock core (not hardwired to an I/O) into a quadrant clock location.
• Place a clock core (hardwired to an I/O) into an I/O location (set_io) or an I/O module location

(set_location) that drives a quadrant clock location.
• Assign a net driven by a regular net or a clock net to a quadrant clock using the following

command:
assign_local_clock -net <net name> -type quadrant <quadrant clock region>

where
<net name> is the name of the net assigned to the local user clock region.
<quadrant clock region> defines which quadrant the net should be assigned to. Quadrant
clock regions are defined as UL (upper left), UR (upper right), LL (lower left), and LR (lower right).

Note: If the net is a regular net, the software inserts a CLKINT buffer on the net.
For example:
assign_local_clock -net localReset -type quadrant UR

Keep in mind the following when placing quadrant clocks using MultiView Navigator:

Hardwired I/O–Driven CCCs
• Find the associated clock input port under the Ports tab, and place the input port at one of the

Gmn* locations using PinEditor or I/O Attribute Editor, as shown in Figure 4-32.

Figure 4-32 • Port Assignment for a CCC with Hardwired I/O Clock Input
108 Revision 5

6 – SRAM and FIFO Memories in Microsemi's Low
Power Flash Devices

Introduction
As design complexity grows, greater demands are placed upon an FPGA's embedded memory. Fusion,
IGLOO, and ProASIC3 devices provide the flexibility of true dual-port and two-port SRAM blocks. The
embedded memory, along with built-in, dedicated FIFO control logic, can be used to create cascading
RAM blocks and FIFOs without using additional logic gates.
IGLOO, IGLOO PLUS, and ProASIC3L FPGAs contain an additional feature that allows the device to be
put in a low power mode called Flash*Freeze. In this mode, the core draws minimal power (on the order
of 2 to 127 µW) and still retains values on the embedded SRAM/FIFO and registers. Flash*Freeze
technology allows the user to switch to Active mode on demand, thus simplifying power management
and the use of SRAM/FIFOs.

Device Architecture
The low power flash devices feature up to 504 kbits of RAM in 4,608-bit blocks (Figure 6-1 on page 132
and Figure 6-2 on page 133). The total embedded SRAM for each device can be found in the
datasheets. These memory blocks are arranged along the top and bottom of the device to allow better
access from the core and I/O (in some devices, they are only available on the north side of the device).
Every RAM block has a flexible, hardwired, embedded FIFO controller, enabling the user to implement
efficient FIFOs without sacrificing user gates.
In the IGLOO and ProASIC3 families of devices, the following memories are supported:

• 30 k gate devices and smaller do not support SRAM and FIFO.
• 60 k and 125 k gate devices support memories on the north side of the device only.
• 250 k devices and larger support memories on the north and south sides of the device.

In Fusion devices, the following memories are supported:
• AFS090 and AFS250 support memories on the north side of the device only.
• AFS600 and AFS1500 support memories on the north and south sides of the device.
Revision 5 131

147

ProASIC3 nano FPGA Fabric User’s Guide

Tabl

16,384 32,768 65,536
Dual-Port Dual-Port Dual-Port

W
id

th

1 4 8 16 × 1
4 × (4,096 × 1)
Cascade Deep

8 × (4,096 × 1)
Cascade Deep

16 × (4,096 × 1)
Cascade Deep

2 8 16 32
8 × (4,096 × 1)

Cascaded 4 Deep
and 2 Wide

16 × (4,096 × 1)
Cascaded 8 Deep

and 2 Wide

32 × (4,096 × 1)
Cascaded 16

Deep and 2 Wide
4 16 32 64

16 × (4,096 × 1)
Cascaded 4 Deep

and 4 Wide

32 × (4,096 × 1)
Cascaded 8 Deep

and 4 Wide

64 × (4,096 × 1)
Cascaded 16

Deep and 4 Wide
8 32 64

32 × (4,096 × 1)
Cascaded 4 Deep

and 8 Wide

64 × (4,096 × 1)
Cascaded 8 Deep

and 8 Wide
9 32

32 × (512 × 9)
Cascaded Deep

1 64
32 × (4,096 × 1)

