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Introduction

Contents
This user’s guide contains information to help designers understand and use Microsemi's ProASIC®3
nano devices. Each chapter addresses a specific topic. Most of these chapters apply to other Microsemi
device families as well. When a feature or description applies only to a specific device family, this is made
clear in the text.

Revision History
The revision history for each chapter is listed at the end of the chapter. Most of these chapters were
formerly included in device handbooks. Some were originally application notes or information included in
device datasheets. 
A "Summary of Changes" table at the end of this user’s guide lists the chapters that were changed in
each revision of the document, with links to the "List of Changes" sections for those chapters.

Related Information
Refer to the ProASIC3 nano Low Power Flash FPGAs datasheet for detailed specifications, timing, and
package and pin information.
The website for ProASIC3 nano devices is /www.microsemi.com/soc/products/pa3nano/default.aspx.
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FPGA Array Architecture in Low Power Flash Devices
I/O State of Newly Shipped Devices
Devices are shipped from the factory with a test design in the device. The power-on switch for VCC is
OFF by default in this test design, so I/Os are tristated by default. Tristated means the I/O is not actively
driven and floats. The exact value cannot be guaranteed when it is floating. Even in simulation software,
a tristate value is marked as unknown. Due to process variations and shifts, tristated I/Os may float
toward High or Low, depending on the particular device and leakage level. 
If there is concern regarding the exact state of unused I/Os, weak pull-up/pull-down should be added to
the floating I/Os so their state is controlled and stabilized.

Note: Flash*Freeze technology only applies to IGLOOe devices.
Figure 1-7 • IGLOOe and ProASIC3E Device Architecture Overview (AGLE600 device is shown)
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FPGA Array Architecture in Low Power Flash Devices
Routing Architecture
The routing structure of low power flash devices is designed to provide high performance through a
flexible four-level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources;
high-speed, very-long-line resources; and the high-performance VersaNet networks.
The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect
directly to every input of the eight surrounding VersaTiles (Figure 1-10). The exception to this is that the
SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaTile global network.
The efficient long-line resources provide routing for longer distances and higher-fanout connections.
These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and
horizontally, and cover the entire device (Figure 1-11 on page 19). Each VersaTile can drive signals onto
the efficient long-line resources, which can access every input of every VersaTile. Routing software
automatically inserts active buffers to limit loading effects.
The high-speed, very-long-line resources, which span the entire device with minimal delay, are used to
route very long or high-fanout nets: length ±12 VersaTiles in the vertical direction and length ±16 in the
horizontal direction from a given core VersaTile (Figure 1-12 on page 19). Very long lines in low power
flash devices have been enhanced over those in previous ProASIC families. This provides a significant
performance boost for long-reach signals.
The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from
external pins or internal logic. These nets are typically used to distribute clocks, resets, and other high-
fanout nets requiring minimum skew. The VersaNet networks are implemented as clock trees, and
signals can be introduced at any junction. These can be employed hierarchically, with signals accessing
every input of every VersaTile. For more details on VersaNets, refer to the "Global Resources in Low
Power Flash Devices" section on page 31. 

Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global
network connection.

Figure 1-10 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors
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Global Resources in Low Power Flash Devices
External I/O or Local signal as Clock Source
External I/O refers to regular I/O pins are labeled with the I/O convention IOuxwByVz. You can allow the
external I/O or internal signal to access the global. To allow the external I/O or internal signal to access
the global network, you need to instantiate the CLKINT macro. Refer to Figure 3-4 on page 35 for an
example illustration of the connections. Instead of using CLKINT, you can also use PDC to promote
signals from external I/O or internal signal to the global network. However, it may cause layout issues
because of synthesis logic replication. Refer to the "Global Promotion and Demotion Using PDC" section
on page 51 for details.

Using Global Macros in Synplicity
The Synplify® synthesis tool automatically inserts global buffers for nets with high fanout during
synthesis. By default, Synplicity® puts six global macros (CLKBUF or CLKINT) in the netlist, including
any global instantiation or PLL macro. Synplify always honors your global macro instantiation. If you have
a PLL (only primary output is used) in the design, Synplify adds five more global buffers in the netlist.
Synplify uses the following global counting rule to add global macros in the netlist:

1. CLKBUF: 1 global buffer
2. CLKINT: 1 global buffer
3. CLKDLY: 1 global buffer
4. PLL: 1 to 3 global buffers 

– GLA, GLB, GLC, YB, and YC are counted as 1 buffer.
– GLB or YB is used or both are counted as 1 buffer.
– GLC or YC is used or both are counted as 1 buffer.

