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FPGA Array Architecture in Low Power Flash Devices
Routing Architecture
The routing structure of low power flash devices is designed to provide high performance through a
flexible four-level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources;
high-speed, very-long-line resources; and the high-performance VersaNet networks.
The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect
directly to every input of the eight surrounding VersaTiles (Figure 1-10). The exception to this is that the
SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaTile global network.
The efficient long-line resources provide routing for longer distances and higher-fanout connections.
These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and
horizontally, and cover the entire device (Figure 1-11 on page 19). Each VersaTile can drive signals onto
the efficient long-line resources, which can access every input of every VersaTile. Routing software
automatically inserts active buffers to limit loading effects.
The high-speed, very-long-line resources, which span the entire device with minimal delay, are used to
route very long or high-fanout nets: length ±12 VersaTiles in the vertical direction and length ±16 in the
horizontal direction from a given core VersaTile (Figure 1-12 on page 19). Very long lines in low power
flash devices have been enhanced over those in previous ProASIC families. This provides a significant
performance boost for long-reach signals.
The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from
external pins or internal logic. These nets are typically used to distribute clocks, resets, and other high-
fanout nets requiring minimum skew. The VersaNet networks are implemented as clock trees, and
signals can be introduced at any junction. These can be employed hierarchically, with signals accessing
every input of every VersaTile. For more details on VersaNets, refer to the "Global Resources in Low
Power Flash Devices" section on page 31. 

Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global
network connection.

Figure 1-10 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors
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ProASIC3 nano FPGA Fabric User’s Guide
User Low Static (Idle) Mode
User Low Static (Idle) mode is an advanced feature supported by ProASIC3/E devices to reduce static
(idle) power consumption. Entering and exiting this mode is made possible using the ULSICC macro by
setting its value to disable/enable the User Low Static (Idle) mode. Under typical operating conditions,
characterization results show up to 25% reduction of the static (idle) power consumption. The greatest
power savings in terms of percentage are seen in the smaller members of the ProASIC3 family. The
active-high control signal for User Low Static (Idle) mode can be generated by internal or external logic.
When the device is operating in User Low Static (Idle) mode, FlashROM functionality is temporarily
disabled to save power. If FlashROM functionality is needed, the device can exit User Low Static mode
temporarily and re-enter the mode once the functionality is no longer needed.
To utilize User Low Static (Idle) mode, simply instantiate the ULSICC macro (Table 2-2 on page 24) in
your design, and connect the input port to either an internal logic signal or a device package pin, as
illustrated in Figure 2-2 on page 24 or Figure 2-3 on page 25, respectively. The attribute is used so the
Synplify® synthesis tool will not optimize the instance with no output port.
This mode can be used to lower standard static (idle) power consumption when the FlashROM feature is
not needed. Configuring the device to enter User Low Static (Idle) mode is beneficial when the FPGA
enters and exits static mode frequently and lowering power consumption as much as possible is desired.
The device is still functional, and data is retained in this state so the device can enter and exit this mode
quickly, resulting in reduced total power consumption. The device can also stay in User Low Static mode
when the FlashROM feature is not used in the device.