Cascaded 4 Deep
and 16 Wide

1

3

3

6

7

Note:
Revision 5

e 6-10 • RAM and FIFO Memory Block Consumption
Depth

256 512 1,024 2,048 4,096 8,192
Two-Port Dual-Port Dual-Port Dual-Port Dual-Port Dual-Port Dual-Port

Number Block 1 1 1 1 1 1 2
Configuration Any Any Any 1,024 × 4 2,048 × 2 4,096 × 1 2 × (4,096 × 1)

Cascade Deep
Number Block 1 1 1 1 1 2 4
Configuration Any Any Any 1,024×4 2,048 × 2 2 × (4,096 × 1)

Cascaded Wide
4 × (4,096 × 1)

Cascaded 2 Deep
and 2 Wide

Number Block 1 1 1 1 2 4 8
Configuration Any Any Any 1,024 × 4 2 × (2,048 × 2)

Cascaded Wide
4 × (4,096 × 1)
Cascaded Wide

4 × (4,096 × 1)
Cascaded 2 Deep

and 4 Wide
Number Block 1 1 1 2 4 8 16
Configuration Any Any Any 2 × (1,024 × 4)

Cascaded Wide
4 × (2,048 × 2)
Cascaded Wide

8 × (4,096 × 1)
Cascaded Wide

16 × (4,096 × 1)
Cascaded 2 Deep

and 8 Wide
Number Block 1 1 1 2 4 8 16
Configuration Any Any Any 2 × (512 × 9)

Cascaded Deep
4 × (512 × 9)

Cascaded Deep
8 × (512 × 9)

Cascaded Deep
16 × (512 × 9)

Cascaded Deep
6 Number Block 1 1 1 4 8 16 32

Configuration 256 × 18 256 × 18 256 × 18 4 × (1,024 × 4)
Cascaded Wide

8 × (2,048 × 2)
Cascaded Wide

16 × (4,096 × 1)
Cascaded Wide

32 × (4,096 × 1)
Cascaded 2 Deep

and 16 Wide
8 Number Block 1 2 2 4 8 18 32

Configuration 256 × 8 2 × (512 × 9)
Cascaded Wide

2 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded 2 Deep

and 2 Wide

8 × (512 × 9)
Cascaded 4 Deep

and 2 Wide

16 × (512 × 9)
Cascaded 8 Deep

and 2 Wide

16 × (512 × 9)
Cascaded 16

Deep and 2 Wide
2 Number Block 2 4 4 8 16 32 64

Configuration 2 × (256 × 18)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

8 × (1,024 × 4)
Cascaded Wide

16 × (2,048 × 2)
Cascaded Wide

32 × (4,096 × 1)
Cascaded Wide

64 × (4,096 × 1)
Cascaded 2 Deep

and 32 Wide
6 Number Block 2 4 4 8 16 32

Configuration 2 × (256 × 18)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded 2 Deep

and 4 Wide

16 × (512 × 9)
Cascaded 4 Deep

and 4 Wide

16 × (512 × 9)
Cascaded 8 Deep

and 4 Wide
4 Number Block 4 8 8 16 32 64

Configuration 4 × (256 × 18)
Cascaded Wide

8 × (512 × 9)
Cascaded Wide

8 × (512 × 9)
Cascaded Wide

16 × (1,024 × 4)
Cascaded Wide

32 × (2,048 × 2)
Cascaded Wide

64 × (4,096 × 1)
Cascaded Wide

2 Number Block 4 8 8 16 32
Configuration 4 × (256 × 18)

Cascaded Wide
8 × (512 × 9)

Cascaded Wide
8 × (512 × 9)

Cascaded Wide
16 × (512 × 9)

Cascaded Wide
16 × (512 × 9)

Cascaded 4 Deep
and 8 Wide

Memory configurations represented by grayed cells are not supported.