Figure 3-14 • CLKINT Macro
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CLKDLY Macro Usage 
When a CLKDLY macro is used in a CCC location, the programmable delay element is used to allow the 
clock delays to go to the global network. In addition, the user can bypass the PLL in a CCC location 
integrated with a PLL, but use the programmable delay that is associated with the global network by 
instantiating the CLKDLY macro. The same is true when using programmable delay elements in a CCC 
location with no PLLs (the user needs to instantiate the CLKDLY macro). There is no difference between 
the programmable delay elements used for the PLL and the CLKDLY macro. The CCC will be configured 
to use the programmable delay elements in accordance with the macro instantiated by the user.
As an example, if the PLL is not used in a particular CCC location, the designer is free to specify up to 
three CLKDLY macros in the CCC, each of which can have its own input frequency and delay adjustment 
options. If the PLL core is used, assuming output to only one global clock network, the other two global 
clock networks are free to be used by either connecting directly from the global inputs or connecting from 
one or two CLKDLY macros for programmable delay.
The programmable delay elements are shown in the block diagram of the PLL block shown in Figure 4-6 
on page 71. Note that any CCC locations with no PLL present contain only the programmable delay 
blocks going to the global networks (labeled "Programmable Delay Type 2"). Refer to the "Clock Delay 
Adjustment" section on page 86 for a description of the programmable delay types used for the PLL. Also 
refer to Table 4-14 on page 94 for Programmable Delay Type 1 step delay values, and Table 4-15 on 
page 94 for Programmable Delay Type 2 step delay values. CCC locations with a PLL present can be 
configured to utilize only the programmable delay blocks (Programmable Delay Type 2) going to the 
global networks A, B, and C. 
Global network A can be configured to use only the programmable delay element (bypassing the PLL) if the 
PLL is not used in the design. Figure 4-6 on page 71 shows a block diagram of the PLL, where the 
programmable delay elements are used for the global networks (Programmable Delay Type 2). 
66 Revision 5



ProASIC3 nano FPGA Fabric User’s Guide
IGLOO and ProASIC3 CCC Locations
In all IGLOO and ProASIC3 devices (except 10 k through 30 k gate devices, which do not contain PLLs), 
six CCCs are located in the same positions as the IGLOOe and ProASIC3E CCCs. Only one of the 
CCCs has an integrated PLL and is located in the middle of the west (middle left) side of the device. The 
other five CCCs are simplified CCCs and are located in the four corners and the middle of the east side 
of the device (Figure 4-14). 

Note: The number and architecture of the banks are different for some devices.
10 k through 30 k gate devices do not support PLL features. In these devices, there are two CCC-GLs at 
the lower corners (one at the lower right, and one at the lower left). These CCC-GLs do not have 
programmable delays.

Figure 4-14 • CCC Locations in IGLOO and ProASIC3 Family Devices
(except 10 k through 30 k gate devices)
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ProASIC3 nano FPGA Fabric User’s Guide
83  RXCSEL1 CLKC input selection Select the CLKC input clock source between 
RC oscillator and crystal oscillator (refer to 
Table 4-16 on page 94).2

82  RXBSEL1 CLKB input selection Select the CLKB input clock source between 
RC oscillator and crystal oscillator (refer to 
Table 4-16 on page 94).2

81  RXASEL1 CLKA input selection Select the CLKA input clock source between 
RC oscillator and crystal oscillator (refer to 
Table 4-16 on page 94).2

80 RESETEN Reset Enable Enables (active high) the synchronization of 
PLL output dividers after dynamic 
reconfiguration (SUPDATE). The Reset 
Enable signal is READ-ONLY.

79 DYNCSEL Clock Input C Dynamic 
Select

Configures clock input C to be sent to GLC for 
dynamic control.2

78 DYNBSEL Clock Input B Dynamic 
Select

Configures clock input B to be sent to GLB for 
dynamic control.2

77 DYNASEL Clock Input A Dynamic 
Select

Configures clock input A for dynamic PLL 
configuration.2

<76:74> VCOSEL[2:0] VCO Gear Control Three-bit VCO Gear Control for four frequency 
ranges (refer to Table 4-19 on page 95 and 
Table 4-20 on page 95).

