E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	77
Number of Gates	30000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3pn030-zvqg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

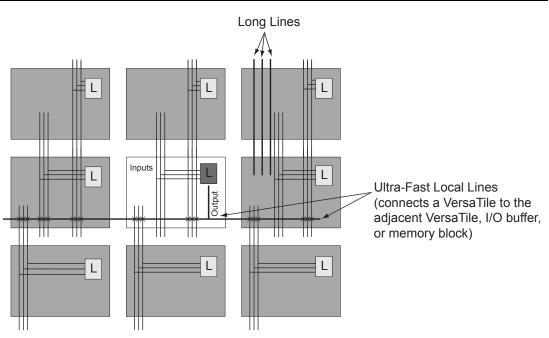
Microsemi.

Table of Contents

8	I/O Software Control in Low Power Flash Devices.	
	Flash FPGAs I/O Support	
	Software-Controlled I/O Attributes	
	Implementing I/Os in Microsemi Software	
	Assigning Technologies and VREF to I/O Banks	
	Conclusion	
	Related Documents	
	List of Changes	204
9	DDR for Microsemi's Low Power Flash Devices	
	Introduction	
	Double Data Rate (DDR) Architecture	205
	DDR Support in Flash-Based Devices	206
	I/O Cell Architecture	207
	Input Support for DDR	209
	Output Support for DDR	209
	Instantiating DDR Registers	210
	Design Example	216
	Conclusion	218
	List of Changes	219
10	Programming Flash Devices	. 221
	Summary of Programming Support	
	Programming Support in Flash Devices	
	General Flash Programming Information	
	Important Programming Guidelines	
	Related Documents	
	List of Changes	
11	Security in Low Power Fleeb Devices	0.0E
11	Security in Low Power Flash Devices	
	Security in Programmable Logic	
	Security Support in Flash-Based Devices	
	Security Architecture	
	Security Features	
	Security in Action	
	FlashROM Security Use Models	
	Generating Programming Files	247
	Conclusion	258
	Glossary	258
	References	258
	Related Documents	259
	List of Changes	259
12	In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using FlashPro4/3/3X	. 261
	Introduction	261
	ISP Architecture	261
	ISP Support in Flash-Based Devices	
	Programming Voltage (VPUMP) and VJTAG	
	Nonvolatile Memory (NVM) Programming Voltage	

FPGA Array Architecture in Low Power Flash Devices

Routing Architecture


The routing structure of low power flash devices is designed to provide high performance through a flexible four-level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources; high-speed, very-long-line resources; and the high-performance VersaNet networks.

The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect directly to every input of the eight surrounding VersaTiles (Figure 1-10). The exception to this is that the SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaTile global network.

The efficient long-line resources provide routing for longer distances and higher-fanout connections. These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and horizontally, and cover the entire device (Figure 1-11 on page 19). Each VersaTile can drive signals onto the efficient long-line resources, which can access every input of every VersaTile. Routing software automatically inserts active buffers to limit loading effects.

The high-speed, very-long-line resources, which span the entire device with minimal delay, are used to route very long or high-fanout nets: length ± 12 VersaTiles in the vertical direction and length ± 16 in the horizontal direction from a given core VersaTile (Figure 1-12 on page 19). Very long lines in low power flash devices have been enhanced over those in previous ProASIC families. This provides a significant performance boost for long-reach signals.

The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from external pins or internal logic. These nets are typically used to distribute clocks, resets, and other high-fanout nets requiring minimum skew. The VersaNet networks are implemented as clock trees, and signals can be introduced at any junction. These can be employed hierarchically, with signals accessing every input of every VersaTile. For more details on VersaNets, refer to the "Global Resources in Low Power Flash Devices" section on page 31.

Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global network connection.