Figure 2-1 • CCC/PLL Macro
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CLKDLY Macro Usage 
When a CLKDLY macro is used in a CCC location, the programmable delay element is used to allow the 
clock delays to go to the global network. In addition, the user can bypass the PLL in a CCC location 
integrated with a PLL, but use the programmable delay that is associated with the global network by 
instantiating the CLKDLY macro. The same is true when using programmable delay elements in a CCC 
location with no PLLs (the user needs to instantiate the CLKDLY macro). There is no difference between 
the programmable delay elements used for the PLL and the CLKDLY macro. The CCC will be configured 
to use the programmable delay elements in accordance with the macro instantiated by the user.
As an example, if the PLL is not used in a particular CCC location, the designer is free to specify up to 
three CLKDLY macros in the CCC, each of which can have its own input frequency and delay adjustment 
options. If the PLL core is used, assuming output to only one global clock network, the other two global 
clock networks are free to be used by either connecting directly from the global inputs or connecting from 
one or two CLKDLY macros for programmable delay.
The programmable delay elements are shown in the block diagram of the PLL block shown in Figure 4-6 
on page 71. Note that any CCC locations with no PLL present contain only the programmable delay 
blocks going to the global networks (labeled "Programmable Delay Type 2"). Refer to the "Clock Delay 
Adjustment" section on page 86 for a description of the programmable delay types used for the PLL. Also 
refer to Table 4-14 on page 94 for Programmable Delay Type 1 step delay values, and Table 4-15 on 
page 94 for Programmable Delay Type 2 step delay values. CCC locations with a PLL present can be 
configured to utilize only the programmable delay blocks (Programmable Delay Type 2) going to the 
global networks A, B, and C. 
Global network A can be configured to use only the programmable delay element (bypassing the PLL) if the 
PLL is not used in the design. Figure 4-6 on page 71 shows a block diagram of the PLL, where the 
programmable delay elements are used for the global networks (Programmable Delay Type 2). 
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Available I/O Standards

Global Synthesis Constraints 
The Synplify® synthesis tool, by default, allows six clocks in a design for Fusion, IGLOO, and ProASIC3. 
When more than six clocks are needed in the design, a user synthesis constraint attribute, 
syn_global_buffers, can be used to control the maximum number of clocks (up to 18) that can be inferred 
by the synthesis engine.
High-fanout nets will be inferred with clock buffers and/or internal clock buffers. If the design consists of 
CCC global buffers, they are included in the count of clocks in the design.
The subsections below discuss the clock input source (global buffers with no programmable delays) and 
the clock conditioning functional block (global buffers with programmable delays and/or PLL function) in 
detail.

Table 4-4 • Available I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF_LVCMOS5 

CLKBUF_LVCMOS33 1

CLKBUF_LVCMOS25 2

CLKBUF_LVCMOS18 

CLKBUF_LVCMOS15 

CLKBUF_PCI 

CLKBUF_PCIX 3

CLKBUF_GTL25 2,3

CLKBUF_GTL33 2,3

CLKBUF_GTLP25 2,3

CLKBUF_GTLP33 2,3

CLKBUF_HSTL_I 2,3

CLKBUF_HSTL_II 2,3

CLKBUF_SSTL3_I 2,3

CLKBUF_SSTL3_II 2,3

CLKBUF_SSTL2_I 2,3

CLKBUF_SSTL2_II 2,3

CLKBUF_LVDS 4,5

CLKBUF_LVPECL5

Notes:
1. By default, the CLKBUF macro uses 3.3 V LVTTL I/O technology. For more details, refer to the 

IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide.
2. I/O standards only supported in ProASIC3E and IGLOOe families.
3. I/O standards only supported in the following Fusion devices: AFS600 and AFS1500.
4. B-LVDS and M-LVDS standards are supported by CLKBUF_LVDS.
5. Not supported for IGLOO nano and ProASIC3 nano devices.
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
DLYGLC[4:0]     00000
DLYYB[4:0]      00000
DLYYC[4:0]      00000
VCOSEL[2:0]     100

Primary Clock Frequency 33.000
Primary Clock Phase Shift 0.000
Primary Clock Output Delay from CLKA 1.695

Secondary1 Clock Frequency 40.000
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKB 0.200

Secondary2 Clock Frequency 50.000
Secondary2 Clock Phase Shift 0.000
Secondary2 Clock Global Output Delay from CLKC 0.200

######################################
# Dynamic Stream Data
######################################
--------------------------------------
|NAME    |SDIN     |VALUE   |TYPE     |
--------------------------------------
|FINDIV  |[6:0]    |0000101 |EDIT     |
|FBDIV   |[13:7]   |0100000 |EDIT     |
|OADIV   |[18:14]  |00100   |EDIT     |
|OBDIV   |[23:19]  |00000   |EDIT     |
|OCDIV   |[28:24]  |00000   |EDIT     |
|OAMUX   |[31:29]  |100     |EDIT     |
|OBMUX   |[34:32]  |000     |EDIT     |
|OCMUX   |[37:35]  |000     |EDIT     |
|FBSEL   |[39:38]  |01      |EDIT     |
|FBDLY   |[44:40]  |00000   |EDIT     |
|XDLYSEL |[45]     |0       |EDIT     |
|DLYGLA  |[50:46]  |00000   |EDIT     |
|DLYGLB  |[55:51]  |00000   |EDIT     |
|DLYGLC  |[60:56]  |00000   |EDIT     |
|DLYYB   |[65:61]  |00000   |EDIT     |
|DLYYC   |[70:66]  |00000   |EDIT     |
|STATASEL|[71]     |X       |MASKED   |
|STATBSEL|[72]     |X       |MASKED   |
|STATCSEL|[73]     |X       |MASKED   |
|VCOSEL  |[76:74]  |100     |EDIT     |
|DYNASEL |[77]     |X       |MASKED   |
|DYNBSEL |[78]     |X       |MASKED   |
|DYNCSEL |[79]     |X       |MASKED   |
|RESETEN |[80]     |1       |READONLY |

Below is the resultant Verilog HDL description of a legal dynamic PLL core configuration generated by 
SmartGen:
module dyn_pll_macro(POWERDOWN, CLKA, LOCK, GLA, GLB, GLC, SDIN, SCLK, SSHIFT, SUPDATE,

MODE, SDOUT, CLKB, CLKC);

input POWERDOWN, CLKA;
output  LOCK, GLA, GLB, GLC;
input  SDIN, SCLK, SSHIFT, SUPDATE, MODE;
output  SDOUT;
input  CLKB, CLKC;

wire VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
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The following is an example of a PLL configuration utilizing the clock frequency synthesis and clock delay 
adjustment features. The steps include generating the PLL core with SmartGen, performing simulation 
for verification with ModelSim, and performing static timing analysis with SmartTime in Designer.
Parameters of the example PLL configuration:

Input Frequency – 20 MHz
Primary Output Requirement – 20 MHz with clock advancement of 3.02 ns
Secondary 1 Output Requirement – 40 MHz with clock delay of 2.515 ns

Figure 4-29 shows the SmartGen settings. Notice that the overall delays are calculated automatically, 
allowing the user to adjust the delay elements appropriately to obtain the desired delays. 

After confirming the correct settings, generate a structural netlist of the PLL and verify PLL core settings 
by checking the log file:
Name                            : test_pll_delays
Family                          : ProASIC3E
Output Format                   : VHDL
Type                            : Static PLL
Input Freq(MHz)                 : 20.000
CLKA Source                     : Hardwired I/O
Feedback Delay Value Index      : 21
Feedback Mux Select             : 2
XDLY Mux Select                 : No
Primary Freq(MHz)               : 20.000
Primary PhaseShift              : 0
Primary Delay Value Index       : 1
Primary Mux Select              : 4
Secondary1 Freq(MHz)            : 40.000
Use GLB                         : YES
Use YB                          : NO
…
…
…
Primary Clock frequency 20.000
Primary Clock Phase Shift 0.000

Figure 4-29 • SmartGen Settings
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Primary Clock Output Delay from CLKA -3.020

Secondary1 Clock frequency 40.000
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKA 2.515

Next, perform simulation in ModelSim to verify the correct delays. Figure 4-30 shows the simulation 
results. The delay values match those reported in the SmartGen PLL Wizard. 

The timing can also be analyzed using SmartTime in Designer. The user should import the synthesized 
netlist to Designer, perform Compile and Layout, and then invoke SmartTime. Go to Tools > Options 
and change the maximum delay operating conditions to Typical Case. Then expand the Clock-to-Out 
paths of GLA and GLB and the individual components of the path delays are shown. The path of GLA is 
shown in Figure 4-31 on page 107 displaying the same delay value. 

Figure 4-30 • ModelSim Simulation Results
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Tabl

16,384 32,768 65,536
Dual-Port Dual-Port Dual-Port

W
id

th

1 4 8 16 × 1
4 × (4,096 × 1) 
Cascade Deep

8 × (4,096 × 1) 
Cascade Deep

16 × (4,096 × 1) 
Cascade Deep

2 8 16 32
8 × (4,096 × 1) 

Cascaded 4 Deep 
and 2 Wide

16 × (4,096 × 1) 
Cascaded 8 Deep 

and 2 Wide

32 × (4,096 × 1) 
Cascaded 16 

Deep and 2 Wide
4 16 32 64

16 × (4,096 × 1) 
Cascaded 4 Deep 

and 4 Wide

32 × (4,096 × 1) 
Cascaded 8 Deep 

and 4 Wide

64 × (4,096 × 1) 
Cascaded 16 

Deep and 4 Wide
8 32 64

32 × (4,096 × 1) 
Cascaded 4 Deep 

and 8 Wide

64 × (4,096 × 1) 
Cascaded 8 Deep 

and 8 Wide
9 32

32 × (512 × 9) 
Cascaded Deep

1 64
32 × (4,096 × 1) 

Cascaded 4 Deep 
and 16 Wide

1

3

3

6

7

Note:
Revision 5

e 6-10 • RAM and FIFO Memory Block Consumption
Depth

256 512 1,024 2,048 4,096 8,192
Two-Port Dual-Port Dual-Port Dual-Port Dual-Port Dual-Port Dual-Port

Number Block 1 1 1 1 1 1 2
Configuration Any Any Any 1,024 × 4 2,048 × 2 4,096 × 1 2 × (4,096 × 1)

Cascade Deep
Number Block 1 1 1 1 1 2 4
Configuration Any Any Any 1,024×4 2,048 × 2 2 × (4,096 × 1) 

Cascaded Wide
4 × (4,096 × 1) 

Cascaded 2 Deep 
and 2 Wide

Number Block 1 1 1 1 2 4 8
Configuration Any Any Any 1,024 × 4 2 × (2,048 × 2)

Cascaded Wide
4 × (4,096 × 1) 
Cascaded Wide

4 × (4,096 × 1) 
Cascaded 2 Deep 

and 4 Wide
Number Block 1 1 1 2 4 8 16
Configuration Any Any Any 2 × (1,024 × 4) 

Cascaded Wide
4 × (2,048 × 2)
Cascaded Wide

8 × (4,096 × 1) 
Cascaded Wide

16 × (4,096 × 1) 
Cascaded 2 Deep 

and 8 Wide
Number Block 1 1 1 2 4 8 16
Configuration Any Any Any 2 × (512 × 9) 

Cascaded Deep
4 × (512 × 9)

Cascaded Deep
8 × (512 × 9) 

Cascaded Deep
16 × (512 × 9)

Cascaded Deep
6 Number Block 1 1 1 4 8 16 32

Configuration 256 × 18 256 × 18 256 × 18 4 × (1,024 × 4) 
Cascaded Wide

8 × (2,048 × 2)
Cascaded Wide

16 × (4,096 × 1) 
Cascaded Wide

32 × (4,096 × 1) 
Cascaded 2 Deep 

and 16 Wide
8 Number Block 1 2 2 4 8 18 32

Configuration 256 × 8 2 × (512 × 9) 
Cascaded Wide

2 × (512 × 9) 
Cascaded Wide

4 × (512 × 9) 
Cascaded 2 Deep 

and 2 Wide

8 × (512 × 9)
Cascaded 4 Deep 

and 2 Wide

16 × (512 × 9) 
Cascaded 8 Deep 

and 2 Wide

16 × (512 × 9)
Cascaded 16 

Deep and 2 Wide
2 Number Block 2 4 4 8 16 32 64

Configuration 2 × (256 × 18) 
Cascaded Wide

4 × (512 × 9) 
Cascaded Wide

4 × (512 × 9) 
Cascaded Wide

8 × (1,024 × 4) 
Cascaded Wide

16 × (2,048 × 2) 
Cascaded Wide

32 × (4,096 × 1) 
Cascaded Wide

64 × (4,096 × 1) 
Cascaded 2 Deep 

and 32 Wide
6 Number Block 2 4 4 8 16 32

Configuration 2 × (256 × 18) 
Cascaded Wide

4 × (512 × 9) 
Cascaded Wide

4 × (512 × 9) 
Cascaded Wide

4 × (512 × 9) 
Cascaded 2 Deep 

and 4 Wide

16 × (512 × 9)
Cascaded 4 Deep 

and 4 Wide

16 × (512 × 9) 
Cascaded 8 Deep 

and 4 Wide
4 Number Block 4 8 8 16 32 64

Configuration 4 × (256 × 18) 
Cascaded Wide

8 × (512 × 9) 
Cascaded Wide

8 × (512 × 9) 
Cascaded Wide

16 × (1,024 × 4) 
Cascaded Wide

32 × (2,048 × 2) 
Cascaded Wide

64 × (4,096 × 1) 
Cascaded Wide

2 Number Block 4 8 8 16 32
Configuration 4 × (256 × 18) 

Cascaded Wide
8 × (512 × 9) 

Cascaded Wide
8 × (512 × 9) 

Cascaded Wide
16 × (512 × 9) 

Cascaded Wide
16 × (512 × 9) 

Cascaded 4 Deep 
and 8 Wide

Memory configurations represented by grayed cells are not supported.
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Solution 2
This solution requires one board resistor and one Zener 3.3 V diode, as demonstrated in Figure 7-6.

Solution 3
This solution requires a bus switch on the board, as demonstrated in Figure 7-7.

Figure 7-6 • Solution 2

Figure 7-7 • Solution 3
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5.5 V 3.3 V
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Solution 3

Requires a bus switch on the board,
LVTTL/LVCMOS 3.3 V I/Os.

I/O Input

3.3 V

5.5 V

5.5 V

Bus
Switch
IDTQS32X23
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I/O Structures in nano Devices
Refer to Table 7-10 on page 169 for more information about the slew rate and drive strength specification
for LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V, LVCMOS 1.8 V, LVCMOS 1.5 V, and LVCMOS 1.2 V output
buffers.

Simultaneously Switching Outputs (SSOs) and Printed Circuit 
Board Layout

Each I/O voltage bank has a separate ground and power plane for input and output circuits. This isolation
is necessary to minimize simultaneous switching noise from the input and output (SSI and SSO). The
switching noise (ground bounce and power bounce) is generated by the output buffers and transferred
into input buffer circuits, and vice versa.
SSOs can cause signal integrity problems on adjacent signals that are not part of the SSO bus. Both
inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will
transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce
ground bounce noise and VCCI dip noise. These two noise types are caused by rapidly changing
currents through GND and VCCI package pin inductances during switching activities (EQ 1 and EQ 2).

Ground bounce noise voltage = L(GND) × di/dt

EQ 1

VCCI dip noise voltage = L(VCCI) × di/dt

EQ 2
Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The
shielding should be done both on the board and inside the package unless otherwise described. 
In-package shielding can be achieved in several ways; the required shielding will vary depending on
whether pins next to the SSO bus are LVTTL/LVCMOS inputs or LVTTL/LVCMOS outputs. Board traces
in the vicinity of the SSO bus have to be adequately shielded from mutual coupling and inductive noise
that can be generated by the SSO bus. Also, noise generated by the SSO bus needs to be reduced
inside the package. 
PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time,
maintaining signal integrity between devices.
Key issues that need to be considered are as follows:

• Power and ground plane design and decoupling network design
• Transmission line reflections and terminations

For extensive data per package on the SSO and PCB issues, refer to the "ProASIC3/E SSO and Pin
Placement and Guidelines" chapter of the ProASIC3 Device Family User’s Guide. 

Table 7-14 • nano Output Drive and Slew

I/O Standards 2 mA 4 mA 6 mA 8 mA Slew

LVTTL / LVCMOS 3.3 V ✓ ✓ ✓ ✓ High Low

LVCMOS 2.5 V ✓ ✓ ✓ ✓ High Low

LVCMOS 1.8 V ✓ ✓ – – High Low

LVCMOS 1.5 V ✓ – – – High Low

LVCMOS 1.2 V ✓ – – – High Low
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I/O Software Control in Low Power Flash Devices
those banks, the user does not need to assign the same VCCI voltage to another bank. The user needs
to assign the other three VCCI voltages to three more banks.

Assigning Technologies and VREF to I/O Banks
Low power flash devices offer a wide variety of I/O standards, including voltage-referenced standards.
Before proceeding to Layout, each bank must have the required VCCI voltage assigned for the
corresponding I/O technologies used for that bank. The voltage-referenced standards require the use of
a reference voltage (VREF). This assignment can be done manually or automatically. The following
sections describe this in detail.

Manually Assigning Technologies to I/O Banks
The user can import the PDC at this point and resolve this requirement. The PDC command is
set_iobank [bank name] –vcci [vcci value]

Another method is to use the I/O Bank Settings dialog box (MVN > Edit > I/O Bank Settings) to set up
the VCCI voltage for the bank (Figure 8-12).

Figure 8-12 • Setting VCCI for a Bank
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
signal deactivated, which also has the effect of disabling the input buffers. The SAMPLE/PRELOAD
instruction captures the status of pads in parallel and shifts them out as new data is shifted in for loading
into the Boundary Scan Register (BSR). When the device is in an unprogrammed state, the OE and
output BSR will be undefined; however, the input BSR will be defined as long as it is connected and
being used. For JTAG timing information on setup, hold, and fall times, refer to the FlashPro User’s
Guide.

ISP Support in Flash-Based Devices
The flash FPGAs listed in Table 12-1 support the ISP feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 12-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 12-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 12-1 • Flash-Based FPGAs Supporting ISP

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

SmartFusion SmartFusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
microcontroller subsystem (MSS) which includes programmable analog and
an ARM® Cortex™-M3 hard processor and flash memory in a monolithic
device

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

ProASIC ProASIC First generation ProASIC devices

ProASICPLUS Second generation ProASIC devices

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
Figure 12-2 shows different applications for ISP programming.
1. In a trusted programming environment, you can program the device using the unencrypted

(plaintext) programming file.
2. You can program the AES Key in a trusted programming environment and finish the final

programming in an untrusted environment using the AES-encrypted (cipher text) programming
file.

3. For the remote ISP updating/reprogramming, the AES Key stored in the device enables the
encrypted programming bitstream to be transmitted through the untrusted network connection. 

Microsemi low power flash devices also provide the unique Microsemi FlashLock feature, which protects
the Pass Key and AES Key. Unless the original FlashLock Pass Key is used to unlock the device,
security settings cannot be modified. Microsemi does not support read-back of FPGA core-programmed
data; however, the FlashROM contents can selectively be read back (or disabled) via the JTAG port
based on the security settings established by the Microsemi Designer software. Refer to the "Security in
Low Power Flash Devices" section on page 235 for more information.

Figure 12-2 • Different ISP Use Models
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
errors, but this list is intended to show where problems can occur. FlashPro4/3/3X allows TCK to be
lowered from 6 MHz down to 1 MHz to allow you to address some signal integrity problems that may
occur with impedance mismatching at higher frequencies. Customers are expected to troubleshoot
board-level signal integrity issues by measuring voltages and taking scope plots.

Scan Chain Failure
Normally, the FlashPro4/3/3X Scan Chain command expects to see 0x1 on the TDO pin. If the command
reports reading 0x0 or 0x3, it is seeing the TDO pin stuck at 0 or 1. The only time the TDO pin comes out
of tristate is when the JTAG TAP state machine is in the Shift-IR or Shift-DR state. If noise or reflections
on the TCK or TMS lines have disrupted the correct state transitions, the device's TAP state controller
might not be in one of these two states when the programmer tries to read the device. When this
happens, the output is floating when it is read and does not match the expected data value. This can also
be caused by a broken TDO net. Only a small amount of data is read from the device during the Scan
Chain command, so marginal problems may not always show up during this command. Occasionally a
faulty programmer can cause intermittent scan chain failures. 