73 STATCSEL MUX Select on Input C MUX selection for clock input C2

72 STATBSEL MUX Select on Input B MUX selection for clock input B2

71 STATASEL MUX Select on Input A MUX selection for clock input A2

<70:66> DLYC[4:0] YC Output Delay Sets the output delay value for YC.

<65:61> DLYB[4:0] YB Output Delay Sets the output delay value for YB.

<60:56> DLYGLC[4:0] GLC Output Delay Sets the output delay value for GLC.

<55:51> DLYGLB[4:0] GLB Output Delay Sets the output delay value for GLB.

<50:46> DLYGLA[4:0] Primary Output Delay Primary GLA output delay

45 XDLYSEL System Delay Select When selected, inserts System Delay in the 
feedback path in Figure 4-20 on page 85.

<44:40> FBDLY[4:0] Feedback Delay Sets the feedback delay value for the 
feedback element in Figure 4-20 on page 85.

<39:38> FBSEL[1:0] Primary Feedback Delay 
Select

Controls the feedback MUX: no delay, include 
programmable delay element, or use external 
feedback.

<37:35> OCMUX[2:0] Secondary 2 Output 
Select

Selects from the VCO’s four phase outputs for 
GLC/YC.

<34:32> OBMUX[2:0] Secondary 1 Output 
Select

Selects from the VCO’s four phase outputs for 
GLB/YB.

Table 4-8 • Configuration Bit Descriptions for the CCC Blocks (continued)
Config.
Bits Signal Name Description

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set. 

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools > 
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
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ProASIC3 nano FPGA Fabric User’s Guide
Figure 5-2 • Fusion Device Architecture Overview (AFS600) 

Figure 5-3 • ProASIC3 and IGLOO Device Architecture 
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ProASIC3 nano FPGA Fabric User’s Guide
Figure 5-7 • Accessing FlashROM Using FPGA Core

Figure 5-8 • Accessing FlashROM Using JTAG Port
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ProASIC3 nano FPGA Fabric User’s Guide
I/O Software Support
In Microsemi's Libero software, default settings have been defined for the various I/O standards
supported. Changes can be made to the default settings via the use of attributes; however, not all I/O
attributes are applicable for all I/O standards. 

Table 7-15 • nano I/O Attributes vs. I/O Standard Applications

I/O Standard

SLEW
(output 
only)

OUT_DRIVE 
(output only) RES_PULL

OUT_LOAD 
(output only)

Schmitt 
Trigger Hold State

Combine 
Register

IGLOO 
nano

ProASIC
3 nano

LVTTL/
LVCMOS3.3

✓ ✓ (8) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS2.5 ✓ ✓ (8) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.8 ✓ ✓ (4) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.5 ✓ ✓ (2) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.2 ✓ ✓ (2) ✓ ✓ – ✓ ✓ ✓

Software
Defaults

HIGH Refer to 
numbers in 
parentheses 

in above cells.

None All 
Devices:

5 pF

10 pF or 
35 pF*

Off Off No

Note: *10 pF for A3PN010, A3PN015, and A3PN020; 35 pF for A3PN060, A3PN125, and A3PN250.
Revision 5 177



ProASIC3 nano FPGA Fabric User’s Guide
Related Documents

Application Notes
Board-Level Considerations
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf

User’s Guides
Libero SoC User’s Guide
http://www.microsemi.com/soc/documents/libero_ug.pdf
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
SmartGen Core Reference Guide
http://www.microsemi.com/soc/documents/genguide_ug.pdf

List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 Figure 7-2 • I/O Block Logical Representation for Dual-Tile Designs (60 k,125 k,
and 250 k Devices) was revised to indicate that resets on registers 1, 3, 4, and 5
are active high rather than active low (SAR 40698).

160

The hyperlink for the Board-Level Considerations application note was corrected
(SAR 36663).

181, 183

June 2011 Figure 7-2 • I/O Block Logical Representation for Dual-Tile Designs (60 k,125 k, 
and 250 k Devices) was revised so that the I/O_CLR and I/O_OCLK nets are no 
longer joined in front of Input Register 3 but instead on the branch of the CLR/PRE 
signal (SAR 26052).

160

The following sentence was removed from the "LVCMOS (Low-Voltage CMOS)"
section (SAR 22634): "All these versions use a 3.3 V–tolerant CMOS input buffer
and a push-pull output buffer."

