
Microchip Technology - A3PN060-ZVQG100I Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 18432

Number of I/O 71

Number of Gates 60000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 100-TQFP

Supplier Device Package 100-VQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn060-zvqg100i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn060-zvqg100i-4494200
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3 nano FPGA Fabric User’s Guide
IEEE 1532 (JTAG) Interface . 264
Security . 264
Security in ARM-Enabled Low Power Flash Devices . 265
FlashROM and Programming Files . 267
Programming Solution . 268
ISP Programming Header Information . 269
Board-Level Considerations . 271
Conclusion . 272
Related Documents . 272
List of Changes . 273

13 Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming 275
Introduction . 275
Microsemi’s Flash Families Support Voltage Switching Circuit . 276
Circuit Description . 277
Circuit Verification . 278
DirectC . 280
Conclusion . 280
List of Changes . 281

14 Microprocessor Programming of Microsemi’s Low Power Flash Devices . 283
Introduction . 283
Microprocessor Programming Support in Flash Devices . 284
Programming Algorithm . 285
Implementation Overview . 285
Hardware Requirement . 288
Security . 288
Conclusion . 289
List of Changes . 290

15 Boundary Scan in Low Power Flash Devices. 291
Boundary Scan . 291
TAP Controller State Machine . 291
Microsemi’s Flash Devices Support the JTAG Feature . 292
Boundary Scan Support in Low Power Devices . 293
Boundary Scan Opcodes . 293
Boundary Scan Chain . 293
Board-Level Recommendations . 294
Advanced Boundary Scan Register Settings . 295
List of Changes . 296

16 UJTAG Applications in Microsemi’s Low Power Flash Devices . 297
Introduction . 297
UJTAG Support in Flash-Based Devices . 298
UJTAG Macro . 299
UJTAG Operation . 300
Typical UJTAG Applications . 302
Conclusion . 306
Related Documents . 306
List of Changes . 306
Revision 5 5

2 – Low Power Modes in ProASIC3/E and
ProASIC3 nano FPGAs

Introduction
The demand for low power systems and semiconductors, combined with the strong growth observed for
value-based FPGAs, is driving growing demand for low power FPGAs. For portable and battery-operated
applications, power consumption has always been the greatest challenge. The battery life of a system
and on-board devices has a direct impact on the success of the product. As a result, FPGAs used in
these applications should meet low power consumption requirements.
ProASIC®3/E and ProASIC3 nano FPGAs offer low power consumption capability inherited from their
nonvolatile and live-at-power-up (LAPU) flash technology. This application note describes the power
consumption and how to use different power saving modes to further reduce power consumption for
power-conscious electronics design.

Power Consumption Overview
In evaluating the power consumption of FPGA technologies, it is important to consider it from a system
point of view. Generally, the overall power consumption should be based on static, dynamic, inrush, and
configuration power. Few FPGAs implement ways to reduce static power consumption utilizing sleep
modes.
SRAM-based FPGAs use volatile memory for their configuration, so the device must be reconfigured
after each power-up cycle. Moreover, during this initialization state, the logic could be in an indeterminate
state, which might cause inrush current and power spikes. More complex power supplies are required to
eliminate potential system power-up failures, resulting in higher costs. For portable electronics requiring
frequent power-up and -down cycles, this directly affects battery life, requiring more frequent recharging
or replacement.

SRAM-Based FPGA Total Power Consumption = Pstatic + Pdynamic + Pinrush + Pconfig

EQ 1

ProASIC3/E Total Power Consumption = Pstatic + Pdynamic

EQ 2
Unlike SRAM-based FPGAs, Microsemi flash-based FPGAs are nonvolatile and do not require power-up
configuration. Additionally, Microsemi nonvolatile flash FPGAs are live at power-up and do not require
additional support components. Total power consumption is reduced as the inrush current and
configuration power components are eliminated.
Note that the static power component can be reduced in flash FPGAs (such as the ProASIC3/E devices)
by entering User Low Static mode or Sleep mode. This leads to an extremely low static power
component contribution to the total system power consumption.
The following sections describe the usage of Static (Idle) mode to reduce the power component, User
Low Static mode to reduce the static power component, and Sleep mode and Shutdown mode to achieve
a range of power consumption when the FPGA or system is idle. Table 2-1 on page 22 summarizes the
different low power modes offered by ProASIC3/E devices.
Revision 5 21

ProASIC3 nano FPGA Fabric User’s Guide
Shutdown Mode
For all ProASIC3/E and ProASIC3 nano devices, shutdown mode can be entered by turning off all power
supplies when device functionality is not needed. Cold-sparing and hot-insertion features in ProASIC3
nano devices enable the device to be powered down without turning off the entire system. When power
returns, the live at power-up feature enables immediate operation of the device.