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Initializing the RAM/FIFO
The SRAM blocks can be initialized with data to use as a lookup table (LUT). Data initialization can be
accomplished either by loading the data through the design logic or through the UJTAG interface. The
UJTAG macro is used to allow access from the JTAG port to the internal logic in the device. By sending
the appropriate initialization string to the JTAG Test Access Port (TAP) Controller, the designer can put
the JTAG circuitry into a mode that allows the user to shift data into the array logic through the JTAG port
using the UJTAG macro. For a more detailed explanation of the UJTAG macro, refer to the "FlashROM in
Microsemi’s Low Power Flash Devices" section on page 117.
A user interface is required to receive the user command, initialization data, and clock from the UJTAG
macro. The interface must synchronize and load the data into the correct RAM block of the design. The
main outputs of the user interface block are the following:

• Memory block chip select: Selects a memory block for initialization. The chip selects signals for
each memory block that can be generated from different user-defined pockets or simple logic,
such as a ring counter (see below).

• Memory block write address: Identifies the address of the memory cell that needs to be initialized.
• Memory block write data: The interface block receives the data serially from the UTDI port of the

UJTAG macro and loads it in parallel into the write data ports of the memory blocks.
• Memory block write clock: Drives the WCLK of the memory block and synchronizes the write

data, write address, and chip select signals.
Figure 6-8 shows the user interface between UJTAG and the memory blocks.

An important component of the interface between the UJTAG macro and the RAM blocks is a serial-
in/parallel-out shift register. The width of the shift register should equal the data width of the RAM blocks.
The RAM data arrives serially from the UTDI output of the UJTAG macro. The data must be shifted into a
shift register clocked by the JTAG clock (provided at the UDRCK output of the UJTAG macro).
Then, after the shift register is fully loaded, the data must be transferred to the write data port of the RAM
block. To synchronize the loading of the write data with the write address and write clock, the output of
the shift register can be pipelined before driving the RAM block.
The write address can be generated in different ways. It can be imported through the TAP using a
different instruction opcode and another shift register, or generated internally using a simple counter.
Using a counter to generate the address bits and sweep through the address range of the RAM blocks is

Figure 6-8 • Interfacing TAP Ports and SRAM Blocks

TRST

UJTAG

TDO

TDI
TMS
TCK

TRST

TDO

TDI

TMS

TCK

URSTB
UDRUPD

UDRSH
UDRCAP

UDRCK
UTDI

UTDO

UIREG[7:0] IR[7:0]
User Interface

WDATA
WADDR

WCLK
WEN1

WEN2
WEN3

Reset

DR_UPDATE
DR_SHIFT
DR_CAPTURE
DR_CLK
DIN
DOUT

WD
WADDR
WCLK

WEN

RAM1

WD
WADDR
WCLK

WEN

RAM2

WD
WADDR
WCLK

WEN

RAM3
148 Revision 5

7 – I/O Structures in nano Devices

Introduction
Low power flash devices feature a flexible I/O structure, supporting a range of mixed voltages (1.2 V,
1.5 V, 1.8 V, 2.5 V, and 3.3 V) through bank-selectable voltages. IGLOO® and ProASIC3 nano devices
support standard I/Os with the addition of Schmitt trigger and hot-swap capability.
Users designing I/O solutions are faced with a number of implementation decisions and configuration
choices that can directly impact the efficiency and effectiveness of their final design. The flexible I/O
structure, supporting a wide variety of voltages and I/O standards, enables users to meet the growing
challenges of their many diverse applications. The Microsemi Libero® System-on-Chip (SoC) software
provides an easy way to implement I/O that will result in robust I/O design.
This document describes Standard I/O types used for the nano devices in terms of he supported
standards. It then explains the individual features and how to implement them in Libero SoC.

Figure 7-1 • I/O Block Logical Representation for Single-Tile Designs (10 k, 15 k, and 20 k devices)

2
Output

Register

1
Input

Register

3
Output

Register

I/O / D0

I/O / OE

I/O / CLR

I/O / CLK

I/O / Q0

CLR

CLR

CLR

Scan

Y

PAD

Scan

Scan

Pull-Up/-Down
Resistor Control

Signal Drive Strength
and Slew Rate Control
Revision 5 159

ProASIC3 nano FPGA Fabric User’s Guide
I/O Software Support
In Microsemi's Libero software, default settings have been defined for the various I/O standards
supported. Changes can be made to the default settings via the use of attributes; however, not all I/O
attributes are applicable for all I/O standards.