166

The "5 V Input Tolerance" section was revised to state that 5 V input tolerance can
be used with LVTTL 3.3 V and LVCMOS 3.3 V configurations. LVCMOS 2.5 V,
LVCMOS 1.8 V, LVCMOS 1.5 V, and LVCMOS 1.2 V were removed from the
sentence listing supported configurations (SAR 22427).

171
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DDR for Microsemi’s Low Power Flash Devices
DDR Output Register

Verilog
module DDR_OutBuf_SSTL3_I(DataR,DataF,CLR,CLK,PAD);

input   DataR, DataF, CLR, CLK;
output  PAD;

wire Q, VCC;

VCC VCC_1_net(.Y(VCC));
DDR_OUT DDR_OUT_0_inst(.DR(DataR),.DF(DataF),.CLK(CLK),.CLR(CLR),.Q(Q));
OUTBUF_SSTL3_I OUTBUF_SSTL3_I_0_inst(.D(Q),.PAD(PAD));

endmodule

VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_OutBuf_SSTL3_I is 
port(DataR, DataF, CLR, CLK : in std_logic;  PAD : out std_logic) ;

end DDR_OutBuf_SSTL3_I;

architecture DEF_ARCH of  DDR_OutBuf_SSTL3_I is

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component OUTBUF_SSTL3_I
port(D : in std_logic := 'U'; PAD : out std_logic) ;

end component;

component VCC
port( Y : out std_logic);

end component;

signal Q, VCC_1_net : std_logic ;

begin

VCC_2_net : VCC port map(Y => VCC_1_net);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
OUTBUF_SSTL3_I_0_inst : OUTBUF_SSTL3_I
port map(D => Q, PAD => PAD);

end DEF_ARCH;

Figure 9-6 • DDR Output Register (SSTL3 Class I)
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Security in Low Power Flash Devices
Security Features
IGLOO and ProASIC3 devices have two entities inside: FlashROM and the FPGA core fabric. Fusion
devices contain three entities: FlashROM, FBs, and the FPGA core fabric. The parts can be programmed
or updated independently with a STAPL programming file. The programming files can be AES-encrypted
or plaintext. This allows maximum flexibility in providing security to the entire device. Refer to the
"Programming Flash Devices" section on page 221 for information on the FlashROM structure.
Unlike SRAM-based FPGA devices, which require a separate boot PROM to store programming data,
low power flash devices are nonvolatile, and the secured configuration data is stored in on-chip flash
cells that are part of the FPGA fabric. Once programmed, this data is an inherent part of the FPGA array
and does not need to be loaded at system power-up. SRAM-based FPGAs load the configuration
bitstream upon power-up; therefore, the configuration is exposed and can be read easily.
The built-in FPGA core, FBs, and FlashROM support programming files encrypted with the 128-bit AES
(FIPS-192) block ciphers. The AES key is stored in dedicated, on-chip flash memory and can be
programmed before the device is shipped to other parties (allowing secure remote field updates).

Security in ARM-Enabled Low Power Flash Devices 
There are slight differences between the regular flash devices and the ARM®-enabled flash devices,
which have the M1 and M7 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design is encrypted along with the ARM IP, according to the details below. 

Figure 11-3 • Block Representation of the AES Decryption Core in a Fusion AFS600 FPGA 
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Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming
Circuit Verification
The power switching circuit recommended above is implemented on Microsemi's Icicle board
(Figure 13-2). On the Icicle board, VJTAGENB is used to control the N-Channel Digital FET; however,
this circuit was modified to use TRST instead of VJTAGENB in this application. There are three important
aspects of this circuit that were verified:

1. The rise on VCC from 1.2 V to 1.5 V when TRST is HIGH
2. VCC rises to 1.5 V before programming begins.
3. VCC switches from 1.5 V to 1.2 V when TRST is LOW.

Verification Steps
1. The rise on VCC from 1.2 V to 1.5 V when TRST is HIGH.

In the oscilloscope plots (Figure 13-2), the TRST from FlashPro3 and the VCC core voltage of the
IGLOO device are labeled. This plot shows the rise characteristic of the TRST signal from FlashPro3.
Once the TRST signal is asserted HIGH, the LTC3025 shown in Figure 13-1 on page 277 senses the
increase in voltage and changes the output from 1.2 V to 1.5 V. It takes the circuit approximately 100 µs
to respond to TRST and change the voltage to 1.5 V on the VCC core.

Figure 13-2 • Core Voltage on the IGLOO AGL125-QNG132 Device
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Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming
3. VCC switches from 1.5 V to 1.2 V when TRST is LOW.