Using Sleep Mode or Shutdown Mode in the System
Depending on the power supply and components used in an application, there are many ways to turn the
power supplies connected to the device on or off. For example, Figure 2-6 shows how a microprocessor
is used to control a power FET. It is recommended that power FETs with low on resistance be used to
perform the switching action.

Figure 2-5 • Entering and Exiting Sleep Mode—Typical Timing Diagram

VCC

VCC = 1.5 V

Sleep Mode
t

Activation Trip Point
Va = 0.85 ± 0.25 V

Deactivation Trip Point
Vd = 0.75 ± 0.25 V

Figure 2-6 • Controlling Power On/Off State Using Microprocessor and Power FET

Microprocessor
ProASIC3/E/nanoPower On/Off

Control Signal

P-Channel
Power FET

1.5 V Power
Supply

VCC, VJTAG, and VPUMP Pins
Revision 5 27

ProASIC3 nano FPGA Fabric User’s Guide
Chip and Quadrant Global I/Os
The following sections give an overview of naming conventions and other related I/O information.

Naming of Global I/Os
In low power flash devices, the global I/Os have access to certain clock conditioning circuitry and have
direct access to the global network. Additionally, the global I/Os can be used as regular I/Os, since they
have identical capabilities to those of regular I/Os. Due to the comprehensive and flexible nature of the
I/Os in low power flash devices, a naming scheme is used to show the details of the I/O. The global I/O
uses the generic name Gmn/IOuxwByVz. Note that Gmn refers to a global input pin and IOuxwByVz
refers to a regular I/O Pin, as these I/Os can be used as either global or regular I/Os. Refer to the I/O
Structures chapter of the user’s guide for the device that you are using for more information on this
naming convention.
Figure 3-4 represents the global input pins connection. It shows all 54 global pins available to
access the 18 global networks in ProASIC3E families.

Figure 3-4 • Global Connections Details

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

3

3

3

3 3

3 3 3

6

6

6

6

6

6

6

6

C
hi

p
G

lo
ba

lS
pi

ne
Q

ua
dr

an
tG

lo
ba

lS
pi

ne

GAAO/IOuxwByVz
GAA1/IOuxwByVz
GAA2/IOuxwByVz
GABO/IOuxwByVz
GAB1/IOuxwByVz
GAB2/IOuxwByVz
GACO/IOuxwByVz
GAC1/IOuxwByVz
GAC2/IOuxwByVz

3

3

Bankx

Bankx

B
an

kx
B

an
kx

B
ankx

B
ankx

Bankx

Bankx

Chip Global
Location F

GFAO/IOuxwByVz
GFA1/IOuxwByVz
GFA2/IOuxwByVz
GFBO/IOuxwByVz
GFB1/IOuxwByVz
GFB2/IOuxwByVz

GFC2/IOuxwByVz

GEAO/IOuxwByVz
GEAC/IOuxwByVz
GEA2/IOuxwByVz
GEBO/IOuxwByVz
GEB1/IOuxwByVz
GEB2/IOuxwByVz
GECO/IOuxwByVz
GEC1/IOuxwByVz
GEC2/IOuxwByVz

GFC1/IOuxwByVz
GFCO/IOuxwByVz

Quadrant Global
Location E

Quadrant Global
Location D

GDAO/IOuxwByVz
GDA1/IOuxwByVz
GDA2/IOuxwByVz
GDBO/IOuxwByVz
GDB1/IOuxwByVz
GDB2/IOuxwByVz
GDCO/IOuxwByVz
GDC1/IOuxwByVz
GDC2/IOuxwByVz

Chip Global
Location C

GCAO/IOuxwByVz
GCA1/IOuxwByVz
GCA2/IOuxwByVz
GCBO/IOuxwByVz
GCB1/IOuxwByVz
GCB2/IOuxwByVz
GCCO/IOuxwByVz
GCC1/IOuxwByVz
GCC2/IOuxwByVz

Quadrant Global
Location B

GBAO/IOuxwByVz
GBA1/IOuxwByVz
GBA2/IOuxwByVz
GBBO/IOuxwByVz
GBB1/IOuxwByVz
GBB2/IOuxwByVz
GBCO/IOuxwByVz
GBC1/IOuxwByVz
GBC2/IOuxwByVz

CCC w it h PLL

CCC w it hout PLL

CCC w it h or w it hout PLL

3
3

33

Quadrant Global
Location A
Revision 5 35

Global Resources in Low Power Flash Devices
Unused Global I/O Configuration
The unused clock inputs behave similarly to the unused Pro I/Os. The Microsemi Designer software
automatically configures the unused global pins as inputs with pull-up resistors if they are not used as
regular I/O.