Figure 1-10 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors

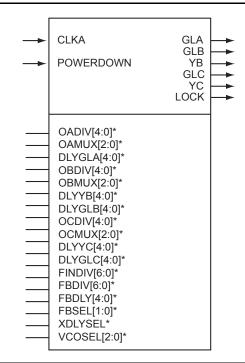


Figure 2-1 • CCC/PLL Macro

User Low Static (Idle) Mode

User Low Static (Idle) mode is an advanced feature supported by ProASIC3/E devices to reduce static (idle) power consumption. Entering and exiting this mode is made possible using the ULSICC macro by setting its value to disable/enable the User Low Static (Idle) mode. Under typical operating conditions, characterization results show up to 25% reduction of the static (idle) power consumption. The greatest power savings in terms of percentage are seen in the smaller members of the ProASIC3 family. The active-high control signal for User Low Static (Idle) mode can be generated by internal or external logic. When the device is operating in User Low Static (Idle) mode, FlashROM functionality is temporarily disabled to save power. If FlashROM functionality is needed, the device can exit User Low Static mode temporarily and re-enter the mode once the functionality is no longer needed.

To utilize User Low Static (Idle) mode, simply instantiate the ULSICC macro (Table 2-2 on page 24) in your design, and connect the input port to either an internal logic signal or a device package pin, as illustrated in Figure 2-2 on page 24 or Figure 2-3 on page 25, respectively. The attribute is used so the Synplify[®] synthesis tool will not optimize the instance with no output port.

This mode can be used to lower standard static (idle) power consumption when the FlashROM feature is not needed. Configuring the device to enter User Low Static (Idle) mode is beneficial when the FPGA enters and exits static mode frequently and lowering power consumption as much as possible is desired. The device is still functional, and data is retained in this state so the device can enter and exit this mode quickly, resulting in reduced total power consumption. The device can also stay in User Low Static mode when the FlashROM feature is not used in the device.

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs

CLKDLY Macro Usage

When a CLKDLY macro is used in a CCC location, the programmable delay element is used to allow the clock delays to go to the global network. In addition, the user can bypass the PLL in a CCC location integrated with a PLL, but use the programmable delay that is associated with the global network by instantiating the CLKDLY macro. The same is true when using programmable delay elements in a CCC location with no PLLs (the user needs to instantiate the CLKDLY macro). There is no difference between the programmable delay elements used for the PLL and the CLKDLY macro. The CCC will be configured to use the programmable delay elements in accordance with the macro instantiated by the user.

As an example, if the PLL is not used in a particular CCC location, the designer is free to specify up to three CLKDLY macros in the CCC, each of which can have its own input frequency and delay adjustment options. If the PLL core is used, assuming output to only one global clock network, the other two global clock networks are free to be used by either connecting directly from the global inputs or connecting from one or two CLKDLY macros for programmable delay.

The programmable delay elements are shown in the block diagram of the PLL block shown in Figure 4-6 on page 71. Note that any CCC locations with no PLL present contain only the programmable delay blocks going to the global networks (labeled "Programmable Delay Type 2"). Refer to the "Clock Delay Adjustment" section on page 86 for a description of the programmable delay types used for the PLL. Also refer to Table 4-14 on page 94 for Programmable Delay Type 1 step delay values, and Table 4-15 on page 94 for Programmable Delay Type 2 step delay values. CCC locations with a PLL present can be configured to utilize only the programmable delay blocks (Programmable Delay Type 2) going to the global networks A, B, and C.

Global network A can be configured to use only the programmable delay element (bypassing the PLL) if the PLL is not used in the design. Figure 4-6 on page 71 shows a block diagram of the PLL, where the programmable delay elements are used for the global networks (Programmable Delay Type 2).