In Figure 13-4, the TRST signal and the VCC core voltage signal are labeled. As TRST is pulled to
ground, the core voltage is observed to switch from 1.5 V to 1.2 V. The observed fall time is
approximately 2 ms. 

DirectC
The above analysis is based on FlashPro3, but there are other solutions to ISP, such as DirectC. DirectC
is a microprocessor program that can be run in-system to program Microsemi flash devices. For
FlashPro3, TRST is the most convenient control signal to use for the recommended circuit. However, for
DirectC, users may use any signal to control the FET. For example, the DirectC code can be edited so
that a separate non-JTAG signal can be asserted from the microcontroller that signals the board that it is
about to start programming the device. After asserting the N-Channel Digital FET control signal, the
programming algorithm must allow sufficient time for the supply to rise to 1.5 V before initiating DirectC
programming. As seen in Figure 13-3 on page 279, 50 ms is adequate time. Depending on the size of
the PCB and the capacitance on the VCC supply, results may vary from system to system. Microsemi
recommends using a conservative value for the wait time to make sure that the VCC core voltage is at
the right level.

Conclusion
For applications using IGLOO and ProASIC3L low power FPGAs and taking advantage of the low core
voltage power supplies with less than 1.5 V operation, there must be a way for the core voltage to switch
from 1.2 V (or other voltage) to 1.5 V, which is required during in-system programming. The circuit
explained in this document illustrates one simple, cost-effective way of handling this requirement. A
JTAG signal from the FlashPro3 programmer allows the circuit to sense when programming is in
progress, enabling it to switch to the correct core voltage. 

Figure 13-4 • TRST Toggled LOW

TRST Signal

VCC Core Signal
280 Revision 5



ProASIC3 nano FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.1
(October 2008)

The "Introduction" was revised to include information about the core supply voltage
range of operation in V2 devices.

275

IGLOO nano device support was added to Table 13-1 • Flash-Based FPGAs
Supporting Voltage Switching Circuit.

276

The "Circuit Description" section was updated to include IGLOO PLUS core
operation from 1.2 V to 1.5 V in 50 mV increments.

277

v1.0
(August 2008)

The "Microsemi’s Flash Families Support Voltage Switching Circuit" section was
revised to include new families and make the information more concise.

276
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Microprocessor Programming of Microsemi’s Low Power Flash Devices
Remote Upgrade via TCP/IP
Transmission Control Protocol (TCP) provides a reliable bitstream transfer service between two
endpoints on a network. TCP depends on Internet Protocol (IP) to move packets around the network on
its behalf. TCP protects against data loss, data corruption, packet reordering, and data duplication by
adding checksums and sequence numbers to transmitted data and, on the receiving side, sending back
packets and acknowledging the receipt of data.
The system containing the low power flash device can be assigned an IP address when deployed in the
field. When the device requires an update (core or FlashROM), the programming instructions along with
the new programming data (AES-encrypted cipher text) can be sent over the Internet to the target system
via the TCP/IP protocol. Once the MCU receives the instruction and data, it can proceed with the FPGA
update. Low power flash devices support Message Authentication Code (MAC), which can be used to
validate data for the target device. More details are given in the "Message Authentication Code (MAC)
Validation/Authentication" section.

Hardware Requirement
To facilitate the programming of the low power flash families, the system must have a microprocessor
(with access to the device JTAG pins) to process the programming algorithm, memory to store the
programming algorithm, programming data, and the necessary programming voltage. Refer to the
relevant datasheet for programming voltages.

Security

Encrypted Programming
As an additional security measure, the devices are equipped with AES decryption. AES works in two
steps. The first step is to program a key into the devices in a secure or trusted programming center (such
as Microsemi SoC Products Group In-House Programming (IHP) center). The second step is to encrypt
any programming files with the same encryption key. The encrypted programming file will only work with
the devices that have the same key. The AES used in the low power flash families is the 128-bit AES
decryption engine (Rijndael algorithm).