I/O Banks and Global I/O Standards
In low power flash devices, any I/O or internal logic can be used to drive the global network. However,
only the global macro placed at the global pins will use the hardwired connection between the I/O and
global network. Global signal (signal driving a global macro) assignment to I/O banks is no different from
regular I/O assignment to I/O banks with the exception that you are limited to the pin placement location
available. Only global signals compatible with both the VCCI and VREF standards can be assigned to the
same bank.

Differential I/O Pairs GAAO/IOuxwByVz
GAA1/IOuxwByVz

The output of the different pair will drive the global.

GABO/IOuxwByVz
GAB1/IOuxwByVz

The output of the different pair will drive the global.

GACO/IOuxwByVz
GAC1/IOuxwByVz

The output of the different pair will drive the global.

GBAO/IOuxwByVz
GBA1/IOuxwByVz

The output of the different pair will drive the global.

GBBO/IOuxwByVz
GBB1/IOuxwByVz

The output of the different pair will drive the global.

GBCO/IOuxwByVz
GBC1/IOuxwByVz

The output of the different pair will drive the global.

GDAO/IOuxwByVz
GDA1/IOuxwByVz

The output of the different pair will drive the global.

GDBO/IOuxwByVz
GDB1/IOuxwByVz

The output of the different pair will drive the global.

GDCO/IOuxwByVz
GDC1/IOuxwByVz

The output of the different pair will drive the global.

GEAO/IOuxwByVz
GEA1/IOuxwByVz

The output of the different pair will drive the global.

GEBO/IOuxwByVz
GEB1/IOuxwByVz

The output of the different pair will drive the global.

GECO/IOuxwByVz
GEC1/IOuxwByVz

The output of the different pair will drive the global.

Table 3-3 • Quadrant Global Pin Name (continued)

Note: Only one of the I/Os can be directly connected to a quadrant at a time.
40 Revision 5

Global Resources in Low Power Flash Devices
Using Clock Aggregation
Clock aggregation allows for multi-spine clock domains to be assigned using hardwired connections,
without adding any extra skew. A MUX tree, shown in Figure 3-8, provides the necessary flexibility to
allow long lines, local resources, or I/Os to access domains of one, two, or four global spines. Signal
access to the clock aggregation system is achieved through long-line resources in the central rib in the
center of the die, and also through local resources in the north and south ribs, allowing I/Os to feed
directly into the clock system. As Figure 3-9 indicates, this access system is contiguous.
There is no break in the middle of the chip for the north and south I/O VersaNet access. This is different
from the quadrant clocks located in these ribs, which only reach the middle of the rib.

Figure 3-8 • Spine Selection MUX of Global Tree

Figure 3-9 • Clock Aggregation Tree Architecture

Internal/External
Signal

Internal/External
Signal

Internal/External
Signals

Spine

Global Rib

Global Driver MUX

Tree Node MUX

Tree Node MUX

Internal/External
Signals

Tree Node MUX

Global Spine
Global Rib
Global Driver and MUX

I/O Access
Internal Signal Access

I/O Tiles

Global Signal Access
Tree Node MUX
44 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Figure 3-12 • Chip Global Region

Figure 3-13 • Quadrant Global Region

Location A

Location F

Location E Location D

Location C

Location BBankx Bankx

Bankx Bankx

B
an

kx
B

an
kx

B
an

kx
B

an
kx

Chip Global Region

C
LK

B
U

F
pl

ac
ed

 a
t o

ne
 o

f t
he

 G
F

pi
n

lo
ca

tio
ns

Location A

Location F

Location E Location D

Location C

Location BBankx Bankx

Bankx Bankx

B
an

kx
B

an
kx

B
an

kx
B

an
kx

Quadrant Global Region

CLKBUF placed at one of the GA pin locations
Revision 5 49

ProASIC3 nano FPGA Fabric User’s Guide
You can control the maximum number of shared instances allowed for the legalization to take place using
the Compile Option dialog box shown in Figure 3-17. Refer to Libero SoC / Designer online help for
details on the Compile Option dialog box. A large number of shared instances most likely indicates a
floorplanning problem that you should address.