Available I/O Standards

LKBUF_LVCMOS5
LKBUF_LVCMOS33 ¹
LKBUF_LVCMOS25 ²
LKBUF_LVCMOS18
LKBUF_LVCMOS15
LKBUF_PCI
LKBUF_PCIX ³
LKBUF_GTL25 ^{2,3}
LKBUF_GTL33 ^{2,3}
LKBUF_GTLP25 ^{2,3}
LKBUF_GTLP33 ^{2,3}
LKBUF_HSTL_I ^{2,3}
LKBUF_HSTL_II ^{2,3}
LKBUF_SSTL3_I ^{2,3}
LKBUF_SSTL3_II ^{2,3}
LKBUF_SSTL2_I ^{2,3}
LKBUF_SSTL2_II ^{2,3}
LKBUF_LVDS ^{4,5}
LKBUF_LVPECL ⁵

Notes:

- 1. By default, the CLKBUF macro uses 3.3 V LVTTL I/O technology. For more details, refer to the IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide.
- 2. I/O standards only supported in ProASIC3E and IGLOOe families.
- 3. I/O standards only supported in the following Fusion devices: AFS600 and AFS1500.
- 4. B-LVDS and M-LVDS standards are supported by CLKBUF_LVDS.
- 5. Not supported for IGLOO nano and ProASIC3 nano devices.

Global Synthesis Constraints

The Synplify[®] synthesis tool, by default, allows six clocks in a design for Fusion, IGLOO, and ProASIC3. When more than six clocks are needed in the design, a user synthesis constraint attribute, syn_global_buffers, can be used to control the maximum number of clocks (up to 18) that can be inferred by the synthesis engine.

High-fanout nets will be inferred with clock buffers and/or internal clock buffers. If the design consists of CCC global buffers, they are included in the count of clocks in the design.

The subsections below discuss the clock input source (global buffers with no programmable delays) and the clock conditioning functional block (global buffers with programmable delays and/or PLL function) in detail.

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs

```
DLYGLC[4:0] 00000
DLYYB[4:0] 00000
DLYYC[4:0] 00000
VCOSEL[2:0] 100
```

Primary Clock Frequency 33.000 Primary Clock Phase Shift 0.000 Primary Clock Output Delay from CLKA 1.695

Secondaryl Clock Frequency 40.000 Secondaryl Clock Phase Shift 0.000 Secondaryl Clock Global Output Delay from CLKB 0.200

Secondary2 Clock Frequency 50.000 Secondary2 Clock Phase Shift 0.000 Secondary2 Clock Global Output Delay from CLKC 0.200

NAME	SDIN	VALUE	TYPE
FINDIV	[6:0]	0000101	EDIT
FBDIV	[13:7]	0100000	EDIT
OADIV	[18:14]	00100	EDIT
OBDIV	[23:19]	00000	EDIT
OCDIV	[28:24]	00000	EDIT
OAMUX	[31:29]	100	EDIT
OBMUX	[34:32]	000	EDIT
OCMUX	[37:35]	000	EDIT
FBSEL	[39:38]	01	EDIT
FBDLY	[44:40]	00000	EDIT
XDLYSEL	[45]	0	EDIT
DLYGLA	[50:46]	00000	EDIT
DLYGLB	[55:51]	00000	EDIT
DLYGLC	[60:56]	00000	EDIT
DLYYB	[65:61]	00000	EDIT
DLYYC	[70:66]	00000	EDIT
STATASEL	[71]	X	MASKED
STATBSEL	[72]	X	MASKED
STATCSEL	[73]	X	MASKED
VCOSEL	[76:74]	100	EDIT
DYNASEL	[77]	X	MASKED
DYNBSEL	[78]	X	MASKED
DYNCSEL	[79]	X	MASKED
RESETEN	[80]	1	READONLY

Below is the resultant Verilog HDL description of a legal dynamic PLL core configuration generated by SmartGen:

module dyn_pll_macro(POWERDOWN, CLKA, LOCK, GLA, GLB, GLC, SDIN, SCLK, SSHIFT, SUPDATE, MODE, SDOUT, CLKB, CLKC);

input POWERDOWN, CLKA; output LOCK, GLA, GLB, GLC; input SDIN, SCLK, SSHIFT, SUPDATE, MODE; output SDOUT; input CLKB, CLKC; wire VCC, GND; VCC VCC_1_net(.Y(VCC));

GND GND_1_net(.Y(GND));

The following is an example of a PLL configuration utilizing the clock frequency synthesis and clock delay adjustment features. The steps include generating the PLL core with SmartGen, performing simulation for verification with Model *Sim*, and performing static timing analysis with SmartTime in Designer.

Parameters of the example PLL configuration:

Input Frequency – 20 MHz

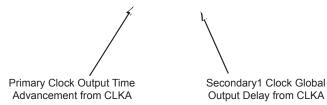
Primary Output Requirement - 20 MHz with clock advancement of 3.02 ns

Secondary 1 Output Requirement - 40 MHz with clock delay of 2.515 ns

Figure 4-29 shows the SmartGen settings. Notice that the overall delays are calculated automatically, allowing the user to adjust the delay elements appropriately to obtain the desired delays.

Figure 4-29 • SmartGen Settings

After confirming the correct settings, generate a structural netlist of the PLL and verify PLL core settings by checking the log file:


Name	:	test_pll_delays
Family	:	ProASIC3E
Output Format	:	VHDL
Туре	:	Static PLL
Input Freq(MHz)	:	20.000
CLKA Source	:	Hardwired I/O
Feedback Delay Value Index	:	21
Feedback Mux Select	:	2
XDLY Mux Select	:	No
Primary Freq(MHz)	:	20.000
Primary PhaseShift	:	0
Primary Delay Value Index	:	1
Primary Mux Select	:	4
Secondaryl Freq(MHz)	:	40.000
Use GLB	:	YES
Use YB	:	NO
 Primary Clock frequency 20.000 Primary Clock Phase Shift 0.000		

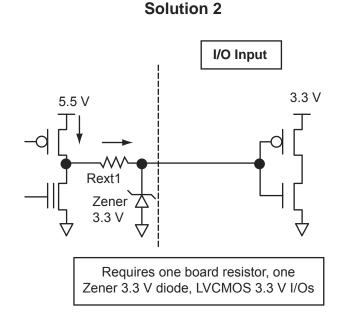
Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs

Primary Clock Output Delay from CLKA -3.020 Secondary1 Clock frequency 40.000 Secondary1 Clock Phase Shift 0.000 Secondary1 Clock Global Output Delay from CLKA 2.515

Next, perform simulation in Model*Sim* to verify the correct delays. Figure 4-30 shows the simulation results. The delay values match those reported in the SmartGen PLL Wizard.

Figure 4-30 • Model Sim Simulation Results

The timing can also be analyzed using SmartTime in Designer. The user should import the synthesized netlist to Designer, perform Compile and Layout, and then invoke SmartTime. Go to **Tools** > **Options** and change the maximum delay operating conditions to **Typical Case**. Then expand the Clock-to-Out paths of GLA and GLB and the individual components of the path delays are shown. The path of GLA is shown in Figure 4-31 on page 107 displaying the same delay value.


Table 6-10 • RAM and FIFO Memory Block Consumption

		Depth										
	Ī		2	56	512	1,024	2,048	4,096	8,192	16,384	32,768	65,536
	Ī		Two-Port	Dual-Port	Dual-Port	Dual-Port	Dual-Port	Dual-Port	Dual-Port	Dual-Port	Dual-Port	Dual-Port
	1	Number Block	1	1	1	1	1	1	2	4	8	16 × 1
		Configuration	Any	Any	Any	1,024 × 4	2,048 × 2	4,096 × 1	2 × (4,096 × 1) Cascade Deep	4 × (4,096 × 1) Cascade Deep	8 × (4,096 × 1) Cascade Deep	16 × (4,096 × 1) Cascade Deep
	2	Number Block	1	1	1	1	1	2	4	8	16	32
		Configuration	Any	Any	Any	1,024×4	2,048 × 2	2 × (4,096 × 1) Cascaded Wide	4 × (4,096 × 1) Cascaded 2 Deep and 2 Wide	8 × (4,096 × 1) Cascaded 4 Deep and 2 Wide	16 × (4,096 × 1) Cascaded 8 Deep and 2 Wide	32 × (4,096 × 1) Cascaded 16 Deep and 2 Wide
	4	Number Block	1	1	1	1	2	4	8	16	32	64
		Configuration	Any	Any	Any	1,024 × 4	2 × (2,048 × 2) Cascaded Wide	4 × (4,096 × 1) Cascaded Wide	4 × (4,096 × 1) Cascaded 2 Deep and 4 Wide	16 × (4,096 × 1) Cascaded 4 Deep and 4 Wide	32 × (4,096 × 1) Cascaded 8 Deep and 4 Wide	64 × (4,096 × 1) Cascaded 16 Deep and 4 Wide
	8	Number Block	1	1	1	2	4	8	16	32	64	
Width		Configuration	Any	Any	Any	2 × (1,024 × 4) Cascaded Wide	4 × (2,048 × 2) Cascaded Wide	8 × (4,096 × 1) Cascaded Wide	16 × (4,096 × 1) Cascaded 2 Deep and 8 Wide	32 × (4,096 × 1) Cascaded 4 Deep and 8 Wide	64 × (4,096 × 1) Cascaded 8 Deep and 8 Wide	
	9	Number Block	1	1	1	2	4	8	16	32		
		Configuration	Any	Any	Any	2 × (512 × 9) Cascaded Deep	4 × (512 × 9) Cascaded Deep	8 × (512 × 9) Cascaded Deep	16 × (512 × 9) Cascaded Deep	32 × (512 × 9) Cascaded Deep		
	16	Number Block	1	1	1	4	8	16	32	64		
		Configuration	256 × 18	256 × 18	256 × 18	4 × (1,024 × 4) Cascaded Wide	8 × (2,048 × 2) Cascaded Wide	16 × (4,096 × 1) Cascaded Wide	32 × (4,096 × 1) Cascaded 2 Deep and 16 Wide	32 × (4,096 × 1) Cascaded 4 Deep and 16 Wide		
	18	Number Block	1	2	2	4	8	18	32			
		Configuration	256 × 8	2 × (512 × 9) Cascaded Wide	2 × (512 × 9) Cascaded Wide	4 × (512 × 9) Cascaded 2 Deep and 2 Wide	8 × (512 × 9) Cascaded 4 Deep and 2 Wide	16 × (512 × 9) Cascaded 8 Deep and 2 Wide	16 × (512 × 9) Cascaded 16 Deep and 2 Wide			
	32	Number Block	2	4	4	8	16	32	64			
		Configuration	2 × (256 × 18) Cascaded Wide	4 × (512 × 9) Cascaded Wide	4 × (512 × 9) Cascaded Wide	8 × (1,024 × 4) Cascaded Wide	16 × (2,048 × 2) Cascaded Wide	32 × (4,096 × 1) Cascaded Wide	64 × (4,096 × 1) Cascaded 2 Deep and 32 Wide			
	36	Number Block	2	4	4	8	16	32				
		Configuration	2 × (256 × 18) Cascaded Wide	4 × (512 × 9) Cascaded Wide	4 × (512 × 9) Cascaded Wide	4 × (512 × 9) Cascaded 2 Deep and 4 Wide	16 × (512 × 9) Cascaded 4 Deep and 4 Wide	16 × (512 × 9) Cascaded 8 Deep and 4 Wide				
	64	Number Block	4	8	8	16	32	64				
		Configuration	4 × (256 × 18) Cascaded Wide	8 × (512 × 9) Cascaded Wide	8 × (512 × 9) Cascaded Wide	16 × (1,024 × 4) Cascaded Wide	32 × (2,048 × 2) Cascaded Wide	64 × (4,096 × 1) Cascaded Wide				
	72	Number Block	4	8	8	16	32					
		Configuration	4 × (256 × 18) Cascaded Wide	8 × (512 × 9) Cascaded Wide	8 × (512 × 9) Cascaded Wide	16 × (512 × 9) Cascaded Wide	16 × (512 × 9) Cascaded 4 Deep and 8 Wide					

Note: Memory configurations represented by grayed cells are not supported.

