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allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
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their reliability and ability to handle complex algorithms
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of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.
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Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Table 1-4 • IGLOO nano and ProASIC3 nano Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO nano ProASIC3 nano (x, y) (x, y) (x, y) (x, y) (x, y) (x, y)

AGLN010 A3P010 (0, 2) (32, 5) None None (0, 0) (34, 5)

AGLN015 A3PN015 (0, 2) (32, 9) None None (0, 0) (34, 9)

AGLN020 A3PN020 (0, 2) 32, 13) None None (0, 0) (34, 13)

AGLN060 A3PN060 (3, 2) (66, 25) None (3, 26) (0, 0) (69, 29)

AGLN125 A3PN125 (3, 2) (130, 25) None (3, 26) (0, 0) (133, 29)

AGLN250 A3PN250 (3, 2) (130, 49) None (3, 50) (0, 0) (133, 49)

Note: The vertical I/O tile coordinates are not shown. West-side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)};
east-side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 1-9 • Array Coordinates for AGL600, AGLE600, A3P600, and A3PE600
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FPGA Array Architecture in Low Power Flash Devices
Routing Architecture
The routing structure of low power flash devices is designed to provide high performance through a
flexible four-level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources;
high-speed, very-long-line resources; and the high-performance VersaNet networks.
The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect
directly to every input of the eight surrounding VersaTiles (Figure 1-10). The exception to this is that the
SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaTile global network.
The efficient long-line resources provide routing for longer distances and higher-fanout connections.
These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and
horizontally, and cover the entire device (Figure 1-11 on page 19). Each VersaTile can drive signals onto
the efficient long-line resources, which can access every input of every VersaTile. Routing software
automatically inserts active buffers to limit loading effects.
The high-speed, very-long-line resources, which span the entire device with minimal delay, are used to
route very long or high-fanout nets: length ±12 VersaTiles in the vertical direction and length ±16 in the
horizontal direction from a given core VersaTile (Figure 1-12 on page 19). Very long lines in low power
flash devices have been enhanced over those in previous ProASIC families. This provides a significant
performance boost for long-reach signals.
The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from
external pins or internal logic. These nets are typically used to distribute clocks, resets, and other high-
fanout nets requiring minimum skew. The VersaNet networks are implemented as clock trees, and
signals can be introduced at any junction. These can be employed hierarchically, with signals accessing
every input of every VersaTile. For more details on VersaNets, refer to the "Global Resources in Low
Power Flash Devices" section on page 31. 

Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global
network connection.

Figure 1-10 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors

L

L L

LL

L
Inputs

O
ut

pu
t Ultra-Fast Local Lines

(connects a VersaTile to the
adjacent VersaTile, I/O buffer,
or memory block)

L L L

Long Lines
18 Revision 5



ProASIC3 nano FPGA Fabric User’s Guide
During Layout, Designer will assign two of the signals to quadrant global locations.

Step 3 (optional)
You can also assign the QCLK1_c and QCLK2_c nets to quadrant regions using the following PDC
commands:
assign_local_clock –net QCLK1_c  –type quadrant UL
assign_local_clock –net QCLK2_c  –type quadrant LL

Step 4
Import this PDC with the netlist and run Compile again. You will see the following in the Compile report:
The following nets have been assigned to a global resource:
Fanout  Type          Name
--------------------------
1536    INT_NET       Net   : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536    SET/RESET_NET Net   : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET       Net   : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET       Net   : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256     CLK_NET       Net   : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256     CLK_NET       Net   : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

The following nets have been assigned to a quadrant clock resource using PDC:
Fanout  Type          Name
--------------------------
256     CLK_NET       Net   : QCLK1_c

Driver: QCLK1_pad_CLKINT
Region: quadrant_UL

256     CLK_NET       Net   : QCLK2_c
Driver: QCLK2_pad_CLKINT
Region: quadrant_LL

Step 5
Run Layout.