Table 7-15 • nano I/O Attributes vs. I/O Standard Applications

I/O Standard

SLEW
(output
only)

OUT_DRIVE
(output only) RES_PULL

OUT_LOAD
(output only)

Schmitt
Trigger Hold State

Combine
Register

IGLOO
nano

ProASIC
3 nano

LVTTL/
LVCMOS3.3

✓ ✓ (8) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS2.5 ✓ ✓ (8) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.8 ✓ ✓ (4) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.5 ✓ ✓ (2) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.2 ✓ ✓ (2) ✓ ✓ – ✓ ✓ ✓

Software
Defaults

HIGH Refer to
numbers in
parentheses

in above cells.

None All
Devices:

5 pF

10 pF or
35 pF*

Off Off No

Note: *10 pF for A3PN010, A3PN015, and A3PN020; 35 pF for A3PN060, A3PN125, and A3PN250.
Revision 5 177

ProASIC3 nano FPGA Fabric User’s Guide
VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_BiDir_HSTL_I_LowEnb is
port(DataR, DataF, CLR, CLK, Trien : in std_logic; QR, QF : out std_logic;

PAD : inout std_logic) ;
end DDR_BiDir_HSTL_I_LowEnb;

architecture DEF_ARCH of DDR_BiDir_HSTL_I_LowEnb is

component INV
port(A : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component DDR_REG
port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic) ;

end component;

component BIBUF_HSTL_I
port(PAD : inout std_logic := 'U'; D, E : in std_logic := 'U'; Y : out std_logic) ;

end component;

signal TrienAux, D, Q : std_logic ;

begin

Inv_Tri : INV
port map(A => Trien, Y => TrienAux);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
DDR_REG_0_inst : DDR_REG
port map(D => D, CLK => CLK, CLR => CLR, QR => QR, QF => QF);
BIBUF_HSTL_I_0_inst : BIBUF_HSTL_I
port map(PAD => PAD, D => Q, E => TrienAux, Y => D);

end DEF_ARCH;
Revision 5 215

ProASIC3 nano FPGA Fabric User’s Guide
Table 11-6 and Table 11-7 show all available options. If you want to implement custom levels,
refer to the "Advanced Options" section on page 256 for information on each option and how to
set it.

3. When done, click Finish to generate the Security Header programming file.

Generation of Programming Files with AES Encryption—
Application 3
This section discusses how to generate design content programming files needed specifically at
unsecured or remote locations to program devices with a Security Header (FlashLock Pass Key and AES
key) already programmed ("Application 2: Nontrusted Environment—Unsecured Location" section on
page 243 and "Application 3: Nontrusted Environment—Field Updates/Upgrades" section on page 244).
In this case, the encrypted programming file must correspond to the AES key already programmed into
the device. If AES encryption was previously selected to encrypt the FlashROM, FBs, and FPGA array,
AES encryption must be set when generating the programming file for them. AES encryption can be
applied to the FlashROM only, the FBs only, the FPGA array only, or all. The user must ensure both the
FlashLock Pass Key and the AES key match those already programmed to the device(s), and all security
settings must match what was previously programmed. Otherwise, the encryption and/or device
unlocking will not be recognized when attempting to program the device with the programming file.
The generated programming file will be AES-encrypted.
In this scenario, generate the programming file as follows:

1. Deselect Security settings and select the portion of the device to be programmed (Figure 11-17
on page 254). Select Programming previously secured device(s). Click Next.

Table 11-6 • All IGLOO and ProASIC3 Header File Security Options

Security Option FlashROM Only FPGA Core Only
Both FlashROM

and FPGA

No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓

Note: ✓ = options that may be used

Table 11-7 • All Fusion Header File Security Options

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / No FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓
Revision 5 253

Security in Low Power Flash Devices
STAPL File with AES Encryption
• Does not contain AES key / FlashLock Key information
• Intended for transmission through web or service to unsecured locations for programming

===
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EF57";
NOTE "SAVE_DATA" "FRomStream";
NOTE "SECURITY" "ENCRYPT FROM CORE ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "20000000";
NOTE "SILSIG" "$00000000";