Exit 11
This error occurs during the verify stage of programming a device. After programming the design into the
device, the device is verified to ensure it is programmed correctly. The verification is done by shifting the
programming data into the device. An internal comparison is performed within the device to verify that all
switches are programmed correctly. Noise induced by poor signal integrity can disrupt the writes and
reads or the verification process and produce a verification error. While technically a verification error, the
root cause is often related to signal integrity.
Refer to the FlashPro User's Guide for other error messages and solutions. For the most up-to-date
known issues and solutions, refer to http://www.microsemi.com/soc/support.

Conclusion
IGLOO, ProASIC3, SmartFusion, and Fusion devices offer a low-cost, single-chip solution that is live at
power-up through nonvolatile flash technology. The FlashLock Pass Key and 128-bit AES Key security
features enable secure ISP in an untrusted environment. On-chip FlashROM enables a host of new
applications, including device serialization, subscription-based applications, and IP addressing.
Additionally, as the FlashROM is nonvolatile, all of these services can be provided without battery
backup. 

Related Documents

User’s Guides
FlashPro User's Guide 
http://www.microsemi.com/soc/documents/flashpro_ug.pdf
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.1
(October 2008)

The "Introduction" was revised to include information about the core supply voltage
range of operation in V2 devices.

275

IGLOO nano device support was added to Table 13-1 • Flash-Based FPGAs
Supporting Voltage Switching Circuit.

276

The "Circuit Description" section was updated to include IGLOO PLUS core
operation from 1.2 V to 1.5 V in 50 mV increments.

277

v1.0
(August 2008)

The "Microsemi’s Flash Families Support Voltage Switching Circuit" section was
revised to include new families and make the information more concise.

276
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Power-Up/-Down Behavior of Low Power Flash Devices
Flash Devices Support Power-Up Behavior
The flash FPGAs listed in Table 17-1 support power-up behavior and the functions described in this 
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed 
in Table 17-1. Where the information applies to only one product line or limited devices, these exclusions 
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices 
as listed in Table 17-1. Where the information applies to only one product line or limited devices, these 
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s 
Lowest Power FPGAs Portfolio.

Table 17-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, 
and packaging information.
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Power-Up/-Down Behavior of Low Power Flash Devices
Transient Current on VCC 
The characterization of the transient current on VCC is performed on nearly all devices within the 
IGLOO, ProASIC3L, and ProASIC3 families. A sample size of five units is used from each device family 
member. All the device I/Os are internally pulled down while the transient current measurements are 
performed. For ProASIC3 devices, the measurements at typical conditions show that the maximum 
transient current on VCC, when the power supply is powered at ramp-rates ranging from 15 V/ms to 
0.15 V/ms, does not exceed the maximum standby current specified in the device datasheets. Refer to 
the DC and Switching Characteristics chapters of the ProASIC3 Flash Family FPGAS datasheet and 
ProASIC3E Flash Family FPGAs datasheet for more information.
Similarly, IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current 
on VCC. The transient current does not exceed the typical operating current of the device while in active 
mode. For example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the 
transient current on VCC is typically in the range of 1–5 mA.

Transient Current on VCCI 
The characterization of the transient current on VCCI is performed on devices within the IGLOO, IGLOO 
nano, IGLOO PLUS, ProASIC3, ProASIC3 nano, and ProASIC3L groups of devices, similarly to VCC 
transient current measurements. For ProASIC3 devices, the measurements at typical conditions show 
that the maximum transient current on VCCI, when the power supply is powered at ramp-rates ranging 
from 33 V/ms to 0.33 V/ms, does not exceed the maximum standby current specified in the device 
datasheet. Refer to the DC and Switching Characteristics chapters of the ProASIC3 Flash Family 
FPGAS datasheet and ProASIC3E Flash Family FPGAs datasheet for more information.
Similarly, IGLOO, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current on VCCI. The 
transient current does not exceed the typical operating current of the device while in active mode. For 
example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the transient current 
on VCCI is typically in the range of 1–2 mA.

Figure 17-1 • Types of Power Consumption in SRAM FPGAs and Microsemi Nonvolatile FPGAs
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