Solution 2

This solution requires one board resistor and one Zener 3.3 V diode, as demonstrated in Figure 7-6.

Figure 7-6 • Solution 2

Solution 3

This solution requires a bus switch on the board, as demonstrated in Figure 7-7.

Figure 7-7 • Solution 3

I/O Structures in nano Devices

Refer to Table 7-10 on page 169 for more information about the slew rate and drive strength specification for LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V, LVCMOS 1.8 V, LVCMOS 1.5 V, and LVCMOS 1.2 V output buffers.

I/O Standards	2 mA	4 mA	6 mA	8 mA	SI	ew
LVTTL / LVCMOS 3.3 V	1	1	~	1	High	Low
LVCMOS 2.5 V	1	1	1	1	High	Low
LVCMOS 1.8 V	1	<i>✓</i>	-	-	High	Low
LVCMOS 1.5 V	1	-	-	-	High	Low
LVCMOS 1.2 V	1	-	-	-	High	Low

Table 7-14 • nano Output Drive and Slew

Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout

Each I/O voltage bank has a separate ground and power plane for input and output circuits. This isolation is necessary to minimize simultaneous switching noise from the input and output (SSI and SSO). The switching noise (ground bounce and power bounce) is generated by the output buffers and transferred into input buffer circuits, and vice versa.

SSOs can cause signal integrity problems on adjacent signals that are not part of the SSO bus. Both inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce ground bounce noise and VCCI dip noise. These two noise types are caused by rapidly changing currents through GND and VCCI package pin inductances during switching activities (EQ 1 and EQ 2).

Ground bounce noise voltage = L(GND) × di/dt

VCCI dip noise voltage = L(VCCI) × di/dt

EQ 1

EQ 2

Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The shielding should be done both on the board and inside the package unless otherwise described.

In-package shielding can be achieved in several ways; the required shielding will vary depending on whether pins next to the SSO bus are LVTTL/LVCMOS inputs or LVTTL/LVCMOS outputs. Board traces in the vicinity of the SSO bus have to be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus. Also, noise generated by the SSO bus needs to be reduced inside the package.

PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time, maintaining signal integrity between devices.

Key issues that need to be considered are as follows:

- Power and ground plane design and decoupling network design
- Transmission line reflections and terminations

For extensive data per package on the SSO and PCB issues, refer to the "ProASIC3/E SSO and Pin Placement and Guidelines" chapter of the *ProASIC3 Device Family User's Guide*.

I/O Software Control in Low Power Flash Devices

those banks, the user does not need to assign the same VCCI voltage to another bank. The user needs to assign the other three VCCI voltages to three more banks.

Assigning Technologies and VREF to I/O Banks

Low power flash devices offer a wide variety of I/O standards, including voltage-referenced standards. Before proceeding to Layout, each bank must have the required VCCI voltage assigned for the corresponding I/O technologies used for that bank. The voltage-referenced standards require the use of a reference voltage (VREF). This assignment can be done manually or automatically. The following sections describe this in detail.

Manually Assigning Technologies to I/O Banks

The user can import the PDC at this point and resolve this requirement. The PDC command is

set_iobank [bank name] -vcci [vcci value]

Another method is to use the I/O Bank Settings dialog box (**MVN** > **Edit** > **I/O Bank Settings**) to set up the V_{CCI} voltage for the bank (Figure 8-12).

Figure 8-12 • Setting VCCI for a Bank

In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using FlashPro4/3/3X

signal deactivated, which also has the effect of disabling the input buffers. The SAMPLE/PRELOAD instruction captures the status of pads in parallel and shifts them out as new data is shifted in for loading into the Boundary Scan Register (BSR). When the device is in an unprogrammed state, the OE and output BSR will be undefined; however, the input BSR will be defined as long as it is connected and being used. For JTAG timing information on setup, hold, and fall times, refer to the *FlashPro User's Guide*.