Conclusion
The new and enhanced security features offered in Fusion, IGLOO, and ProASIC3 devices provide state-
of-the-art security to designs programmed into these flash-based devices. Microsemi low power flash
devices employ the encryption standard used by NIST and the U.S. government—AES using the 128-bit
Rijndael algorithm.
The combination of an on-chip AES decryption engine and FlashLock technology provides the highest
level of security against invasive attacks and design theft, implementing the most robust and secure ISP
solution. These security features protect IP within the FPGA and protect the system from cloning,
wholesale “black box” copying of a design, invasive attacks, and explicit IP or data theft.

Glossary

References
National Institute of Standards and Technology. “ADVANCED ENCRYPTION STANDARD (AES)

Questions and Answers.” 28 January 2002 (10 January 2005).
See http://csrc.nist.gov/archive/aes/index1.html for more information.

Term Explanation

Security Header
programming file

Programming file used to program the FlashLock Pass Key and/or AES key into the device to
secure the FPGA, FlashROM, and/or FBs.

AES (encryption) key 128-bit key defined by the user when the AES encryption option is set in the Microsemi
Designer software when generating the programming file.

FlashLock Pass Key 128-bit key defined by the user when the FlashLock option is set in the Microsemi Designer
software when generating the programming file.
The FlashLock Key protects the security settings programmed to the device. Once a device
is programmed with FlashLock, whatever settings were chosen at that time are secure.

FlashLock The combined security features that protect the device content from attacks. These features
are the following:
• Flash technology that does not require an external bitstream to program the device
• FlashLock Pass Key that secures device content by locking the security settings and

preventing access to the device as defined by the user
• AES key that allows secure, encrypted device reprogrammability
258 Revision 5

http://csrc.nist.gov/archive/aes/index1.html

In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
IEEE 1532 (JTAG) Interface
The supported industry-standard IEEE 1532 programming interface builds on the IEEE 1149.1 (JTAG)
standard. IEEE 1532 defines the standardized process and methodology for ISP. Both silicon and
software issues are addressed in IEEE 1532 to create a simplified ISP environment. Any IEEE 1532
compliant programmer can be used to program low power flash devices. Device serialization is not
supported when using the IEEE1532 standard. Refer to the standard for detailed information about IEEE
1532.

Security
Unlike SRAM-based FPGAs that require loading at power-up from an external source such as a
microcontroller or boot PROM, Microsemi nonvolatile devices are live at power-up, and there is no
bitstream required to load the device when power is applied. The unique flash-based architecture
prevents reverse engineering of the programmed code on the device, because the programmed data is
stored in nonvolatile memory cells. Each nonvolatile memory cell is made up of small capacitors and any
physical deconstruction of the device will disrupt stored electrical charges.
Each low power flash device has a built-in 128-bit Advanced Encryption Standard (AES) decryption core,
except for the 30 k gate devices and smaller. Any FPGA core or FlashROM content loaded into the
device can optionally be sent as encrypted bitstream and decrypted as it is loaded. This is particularly
suitable for applications where device updates must be transmitted over an unsecured network such as
the Internet. The embedded AES decryption core can prevent sensitive data from being intercepted
(Figure 12-1 on page 265). A single 128-bit AES Key (32 hex characters) is used to encrypt FPGA core
programming data and/or FlashROM programming data in the Microsemi tools. The low power flash
devices also decrypt with a single 128-bit AES Key. In addition, low power flash devices support a
Message Authentication Code (MAC) for authentication of the encrypted bitstream on-chip. This allows
the encrypted bitstream to be authenticated and prevents erroneous data from being programmed into
the device. The FPGA core, FlashROM, and Flash Memory Blocks (FBs), in Fusion only, can be updated
independently using a programming file that is AES-encrypted (cipher text) or uses plain text.
264 Revision 5

UJTAG Applications in Microsemi’s Low Power Flash Devices
UJTAG Support in Flash-Based Devices
The flash-based FPGAs listed in Table 16-1 support the UJTAG feature and the functions described in
this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 16-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 16-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 16-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
298 Revision 5

http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf

