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2 – Low Power Modes in ProASIC3/E and 
ProASIC3 nano FPGAs

Introduction
The demand for low power systems and semiconductors, combined with the strong growth observed for
value-based FPGAs, is driving growing demand for low power FPGAs. For portable and battery-operated
applications, power consumption has always been the greatest challenge. The battery life of a system
and on-board devices has a direct impact on the success of the product. As a result, FPGAs used in
these applications should meet low power consumption requirements.
ProASIC®3/E and ProASIC3 nano FPGAs offer low power consumption capability inherited from their
nonvolatile and live-at-power-up (LAPU) flash technology. This application note describes the power
consumption and how to use different power saving modes to further reduce power consumption for
power-conscious electronics design.

Power Consumption Overview
In evaluating the power consumption of FPGA technologies, it is important to consider it from a system
point of view. Generally, the overall power consumption should be based on static, dynamic, inrush, and
configuration power. Few FPGAs implement ways to reduce static power consumption utilizing sleep
modes.
SRAM-based FPGAs use volatile memory for their configuration, so the device must be reconfigured
after each power-up cycle. Moreover, during this initialization state, the logic could be in an indeterminate
state, which might cause inrush current and power spikes. More complex power supplies are required to
eliminate potential system power-up failures, resulting in higher costs. For portable electronics requiring
frequent power-up and -down cycles, this directly affects battery life, requiring more frequent recharging
or replacement.

SRAM-Based FPGA Total Power Consumption = Pstatic + Pdynamic + Pinrush + Pconfig 

EQ 1

ProASIC3/E Total Power Consumption = Pstatic + Pdynamic 

EQ 2
Unlike SRAM-based FPGAs, Microsemi flash-based FPGAs are nonvolatile and do not require power-up
configuration. Additionally, Microsemi nonvolatile flash FPGAs are live at power-up and do not require
additional support components. Total power consumption is reduced as the inrush current and
configuration power components are eliminated.
Note that the static power component can be reduced in flash FPGAs (such as the ProASIC3/E devices)
by entering User Low Static mode or Sleep mode. This leads to an extremely low static power
component contribution to the total system power consumption.
The following sections describe the usage of Static (Idle) mode to reduce the power component, User
Low Static mode to reduce the static power component, and Sleep mode and Shutdown mode to achieve
a range of power consumption when the FPGA or system is idle. Table 2-1 on page 22 summarizes the
different low power modes offered by ProASIC3/E devices.
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Low Power Modes in ProASIC3/E and ProASIC3 nano FPGAs
Alternatively, Figure 2-7 shows how a microprocessor can be used with a voltage regulator's shutdown
pin to turn the power supplies connected to the device on or off.

Though Sleep mode or Shutdown mode can be used to save power, the content of the SRAM and the
state of the registers is lost when power is turned off if no other measure is taken. To keep the original
contents of the device, a low-cost external serial EEPROM can be used to save and restore the device
contents when entering and exiting Sleep mode. In the Embedded SRAM Initialization Using External
Serial EEPROM application note, detailed information and a reference design are provided to initialize
the embedded SRAM using an external serial EEPROM. The user can easily customize the reference
design to save and restore the FPGA state when entering and exiting Sleep mode. The microcontroller
will need to manage this activity, so before powering down VCC, the data must be read from the FPGA
and stored externally. Similarly, after the FPGA is powered up, the microcontroller must allow the FPGA
to load the data from external memory and restore its original state.

Conclusion
Microsemi ProASIC3/E and ProASIC3 nano FPGAs inherit low power consumption capability from their
nonvolatile and live-at-power-up flash-based technology. Power consumption can be reduced further
using the Static (Idle), User Low Static (Idle), Sleep, or Shutdown power modes. All these features result
in a low-power, cost-effective, single-chip solution designed specifically for power-sensitive electronics
applications.

Related Documents

Application Notes
Embedded SRAM Initialization Using External Serial EEPROM
http://www.microsemi.com/soc/documents/EmbeddedSRAMInit_AN.pdf

Figure 2-7 • Controlling Power On/Off State Using Microprocessor and Voltage Regulator
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Implementing EXTFB in ProASIC3/E Devices
When the external feedback (EXTFB) signal of the PLL in the ProASIC3/E devices is implemented, the 
phase detector of the PLL core receives the reference clock (CLKA) and EXTFB as inputs. EXTFB must 
be sourced as an INBUF macro and located at the global/chip clock location associated with the target 
PLL by Designer software. EXTFB cannot be sourced from the FPGA fabric.
The following example shows CLKA and EXTFB signals assigned to two global I/Os in the same global 
area of ProASIC3E device.

Figure 4-5 • CLKA and EXTFB Assigned to Global I/Os
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CCC Locations
CCCs located in the middle of the east and west sides of the device access the three VersaNet global 
networks on each side (six total networks), while the four CCCs located in the four corners access three 
quadrant global networks (twelve total networks). See Figure 4-13.

The following explains the locations of the CCCs in IGLOO and ProASIC3 devices:
In Figure 4-15 on page 82 through Figure 4-16 on page 82, CCCs with integrated PLLs are indicated in 
red, and simplified CCCs are indicated in yellow. There is a letter associated with each location of the 
CCC, in clockwise order. The upper left corner CCC is named "A," the upper right is named "B," and so 
on. These names finish up at the middle left with letter "F."

Figure 4-13 • Global Network Architecture for 60 k Gate Devices and Above
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ProASIC3 nano FPGA Fabric User’s Guide
IGLOO and ProASIC3 CCC Locations
In all IGLOO and ProASIC3 devices (except 10 k through 30 k gate devices, which do not contain PLLs), 
six CCCs are located in the same positions as the IGLOOe and ProASIC3E CCCs. Only one of the 
CCCs has an integrated PLL and is located in the middle of the west (middle left) side of the device. The 
other five CCCs are simplified CCCs and are located in the four corners and the middle of the east side 
of the device (Figure 4-14). 

Note: The number and architecture of the banks are different for some devices.
10 k through 30 k gate devices do not support PLL features. In these devices, there are two CCC-GLs at 
the lower corners (one at the lower right, and one at the lower left). These CCC-GLs do not have 
programmable delays.

Figure 4-14 • CCC Locations in IGLOO and ProASIC3 Family Devices
(except 10 k through 30 k gate devices)
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ProASIC3 nano FPGA Fabric User’s Guide
Fusion CCC Locations
Fusion devices have six CCCs: one in each of the four corners and one each in the middle of the east 
and west sides of the device (Figure 4-17 and Figure 4-18). The device can have one integrated PLL in 
the middle of the west side of the device or two integrated PLLs in the middle of the east and west sides 
of the device (middle right and middle left).

Figure 4-17 • CCC Locations in Fusion Family Devices (AFS090, AFS250, M1AFS250)

Figure 4-18 • CCC Locations in Fusion Family Devices (except AFS090, AFS250, M1AFS250)
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5 – FlashROM in Microsemi’s Low Power Flash 
Devices

Introduction 
The Fusion, IGLOO, and ProASIC3 families of low power flash-based devices have a dedicated
nonvolatile FlashROM memory of 1,024 bits, which provides a unique feature in the FPGA market. The
FlashROM can be read, modified, and written using the JTAG (or UJTAG) interface. It can be read but
not modified from the FPGA core. Only low power flash devices contain on-chip user nonvolatile memory
(NVM). 

Architecture of User Nonvolatile FlashROM
Low power flash devices have 1 kbit of user-accessible nonvolatile flash memory on-chip that can be
read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits (16 bytes) during
programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the
FlashROM from the FPGA core. Figure 5-1 shows the FlashROM logical structure. 
The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports
synchronous read. The address is latched on the rising edge of the clock, and the new output data is
stable after the falling edge of the same clock cycle. For more information, refer to the timing diagrams in
the DC and Switching Characteristics chapter of the appropriate datasheet. The FlashROM can be read
on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank
being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16
bytes in the bank is being accessed.

Figure 5-1 • FlashROM Architecture
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ProASIC3 nano FPGA Fabric User’s Guide
Pipeline Register
module D_pipeline (Data, Clock, Q);

input [3:0] Data;
input Clock;
output [3:0] Q;

reg [3:0] Q;

always @ (posedge Clock) Q <= Data;

endmodule

4x4 RAM Block (created by SmartGen Core Generator)
module mem_block(DI,DO,WADDR,RADDR,WRB,RDB,WCLOCK,RCLOCK);

input [3:0] DI;
output [3:0] DO;
input [1:0] WADDR, RADDR;
input WRB, RDB, WCLOCK, RCLOCK;

wire WEBP, WEAP, VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
INV WEBUBBLEB(.A(WRB), .Y(WEBP));
RAM4K9 RAMBLOCK0(.ADDRA11(GND), .ADDRA10(GND), .ADDRA9(GND), .ADDRA8(GND),