Message Authentication Code (MAC) Validation/Authentication
As part of the AES decryption flow, the devices are equipped with a MAC validation/authentication
system. MAC is an authentication tag, also called a checksum, derived by applying an on-chip
authentication scheme to a STAPL file as it is loaded into the FPGA. MACs are computed and verified
with the same key so they can only be verified by the intended recipient. When the MCU system receives
the AES-encrypted programming data (cipher text), it can validate the data by loading it into the FPGA
and performing a MAC verification prior to loading the data, via a second programming pass, into the
FPGA core cells. This prevents erroneous or corrupt data from getting into the FPGA. 
Low power flash devices with AES and MAC are superior to devices with only DES or 3DES encryption.
Because the MAC verifies the correctness of the data, the FPGA is protected from erroneous loading of
invalid programming data that could damage a device (Figure 14-5 on page 289).
The AES with MAC enables field updates over public networks without fear of having the design stolen.
An encrypted programming file can only work on devices with the correct key, rendering any stolen files
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

September 2012 The "Security" section was modified to clarify that Microsemi does not support
read-back of FPGA core-programmed data (SAR 41235).

288

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 14-1 • Flash-
Based FPGAs.

284

v1.3
(October 2008)

The "Microprocessor Programming Support in Flash Devices" section was
revised to include new families and make the information more concise.

284

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 14-1 •
Flash-Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

284

v1.1
(March 2008)

The "Microprocessor Programming Support in Flash Devices" section was
updated to include information on the IGLOO PLUS family. The "IGLOO
Terminology" section and "ProASIC3 Terminology" section are new.

284
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Boundary Scan Support in Low Power Devices 
The information in this document applies to all Fusion, IGLOO, and ProASIC3 devices. For IGLOO,
IGLOO PLUS, and ProASIC3L devices, the Flash*Freeze pin must be deasserted for successful
boundary scan operations. Devices cannot enter JTAG mode directly from Flash*Freeze mode. 

Boundary Scan Opcodes 
Low power flash devices support all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD,
and BYPASS) and the optional IDCODE instruction (Table 15-2).

Boundary Scan Chain 
The serial pins are used to serially connect all the boundary scan register cells in a device into a
boundary scan register chain (Figure 15-2 on page 294), which starts at the TDI pin and ends at the TDO
pin. The parallel ports are connected to the internal core logic I/O tile and the input, output, and control
ports of an I/O buffer to capture and load data into the register to control or observe the logic state of
each I/O.
Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input),
TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI,
and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied
to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" section in the
"Pin Descriptions and Packaging" chapter of the appropriate device datasheet for pull-up/-down
recommendations for TCK and TRST pins. Pull-down recommendations are also given in Table 15-3 on
page 294

Table 15-2 • Boundary Scan Opcodes

Hex Opcode

EXTEST 00

HIGHZ 07

USERCODE 0E

SAMPLE/PRELOAD 01

IDCODE 0F

CLAMP 05

BYPASS FF
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Power-Up/-Down Behavior of Low Power Flash Devices
Power-Up to Functional Time
At power-up, device I/Os exit the tristate mode and become functional once the last voltage supply in the 
power-up sequence (VCCI or VCC) reaches its functional activation level. The power-up–to–functional 
time is the time it takes for the last supply to power up from zero to its functional level. Note that the 
functional level of the power supply during power-up may vary slightly within the specification at different 
ramp-rates. Refer to Table 17-2 for the functional level of the voltage supplies at power-up. 
Typical I/O behavior during power-up–to–functional time is illustrated in Figure 17-2 on page 311 and 
Figure 17-3. 

Microsemi’s low power flash devices meet Level 0 LAPU; that is, they can be functional prior to VCC 
reaching the regulated voltage required. This important advantage distinguishes low power flash devices 
from their SRAM-based counterparts. SRAM-based FPGAs, due to their volatile technology, require 
hundreds of milliseconds after power-up to configure the design bitstream before they become 
functional. Refer to Figure 17-4 on page 313 and Figure 17-5 on page 314 for more information.  

Figure 17-3 • I/O State when VCCI Is Powered before VCC 

Table 17-2 • Power-Up Functional Activation Levels for VCC and VCCI

Device
VCC Functional 

Activation Level (V)
VCCI Functional 

Activation Level (V)

ProASIC3, ProASIC3 nano, IGLOO, IGLOO nano, 
IGLOO PLUS, and ProASIC3L devices running at 
VCC = 1.5 V*

0.85 V ± 0.25 V 0.9 V ± 0.3 V

IGLOO, IGLOO nano, IGLOO PLUS, and 
ProASIC3L devices running at VCC = 1.2 V*

0.85 V ± 0.2 V 0.9 V ± 0.15 V

Note: *V5 devices will require a 1.5 V VCC supply, whereas V2 devices can utilize either a 1.2 V or 1.5 V 
VCC.
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