Global Management in PLL Design 
This section describes the legal global network connections to PLLs in the low power flash devices. For
detailed information on using PLLs, refer to "Clock Conditioning Circuits in Low Power Flash Devices and
Mixed Signal FPGAs" section on page 61. Microsemi recommends that you use the dedicated global
pins to directly drive the reference clock input of the associated PLL for reduced propagation delays and
clock distortion. However, low power flash devices offer the flexibility to connect other signals to
reference clock inputs. Each PLL is associated with three global networks (Figure 3-5 on page 36). There
are some limitations, such as when trying to use the global and PLL at the same time:

• If you use a PLL with only primary output, you can still use the remaining two free global
networks.

• If you use three globals associated with a PLL location, you cannot use the PLL on that location.
• If the YB or YC output is used standalone, it will occupy one global, even though this signal does

not go to the global network.   
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SmartGen also allows the user to select the various delays and phase shift values necessary to adjust 
the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB, GLC, YB, and YC). 
SmartGen allows the user to select the input clock source. SmartGen automatically instantiates the 
special macro, PLLINT, when needed. 

Global Input Selections
Low power flash devices provide the flexibility of choosing one of the three global input pad locations 
available to connect to a CCC functional block or to a global / quadrant global network. Figure 4-7 on 
page 72 and Figure 4-8 on page 72 show the detailed architecture of each global input structure for 30 k 
gate devices and below, as well as 60 k gate devices and above, respectively. For 60 k gate devices and 
above (Figure 4-7 on page 72), if the single-ended I/O standard is chosen, there is flexibility to choose 
one of the global input pads (the first, second, and fourth input). Once chosen, the other I/O locations are 
used as regular I/Os. If the differential I/O standard is chosen (not applicable for IGLOO nano and 
ProASIC3 nano devices), the first and second inputs are considered as paired, and the third input is 
paired with a regular I/O. 
The user then has the choice of selecting one of the two sets to be used as the clock input source to the 
CCC functional block. There is also the option to allow an internal clock signal to feed the global network 
or the CCC functional block. A multiplexer tree selects the appropriate global input for routing to the 
desired location. Note that the global I/O pads do not need to feed the global network; they can also be 
used as regular I/O pads. 

Note: Clock divider and clock multiplier blocks are not shown in this figure or in SmartGen. They are automatically 
configured based on the user's required frequencies.

Figure 4-6 • CCC with PLL Block
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Device-Specific Layout 
Two kinds of CCCs are offered in low power flash devices: CCCs with integrated PLLs, and CCCs 
without integrated PLLs (simplified CCCs). Table 4-5 lists the number of CCCs in various devices. 

Note: nano 10 k, 15 k, and 20 k offer 6 global MUXes instead of CCCs.

Table 4-5 • Number of CCCs by Device Size and Package
Device

Package

CCCs with
Integrated 

PLLs

CCCs without 
Integrated PLLs 
(simplified CCC)ProASIC3 IGLOO

A3PN010 AGLN010 All 0 2

A3PN015 AGLN015 All 0 2

A3PN020 AGLN020 All 0 2

AGLN060 CS81 0 6

A3PN060 AGLN060 All other 
packages

1 5

AGLN125 CS81 0 6

A3PN125 AGLN125 All other 
packages

1 5

AGLN250 CS81 0 6

A3PN250 AGLN250 All other 
packages

1 5

A3P015 AGL015 All 0 2

A3P030 AGL030/AGLP030 All 0 2

AGL060/AGLP060 CS121/CS201 0 6

A3P060 AGL060/AGLP060 All other 
packages

1 5

A3P125 AGL125/AGLP125 All 1 5

A3P250/L AGL250 All 1 5

A3P400 AGL400 All 1 5

A3P600/L AGL600 All 1 5

A3P1000/L AGL1000 All 1 5

A3PE600 AGLE600 PQ208 2 4

A3PE600/L All other 
packages

6 0

A3PE1500 PQ208 2 4

A3PE1500 All other 
packages

6 0

A3PE3000/L PQ208 2 4

A3PE3000/L AGLE3000 All other 
packages

6 0

Fusion Devices
AFS090 All 1 5

AFS250, M1AFS250 All 1 5

AFS600, M7AFS600, M1AFS600 All 2 4

AFS1500, M1AFS1500 All 2 4
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    wire VCC, GND;
    