.ADDRA7(GND), .ADDRA6(GND), .ADDRA5(GND), .ADDRA4(GND), .ADDRA3(GND), .ADDRA2(GND),

.ADDRA1(RADDR[1]), .ADDRA0(RADDR[0]), .ADDRB11(GND), .ADDRB10(GND), .ADDRB9(GND),

.ADDRB8(GND), .ADDRB7(GND), .ADDRB6(GND), .ADDRB5(GND), .ADDRB4(GND), .ADDRB3(GND),

.ADDRB2(GND), .ADDRB1(WADDR[1]), .ADDRB0(WADDR[0]), .DINA8(GND), .DINA7(GND),

.DINA6(GND), .DINA5(GND), .DINA4(GND), .DINA3(GND), .DINA2(GND), .DINA1(GND),

.DINA0(GND), .DINB8(GND), .DINB7(GND), .DINB6(GND), .DINB5(GND), .DINB4(GND),

.DINB3(DI[3]), .DINB2(DI[2]), .DINB1(DI[1]), .DINB0(DI[0]), .WIDTHA0(GND),

.WIDTHA1(VCC), .WIDTHB0(GND), .WIDTHB1(VCC), .PIPEA(GND), .PIPEB(GND),

.WMODEA(GND), .WMODEB(GND), .BLKA(WEAP), .BLKB(WEBP), .WENA(VCC), .WENB(GND),

.CLKA(RCLOCK), .CLKB(WCLOCK), .RESET(VCC), .DOUTA8(), .DOUTA7(), .DOUTA6(),

.DOUTA5(), .DOUTA4(), .DOUTA3(DO[3]), .DOUTA2(DO[2]), .DOUTA1(DO[1]),

.DOUTA0(DO[0]), .DOUTB8(), .DOUTB7(), .DOUTB6(), .DOUTB5(), .DOUTB4(), .DOUTB3(),

.DOUTB2(), .DOUTB1(), .DOUTB0());
INV WEBUBBLEA(.A(RDB), .Y(WEAP));

endmodule
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ProASIC3 nano FPGA Fabric User’s Guide
SmartGen enables the user to configure the desired RAM element to use either a single clock for read
and write, or two independent clocks for read and write. The user can select the type of RAM as well as
the width/depth and several other parameters (Figure 6-13).

SmartGen also has a Port Mapping option that allows the user to specify the names of the ports
generated in the memory block (Figure 6-14).

SmartGen also configures the FIFO according to user specifications. Users can select no flags, static
flags, or dynamic flags. Static flag settings are configured using configuration flash and cannot be altered

Figure 6-13 • SmartGen Memory Configuration Interface 

Figure 6-14 • Port Mapping Interface for SmartGen-Generated Memory
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ProASIC3 nano FPGA Fabric User’s Guide
For Level 3 and Level 4 compliance with the nano devices, cards with two levels of staging should have
the following sequence:

• Grounds
• Powers, I/Os, and other pins

Table 7-10 • Hot-Swap Level 3

Description Hot-swap while bus idle

Power Applied to Device Yes

Bus State Held idle (no ongoing I/O processes during
insertion/removal)

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application Board bus shared with card bus is "frozen," and
there is no toggling activity on the bus. It is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of nano Devices Compliant

Table 7-11 • Hot-Swap Level 4

Description Hot-swap on an active bus

Power Applied to Device Yes

Bus State Bus may have active I/O processes ongoing, but
device being inserted or removed must be idle.

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application There is activity on the system bus, and it is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of nano Devices Compliant
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ProASIC3 nano FPGA Fabric User’s Guide
4. Right-click and then choose Highlight VREF range. All the pins covered by that VREF pin will be
highlighted (Figure 8-14).  

Using PinEditor or ChipPlanner, VREF pins can also be assigned (Figure 8-15).  

To unassign a VREF pin:
1. Select the pin to unassign.
2. Right-click and choose Use Pin for VREF. The check mark next to the command disappears. The

VREF pin is now a regular pin.
Resetting the pin may result in unassigning I/O cores, even if they are locked. In this case, a warning
message appears so you can cancel the operation.
After you assign the VREF pins, right-click a VREF pin and choose Highlight VREF Range to see how
many I/Os are covered by that pin. To unhighlight the range, choose Unhighlight All from the Edit
menu.