ISP Support in Flash-Based Devices

The flash FPGAs listed in Table 12-1 support the ISP feature and the functions described in this document.

Series	Family [*]	Description
IGLOO	IGLOO	Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO nano	The industry's lowest-power, smallest-size solution
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
ProASIC3	ProASIC3	Low power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
SmartFusion	SmartFusion	Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable microcontroller subsystem (MSS) which includes programmable analog and an ARM® Cortex [™] -M3 hard processor and flash memory in a monolithic device
Fusion	Fusion	Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex [™] -M1 soft processors, and flash memory into a monolithic device
ProASIC	ProASIC	First generation ProASIC devices
	ProASIC ^{PLUS}	Second generation ProASIC devices

Table 12-1 • Flash-Based FPGAs Supporting ISP

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 12-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 12-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

Microsemi

In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using FlashPro4/3/3X

Figure 12-2 shows different applications for ISP programming.

- 1. In a trusted programming environment, you can program the device using the unencrypted (plaintext) programming file.
- 2. You can program the AES Key in a trusted programming environment and finish the final programming in an untrusted environment using the AES-encrypted (cipher text) programming file.
- 3. For the remote ISP updating/reprogramming, the AES Key stored in the device enables the encrypted programming bitstream to be transmitted through the untrusted network connection.

Microsemi low power flash devices also provide the unique Microsemi FlashLock feature, which protects the Pass Key and AES Key. Unless the original FlashLock Pass Key is used to unlock the device, security settings cannot be modified. Microsemi does not support read-back of FPGA core-programmed data; however, the FlashROM contents can selectively be read back (or disabled) via the JTAG port based on the security settings established by the Microsemi Designer software. Refer to the "Security in Low Power Flash Devices" section on page 235 for more information.

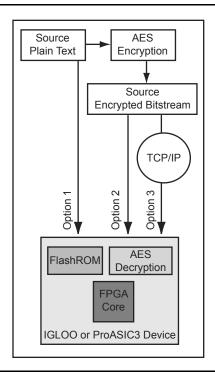


Figure 12-2 • Different ISP Use Models

Microsemi

In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using FlashPro4/3/3X

errors, but this list is intended to show where problems can occur. FlashPro4/3/3X allows TCK to be lowered from 6 MHz down to 1 MHz to allow you to address some signal integrity problems that may occur with impedance mismatching at higher frequencies. Customers are expected to troubleshoot board-level signal integrity issues by measuring voltages and taking scope plots.

Scan Chain Failure

Normally, the FlashPro4/3/3X Scan Chain command expects to see 0x1 on the TDO pin. If the command reports reading 0x0 or 0x3, it is seeing the TDO pin stuck at 0 or 1. The only time the TDO pin comes out of tristate is when the JTAG TAP state machine is in the Shift-IR or Shift-DR state. If noise or reflections on the TCK or TMS lines have disrupted the correct state transitions, the device's TAP state controller might not be in one of these two states when the programmer tries to read the device. When this happens, the output is floating when it is read and does not match the expected data value. This can also be caused by a broken TDO net. Only a small amount of data is read from the device during the Scan Chain command, so marginal problems may not always show up during this command. Occasionally a faulty programmer can cause intermittent scan chain failures.

Exit 11

This error occurs during the verify stage of programming a device. After programming the design into the device, the device is verified to ensure it is programmed correctly. The verification is done by shifting the programming data into the device. An internal comparison is performed within the device to verify that all switches are programmed correctly. Noise induced by poor signal integrity can disrupt the writes and reads or the verification process and produce a verification error. While technically a verification error, the root cause is often related to signal integrity.

Refer to the *FlashPro User's Guide* for other error messages and solutions. For the most up-to-date known issues and solutions, refer to http://www.microsemi.com/soc/support.