    VCC VCC_1_net(.Y(VCC));
    GND GND_1_net(.Y(GND));
    PLL Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN), 
        .GLA(GLA), .LOCK(LOCK), .GLB(), .YB(), .GLC(), .YC(), 
        .OADIV0(GND), .OADIV1(GND), .OADIV2(GND), .OADIV3(GND), 
        .OADIV4(GND), .OAMUX0(GND), .OAMUX1(GND), .OAMUX2(VCC), 
        .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND), .DLYGLA3(GND)
        , .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND), 
        .OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND), 
        .OBMUX2(GND), .DLYYB0(GND), .DLYYB1(GND), .DLYYB2(GND), 
        .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND), .DLYGLB1(GND), 
        .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND), 
        .OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND), 
        .OCMUX0(GND), .OCMUX1(GND), .OCMUX2(GND), .DLYYC0(GND), 
        .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND), 
        .DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND)
        , .DLYGLC4(GND), .FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(
        VCC), .FINDIV3(GND), .FINDIV4(GND), .FINDIV5(GND), 
        .FINDIV6(GND), .FBDIV0(VCC), .FBDIV1(GND), .FBDIV2(VCC), 
        .FBDIV3(GND), .FBDIV4(GND), .FBDIV5(GND), .FBDIV6(GND), 
        .FBDLY0(GND), .FBDLY1(GND), .FBDLY2(GND), .FBDLY3(GND), 
        .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND), .XDLYSEL(GND), 
        .VCOSEL0(GND), .VCOSEL1(GND), .VCOSEL2(GND));
    defparam Core.VCOFREQUENCY = 33.000;  
endmodule

The "PLL Configuration Bits Description" section on page 90 provides descriptions of the PLL 
configuration bits for completeness. The configuration bits are shown as busses only for purposes of 
illustration. They will actually be broken up into individual pins in compilation libraries and all simulation 
models. For example, the FBSEL[1:0] bus will actually appear as pins FBSEL1 and FBSEL0. The setting 
of these select lines for the static PLL configuration is performed by the software and is completely 
transparent to the user.
Revision 5 99



ProASIC3 nano FPGA Fabric User’s Guide
When SmartGen is used to define the configuration that will be shifted in via the serial interface, 
SmartGen prints out the values of the 81 configuration bits. For ease of use, several configuration bits 
are automatically inferred by SmartGen when the dynamic PLL core is generated; however, <71:73> 
(STATASEL, STATBSEL, STATCSEL) and <77:79> (DYNASEL, DYNBSEL, DYNCSEL) depend on the 
input clock source of the corresponding CCC. Users must first run Layout in Designer to determine the 
exact setting for these ports. After Layout is complete, generate the "CCC_Configuration" report by 
choosing Tools > Reports > CCC_Configuration in the Designer software. Refer to "PLL Configuration 
Bits Description" on page 90 for descriptions of the PLL configuration bits. For simulation purposes, bits 
<71:73> and <78:80> are "don't care." Therefore, it is strongly suggested that SmartGen be used to 
generate the correct configuration bit settings for the dynamic PLL core.
After setting all the required parameters, users can generate one or more PLL configurations with HDL or 
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results 
and messages in a log file:
****************
Macro Parameters
****************

Name                            : dyn_pll_hardio
Family                          : ProASIC3E
Output Format                   : VERILOG
Type                            : Dynamic CCC
Input Freq(MHz)                 : 30.000
CLKA Source                     : Hardwired I/O
Feedback Delay Value Index      : 1
Feedback Mux Select             : 1
XDLY Mux Select                 : No
Primary Freq(MHz)               : 33.000
Primary PhaseShift              : 0
Primary Delay Value Index       : 1
Primary Mux Select              : 4
Secondary1 Freq(MHz)            : 40.000
Use GLB                         : YES
Use YB                          : NO
GLB Delay Value Index           : 1
YB Delay Value Index            : 1
Secondary1 PhaseShift           : 0
Secondary1 Mux Select           : 0
Secondary1 Input Freq(MHz)      : 40.000
CLKB Source                     : Hardwired I/O
Secondary2 Freq(MHz)            : 50.000
Use GLC                         : YES
Use YC                          : NO
GLC Delay Value Index           : 1
YC Delay Value Index            : 1
Secondary2 PhaseShift           : 0
Secondary2 Mux Select           : 0
Secondary2 Input Freq(MHz)      : 50.000
CLKC Source                     : Hardwired I/O