Figure 8-14 • VREF Range

Figure 8-15 • Assigning VREF from PinEditor
Revision 5 201



ProASIC3 nano FPGA Fabric User’s Guide
If the assignment is not successful, an error message appears in the Output window.
To undo the I/O bank assignments, choose Undo from the Edit menu. Undo removes the I/O
technologies assigned by the IOBA. It does not remove the I/O technologies previously assigned.
To redo the changes undone by the Undo command, choose Redo from the Edit menu.
To clear I/O bank assignments made before using the Undo command, manually unassign or reassign
I/O technologies to banks. To do so, choose I/O Bank Settings from the Edit menu to display the I/O
Bank Settings dialog box.

Conclusion
Fusion, IGLOO, and ProASIC3 support for multiple I/O standards minimizes board-level components and
makes possible a wide variety of applications. The Microsemi Designer software, integrated with Libero
SoC, presents a clear visual display of I/O assignments, allowing users to verify I/O and board-level
design requirements before programming the device. The device I/O features and functionalities ensure
board designers can produce low-cost and low power FPGA applications fulfilling the complexities of
contemporary design needs. 

Related Documents

User’s Guides
Libero SoC User’s Guide
http://www.microsemi.com/soc/documents/libero_ug.pdf
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
SmartGen Core Reference Guide
http://www.microsemi.com/soc/documents/genguide_ug.pdf
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I/O Software Control in Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 The notes in Table 8-2 • Designer State (resulting from I/O attribute modification)
were revised to clarify which device families support programmable input delay
(SAR 39666).

187

June 2011 Figure 8-2 • SmartGen Catalog was updated (SAR 24310). Figure 8-3 • Expanded
I/O Section and the step associated with it were deleted to reflect changes in the
software.

188

The following rule was added to the "VREF Rules for the Implementation of
Voltage-Referenced I/O Standards" section: 
Only minibanks that contain input or bidirectional I/Os require a VREF. A VREF is
not needed for minibanks composed of output or tristated I/Os (SAR 24310).

199

July 2010 Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 8-1 • Flash-Based
FPGAs.

186

The notes for Table 8-2 • Designer State (resulting from I/O attribute modification)
were revised to indicate that skew control and input delay do not apply to nano
devices.

187

v1.3
(October 2008)

The "Flash FPGAs I/O Support" section was revised to include new families and
make the information more concise.

186

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 8-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

186

v1.1
(March 2008)

This document was previously part of the I/O Structures in IGLOO and ProASIC3
Devices document. The content was separated and made into a new document.

N/A

Table 8-2 • Designer State (resulting from I/O attribute modification) was updated
to include note 2 for IGLOO PLUS.

187
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DDR for Microsemi’s Low Power Flash Devices
DDR Output Register

Verilog
module DDR_OutBuf_SSTL3_I(DataR,DataF,CLR,CLK,PAD);

input   DataR, DataF, CLR, CLK;
output  PAD;

wire Q, VCC;

VCC VCC_1_net(.Y(VCC));
DDR_OUT DDR_OUT_0_inst(.DR(DataR),.DF(DataF),.CLK(CLK),.CLR(CLR),.Q(Q));
OUTBUF_SSTL3_I OUTBUF_SSTL3_I_0_inst(.D(Q),.PAD(PAD));

endmodule

VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_OutBuf_SSTL3_I is 
port(DataR, DataF, CLR, CLK : in std_logic;  PAD : out std_logic) ;

end DDR_OutBuf_SSTL3_I;

architecture DEF_ARCH of  DDR_OutBuf_SSTL3_I is

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component OUTBUF_SSTL3_I
port(D : in std_logic := 'U'; PAD : out std_logic) ;

end component;

component VCC
port( Y : out std_logic);

end component;

signal Q, VCC_1_net : std_logic ;

begin

VCC_2_net : VCC port map(Y => VCC_1_net);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
OUTBUF_SSTL3_I_0_inst : OUTBUF_SSTL3_I
port map(D => Q, PAD => PAD);

end DEF_ARCH;

Figure 9-6 • DDR Output Register (SSTL3 Class I)
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Security in Low Power Flash Devices
Figure 11-10 • All Silicon Features Selected for IGLOO and ProASIC3 Devices

Figure 11-11 • All Silicon Features Selected for Fusion
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Security in Low Power Flash Devices
2. Choose the desired security level setting and enter the key(s).
– The High security level employs FlashLock Pass Key with AES Key protection. 
– The Medium security level employs FlashLock Pass Key protection only. 