Conclusion

IGLOO, ProASIC3, SmartFusion, and Fusion devices offer a low-cost, single-chip solution that is live at power-up through nonvolatile flash technology. The FlashLock Pass Key and 128-bit AES Key security features enable secure ISP in an untrusted environment. On-chip FlashROM enables a host of new applications, including device serialization, subscription-based applications, and IP addressing. Additionally, as the FlashROM is nonvolatile, all of these services can be provided without battery backup.

Related Documents

User's Guides

FlashPro User's Guide http://www.microsemi.com/soc/documents/flashpro_ug.pdf

List of Changes

Date	Changes			
July 2010	This chapter is no longer published separately with its own part number and version but is now part of several FPGA fabric user's guides.	N/A		
v1.1 (October 2008)	bber 2008) The "Introduction" was revised to include information about the core supply voltage range of operation in V2 devices.			
	IGLOO nano device support was added to Table 13-1 • Flash-Based FPGAs Supporting Voltage Switching Circuit.	276		
	The "Circuit Description" section was updated to include IGLOO PLUS core operation from 1.2 V to 1.5 V in 50 mV increments.	277		
v1.0 (August 2008)	The "Microsemi's Flash Families Support Voltage Switching Circuit" section was revised to include new families and make the information more concise.	276		

The following table lists critical changes that were made in each revision of the chapter.

Microsemi

Power-Up/-Down Behavior of Low Power Flash Devices

Flash Devices Support Power-Up Behavior

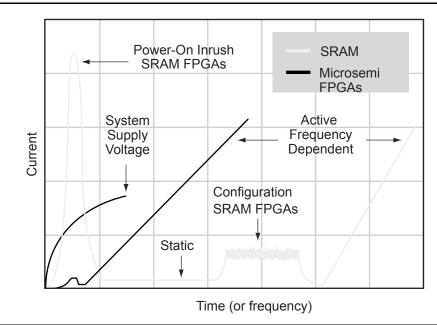
The flash FPGAs listed in Table 17-1 support power-up behavior and the functions described in this document.

Table 17-1 • Flash-Based FPGAs

Series	Family [*]	Description
IGLOO IGLOO I		Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO nano	The industry's lowest-power, smallest-size solution
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
ProASIC3	ProASIC3	Low power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology


In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 17-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 17-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

Power-Up/-Down Behavior of Low Power Flash Devices

Transient Current on VCC

The characterization of the transient current on VCC is performed on nearly all devices within the IGLOO, ProASIC3L, and ProASIC3 families. A sample size of five units is used from each device family member. All the device I/Os are internally pulled down while the transient current measurements are performed. For ProASIC3 devices, the measurements at typical conditions show that the maximum transient current on VCC, when the power supply is powered at ramp-rates ranging from 15 V/ms to 0.15 V/ms, does not exceed the maximum standby current specified in the device datasheets. Refer to the DC and Switching Characteristics chapters of the *ProASIC3 Flash Family FPGAS* datasheet and *ProASIC3E Flash Family FPGAs* datasheet for more information.

Similarly, IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current on VCC. The transient current does not exceed the typical operating current of the device while in active mode. For example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the transient current on VCC is typically in the range of 1–5 mA.

Transient Current on VCCI

The characterization of the transient current on VCCI is performed on devices within the IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, ProASIC3 nano, and ProASIC3L groups of devices, similarly to VCC transient current measurements. For ProASIC3 devices, the measurements at typical conditions show that the maximum transient current on VCCI, when the power supply is powered at ramp-rates ranging from 33 V/ms to 0.33 V/ms, does not exceed the maximum standby current specified in the device datasheet. Refer to the DC and Switching Characteristics chapters of the *ProASIC3 Flash Family FPGAS* datasheet and *ProASIC3E Flash Family FPGAs* datasheet for more information.

Similarly, IGLOO, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current on VCCI. The transient current does not exceed the typical operating current of the device while in active mode. For example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the transient current on VCCI is typically in the range of 1–2 mA.