Configuration Bits:
FINDIV[6:0]     0000101
FBDIV[6:0]      0100000
OADIV[4:0]      00100
OBDIV[4:0]      00000
OCDIV[4:0]      00000
OAMUX[2:0]      100
OBMUX[2:0]      000
OCMUX[2:0]      000
FBSEL[1:0]      01
FBDLY[4:0]      00000
XDLYSEL         0
DLYGLA[4:0]     00000
DLYGLB[4:0]     00000
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Figure 5-2 • Fusion Device Architecture Overview (AFS600) 

Figure 5-3 • ProASIC3 and IGLOO Device Architecture 
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FlashROM Security
Low power flash devices have an on-chip Advanced Encryption Standard (AES) decryption core,
combined with an enhanced version of the Microsemi flash-based lock technology (FlashLock®).
Together, they provide unmatched levels of security in a programmable logic device. This security
applies to both the FPGA core and FlashROM content. These devices use the 128-bit AES (Rijndael)
algorithm to encrypt programming files for secure transmission to the on-chip AES decryption core. The
same algorithm is then used to decrypt the programming file. This key size provides approximately 3.4 ×
1038 possible 128-bit keys. A computing system that could find a DES key in a second would take
approximately 149 trillion years to crack a 128-bit AES key. The 128-bit FlashLock feature in low power
flash devices works via a FlashLock security Pass Key mechanism, where the user locks or unlocks the
device with a user-defined key. Refer to the "Security in Low Power Flash Devices" section on page 235. 
If the device is locked with certain security settings, functions such as device read, write, and erase are
disabled. This unique feature helps to protect against invasive and noninvasive attacks. Without the
correct Pass Key, access to the FPGA is denied. To gain access to the FPGA, the device first must be
unlocked using the correct Pass Key. During programming of the FlashROM or the FPGA core, you can
generate the security header programming file, which is used to program the AES key and/or FlashLock
Pass Key. The security header programming file can also be generated independently of the FlashROM
and FPGA core content. The FlashLock Pass Key is not stored in the FlashROM. 
Low power flash devices with AES-based security allow for secure remote field updates over public
networks such as the Internet, and ensure that valuable intellectual property (IP) remains out of the
hands of IP thieves. Figure 5-5 shows this flow diagram.  

Figure 5-5 • Programming FlashROM Using AES
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Figure 5-7 • Accessing FlashROM Using FPGA Core

Figure 5-8 • Accessing FlashROM Using JTAG Port
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Figure 6-2 • Fusion Device Architecture Overview (AFS600) 
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– If one of the registers has a PRE pin, all the other registers that are candidates for combining
in the I/O must have a PRE pin.

– If one of the registers has neither a CLR nor a PRE pin, all the other registers that are
candidates for combining must have neither a CLR nor a PRE pin.

– If the clear or preset pins are present, they must have the same polarity.
– If the clear or preset pins are present, they must be driven by the same signal (net).

3. For single-tile devices (10 k, 15 k, and 20 k): Registers connected to an I/O on the Output and
Output Enable pins must have the same clock function (both CLR and CLK are shared among all
registers):
– Both the Output and Output Enable registers must not have an E pin (clock enable).

4. For dual-tile devices (60 k, 125 k, and 250 k): Registers connected to an I/O on the Output and
Output Enable pins must have the same clock and enable function:
– Both the Output and Output Enable registers must have an E pin (clock enable), or none at all.
– If the E pins are present, they must have the same polarity. The CLK pins must also have the

same polarity.
In some cases, the user may want registers to be combined with the input of a bibuf while
maintaining the output as-is. This can be achieved by using PDC commands as follows:

set_io <signal name> -REGISTER yes ------register will combine
set_preserve <signal name> ----register will not combine

Weak Pull-Up and Weak Pull-Down Resistors
nano devices support optional weak pull-up and pull-down resistors on each I/O pin. When the I/O is
pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled down, it is
connected to GND. Refer to the datasheet for more information.
For low power applications and when using IGLOO nano devices, configuration of the pull-up or pull-
down of the I/O can be used to set the I/O to a known state while the device is in Flash*Freeze mode.
Refer to "Flash*Freeze Technology and Low Power Modes" in an applicable FPGA fabric user’s guide for
more information.
The Flash*Freeze (FF) pin cannot be configured with a weak pull-down or pull-up I/O attribute, as the
signal needs to be driven at all times.