Figure 11-15 • Programming Fusion Security Settings Only

Figure 11-16 • High Security Level to Implement FlashLock Pass Key and AES Key Protection
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Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming
Microsemi’s Flash Families Support Voltage Switching Circuit 
The flash FPGAs listed in Table 13-1 support the voltage switching circuit feature and the functions
described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 13-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 13-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 13-1 • Flash-Based FPGAs Supporting Voltage Switching Circuit

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
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http://www.microsemi.com/soc/documents/RTPA3_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf


Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming
Circuit Verification
The power switching circuit recommended above is implemented on Microsemi's Icicle board
(Figure 13-2). On the Icicle board, VJTAGENB is used to control the N-Channel Digital FET; however,
this circuit was modified to use TRST instead of VJTAGENB in this application. There are three important
aspects of this circuit that were verified:

1. The rise on VCC from 1.2 V to 1.5 V when TRST is HIGH
2. VCC rises to 1.5 V before programming begins.
3. VCC switches from 1.5 V to 1.2 V when TRST is LOW.

Verification Steps
1. The rise on VCC from 1.2 V to 1.5 V when TRST is HIGH.

In the oscilloscope plots (Figure 13-2), the TRST from FlashPro3 and the VCC core voltage of the
IGLOO device are labeled. This plot shows the rise characteristic of the TRST signal from FlashPro3.
Once the TRST signal is asserted HIGH, the LTC3025 shown in Figure 13-1 on page 277 senses the
increase in voltage and changes the output from 1.2 V to 1.5 V. It takes the circuit approximately 100 µs
to respond to TRST and change the voltage to 1.5 V on the VCC core.

Figure 13-2 • Core Voltage on the IGLOO AGL125-QNG132 Device

VCC Signal
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278 Revision 5

http://www.microsemi.com/soc/products/hardware/devkits_boards/igloo_icicle.aspx




UJTAG Applications in Microsemi’s Low Power Flash Devices
Silicon Testing and Debugging
In many applications, the design needs to be tested, debugged, and verified on real silicon or in the final
embedded application. To debug and test the functionality of designs, users may need to monitor some
internal logic (or nets) during device operation. The approach of adding design test pins to monitor the
critical internal signals has many disadvantages, such as limiting the number of user I/Os. Furthermore,
adding external I/Os for test purposes may require additional or dedicated board area for testing and
debugging. 
The UJTAG tiles of low power flash devices offer a flexible and cost-effective solution for silicon test and
debug applications. In this solution, the signals under test are shifted out to the TDO pin of the TAP
Controller. The main advantage is that all the test signals are monitored from the TDO pin; no pins or
additional board-level resources are required. Figure 16-6 illustrates this technique. Multiple test nets are
brought into an internal MUX architecture. The selection of the MUX is done using the contents of the
TAP Controller instruction register, where individual instructions (values from 16 to 127) correspond to
different signals under test. The selected test signal can be synchronized with the rising or falling edge of
TCK (optional) and sent out to UTDO to drive the TDO output of JTAG. 
For flash devices, TDO (the output) is configured as low slew and the highest drive strength available in
the technology and/or device. Here are some examples: 

1. If the device is A3P1000 and VCCI is 3.3 V, TDO will be configured as LVTTL 3.3 V output,
24 mA, low slew. 

2. If the device is AGLN020 and VCCI is 1.8 V, TDO will be configured as LVCMOS 1.8 V output,
4 mA, low slew. 

3. If the device is AGLE300 and VCCI is 2.5 V, TDO will be configured as LVCMOS 2.5 V output,
24 mA, low slew. 

The test and debug procedure is not limited to the example in Figure 16-5 on page 303. Users can
customize the debug and test interface to make it appropriate for their applications. For example, multiple
test signals can be registered and then sent out through UTDO, each at a different edge of TCK. In other
words, n signals are sampled with an FTCK / n sampling rate. The bandwidth of the information sent out
to TDO is always proportional to the frequency of TCK. 

Figure 16-6 • UJTAG Usage Example in Test and Debug Applications
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