Output Slew Rate Control
The slew rate is the amount of time an input signal takes to get from logic LOW to logic HIGH or vice
versa.
It is commonly defined as the propagation delay between 10% and 90% of the signal's voltage swing.
Slew rate control is available for the output buffers of low power flash devices. The output buffer has a
programmable slew rate for both HIGH-to-LOW and LOW-to-HIGH transitions. 
The slew rate can be implemented by using a PDC command (Table 7-5 on page 163), setting it "High"
or "Low" in the I/O Attribute Editor in Designer, or instantiating a special I/O macro. The default slew rate
value is "High."
Microsemi recommends the high slew rate option to minimize the propagation delay. This high-speed
option may introduce noise into the system if appropriate signal integrity measures are not adopted.
Selecting a low slew rate reduces this kind of noise but adds some delays in the system. Low slew rate is
recommended when bus transients are expected. 

Output Drive
The output buffers of nano devices can provide multiple drive strengths to meet signal integrity
requirements. The LVTTL and LVCMOS (except 1.2 V LVCMOS) standards have selectable drive
strengths. 
Drive strength should also be selected according to the design requirements and noise immunity of the
system.
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3. Double-click I/O to open the Create Core window, which is shown in Figure 8-3).

As seen in Figure 8-3, there are five tabs to configure the I/O macro: Input Buffers, Output Buffers,
Bidirectional Buffers, Tristate Buffers, and DDR.

Input Buffers
There are two variations: Regular and Special.
If the Regular variation is selected, only the Width (1 to 128) needs to be entered. The default value for
Width is 1.
The Special variation has Width, Technology, Voltage Level, and Resistor Pull-Up/-Down options (see
Figure 8-3). All the I/O standards and supply voltages (VCCI) supported for the device family are available
for selection.

Figure 8-3 • I/O Create Core Window
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I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is 

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin 

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero SoC integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero SoC. Refer to the Libero SoC User’s Guide or Libero online help for details on how to set up the
Libero tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 8-6 on page 193).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist. 
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Security in Low Power Flash Devices
Security Features
IGLOO and ProASIC3 devices have two entities inside: FlashROM and the FPGA core fabric. Fusion
devices contain three entities: FlashROM, FBs, and the FPGA core fabric. The parts can be programmed
or updated independently with a STAPL programming file. The programming files can be AES-encrypted
or plaintext. This allows maximum flexibility in providing security to the entire device. Refer to the
"Programming Flash Devices" section on page 221 for information on the FlashROM structure.
Unlike SRAM-based FPGA devices, which require a separate boot PROM to store programming data,
low power flash devices are nonvolatile, and the secured configuration data is stored in on-chip flash
cells that are part of the FPGA fabric. Once programmed, this data is an inherent part of the FPGA array
and does not need to be loaded at system power-up. SRAM-based FPGAs load the configuration
bitstream upon power-up; therefore, the configuration is exposed and can be read easily.
The built-in FPGA core, FBs, and FlashROM support programming files encrypted with the 128-bit AES
(FIPS-192) block ciphers. The AES key is stored in dedicated, on-chip flash memory and can be
programmed before the device is shipped to other parties (allowing secure remote field updates).

Security in ARM-Enabled Low Power Flash Devices 
There are slight differences between the regular flash devices and the ARM®-enabled flash devices,
which have the M1 and M7 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design is encrypted along with the ARM IP, according to the details below. 

Figure 11-3 • Block Representation of the AES Decryption Core in a Fusion AFS600 FPGA 
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For this scenario, generate the programming file as follows:
1. Select only the Security settings option, as indicated in Figure 11-14 and Figure 11-15 on

page 252. Click Next.

Table 11-5 • FlashLock Security Options for Fusion

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / no FlashLock – – – –

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓

Figure 11-14 • Programming IGLOO and ProASIC3 Security Settings Only
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Table 11-6 and Table 11-7 show all available options. If you want to implement custom levels,
refer to the "Advanced Options" section on page 256 for information on each option and how to
set it. 

3. When done, click Finish to generate the Security Header programming file. 

Generation of Programming Files with AES Encryption—
Application 3
This section discusses how to generate design content programming files needed specifically at
unsecured or remote locations to program devices with a Security Header (FlashLock Pass Key and AES
key) already programmed ("Application 2: Nontrusted Environment—Unsecured Location" section on
page 243 and "Application 3: Nontrusted Environment—Field Updates/Upgrades" section on page 244).
In this case, the encrypted programming file must correspond to the AES key already programmed into
the device. If AES encryption was previously selected to encrypt the FlashROM, FBs, and FPGA array,
AES encryption must be set when generating the programming file for them. AES encryption can be
applied to the FlashROM only, the FBs only, the FPGA array only, or all. The user must ensure both the
FlashLock Pass Key and the AES key match those already programmed to the device(s), and all security
settings must match what was previously programmed. Otherwise, the encryption and/or device
unlocking will not be recognized when attempting to program the device with the programming file.
The generated programming file will be AES-encrypted.
In this scenario, generate the programming file as follows:

1. Deselect Security settings and select the portion of the device to be programmed (Figure 11-17
on page 254). Select Programming previously secured device(s). Click Next.

Table 11-6 • All IGLOO and ProASIC3 Header File Security Options

Security Option FlashROM Only FPGA Core Only
Both FlashROM 

and FPGA

No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓

Note: ✓ = options that may be used

Table 11-7 • All Fusion Header File Security Options 

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / No FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓
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Security in Low Power Flash Devices
Choose the High security level to reprogram devices using both the FlashLock Pass Key and AES key
protection (Figure 11-18 on page 255). Enter the AES key and click Next.
A device that has already been secured with FlashLock and has an AES key loaded must recognize the
AES key to program the device and generate a valid bitstream in authentication. The FlashLock Key is
only required to unlock the device and change the security settings. 
This is what makes it possible to program in an untrusted environment. The AES key is protected inside
the device by the FlashLock Key, so you can only program if you have the correct AES key. In fact, the
AES key is not in the programming file either. It is the key used to encrypt the data in the file. The same
key previously programmed with the FlashLock Key matches to decrypt the file. 
An AES-encrypted file programmed to a device without FlashLock would not be secure, since without
FlashLock to protect the AES key, someone could simply reprogram the AES key first, then program with
any AES key desired or no AES key at all. This option is therefore not available in the software. 

Note: The settings in this figure are used to show the generation of an AES-encrypted programming file for the FPGA
array, FlashROM, and FB contents. One or all locations may be selected for encryption.

Figure 11-17 • Settings to Program a Device Secured with FlashLock and using AES Encryption 
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Fine Tuning
In some applications, design constants or parameters need to be modified after programming the original
design. The tuning process can be done using the UJTAG tile without reprogramming the device with
new values. If the parameters or constants of a design are stored in distributed registers or embedded
SRAM blocks, the new values can be shifted onto the JTAG TAP Controller pins, replacing the old
values. The UJTAG tile is used as the “bridge” for data transfer between the JTAG pins and the FPGA
VersaTiles or SRAM logic. Figure 16-5 shows a flow chart example for fine-tuning application steps using
the UJTAG tile.
In Figure 16-5, the TMS signal sets the TAP Controller state machine to the appropriate states. The flow
mainly consists of two steps: a) shifting the defined instruction and b) shifting the new data. If the target
parameter is constantly used in the design, the new data can be shifted into a temporary shift register
from UTDI. The UDRSH output of UJTAG can be used as a shift-enable signal, and UDRCK is the shift
clock to the shift register. Once the shift process is completed and the TAP Controller state is moved to
the Update_DR state, the UDRUPD output of the UJTAG can latch the new parameter value from the
temporary register into a permanent location. This avoids any interruption or malfunctioning during the
serial shift of the new value. 

Figure 16-5 • Flow Chart Example of Fine-Tuning an Application Using UJTAG
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