Designer Flow for Global Assignment
To achieve the desired result, pay special attention to global management during synthesis and place-
and-route. The current Synplify tool does not insert more than six global buffers in the netlist by default.
Thus, the default flow will not assign any signal to the quadrant global network. However, you can use
attributes in Synplify and increase the default global macro assignment in the netlist. Designer v6.2
supports automatic quadrant global assignment, which was not available in Designer v6.1. Layout will
make the choice to assign the correct signals to global. However, you can also utilize PDC and perform
manual global assignment to overwrite any automatic assignment. The following step-by-step
suggestions guide you in the layout of your design and help you improve timing in Designer:

1. Run Compile and check the Compile report. The Compile report has global information in the
"Device Utilization" section that describes the number of chip and quadrant signals in the design.
A "Net Report" section describes chip global nets, quadrant global nets, local clock nets, a list of
nets listed by fanout, and net candidates for local clock assignment. Review this information. Note
that YB or YC are counted as global only when they are used in isolation; if you use YB only and
not GLB, this net is not shown in the global/quadrant nets report. Instead, it appears in the Global
Utilization report.

2. If some signals have a very high fanout and are candidates for global promotion, promote those
signals to global using the compile options or PDC commands. Figure 3-18 on page 54 shows the
Globals Management section of the compile options. Select Promote regular nets whose
fanout is greater than and enter a reasonable value for fanouts.

Figure 3-17 • Shared Instances in the Compile Option Dialog Box
Revision 5 53

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
<31:29> OAMUX[2:0] GLA Output Select Selects from the VCO’s four phase outputs for
GLA.

<28:24> OCDIV[4:0] Secondary 2 Output
Divider

Sets the divider value for the GLC/YC outputs.
Also known as divider w in Figure 4-20 on
page 85. The divider value will be OCDIV[4:0]
+ 1.

<23:19> OBDIV[4:0] Secondary 1 Output
Divider

Sets the divider value for the GLB/YB outputs.
Also known as divider v in Figure 4-20 on
page 85. The divider value will be OBDIV[4:0]
+ 1.

<18:14> OADIV[4:0] Primary Output Divider Sets the divider value for the GLA output. Also
known as divider u in Figure 4-20 on page 85.
The divider value will be OADIV[4:0] + 1.

<13:7> FBDIV[6:0] Feedback Divider Sets the divider value for the PLL core
feedback. Also known as divider m in
Figure 4-20 on page 85. The divider value will
be FBDIV[6:0] + 1.

<6:0> FINDIV[6:0] Input Divider Input Clock Divider (/n). Sets the divider value
for the input delay on CLKA. The divider value
will be FINDIV[6:0] + 1.

Table 4-8 • Configuration Bit Descriptions for the CCC Blocks (continued)
Config.
Bits Signal Name Description

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set.

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools >
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
92 Revision 5

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Table 4-13 • 2-Bit Feedback MUX

FBSEL<1:0> State MUX Input Selected

0 Ground. Used for power-down mode in power-down logic
block.

1 PLL VCO 0° phase shift

2 PLL delayed VCO 0° phase shift

3 N/A

Table 4-14 • Programmable Delay Selection for Feedback Delay and Secondary Core Output Delays

FBDLY<4:0>; DLYYB<4:0>; DLYYC<4:0> State Delay Value

0 Typical delay = 600 ps

1 Typical delay = 760 ps

2 Typical delay = 920 ps

… …
31 Typical delay = 5.56 ns

Table 4-15 • Programmable Delay Selection for Global Clock Output Delays

DLYGLA<4:0>; DLYGLB<4:0>; DLYGLC<4:0> State Delay Value

0 Typical delay = 225 ps

1 Typical delay = 760 ps

2 Typical delay = 920 ps

… …

31 Typical delay = 5.56 ns

Table 4-16 • Fusion Dynamic CCC Clock Source Selection
RXASEL DYNASEL Source of CLKA
1 0 RC Oscillator

1 1 Crystal Oscillator

RXBSEL DYNBSEL Source of CLKB
1 0 RC Oscillator

1 1 Crystal Oscillator

RXBSEL DYNCSEL Source of CLKC
1 0 RC Oscillator

1 1 Crystal Oscillator

Table 4-17 • Fusion Dynamic CCC NGMUX Configuration
GLMUXCFG<1:0> NGMUX Select Signal Supported Input Clocks to NGMUX
00 0 GLA

1 GLC

01 0 GLA

1 GLINT

10 0 GLC

1 GLINT
94 Revision 5

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
DLYGLC[4:0] 00000
DLYYB[4:0] 00000
DLYYC[4:0] 00000
VCOSEL[2:0] 100

Primary Clock Frequency 33.000
Primary Clock Phase Shift 0.000
Primary Clock Output Delay from CLKA 1.695

Secondary1 Clock Frequency 40.000
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKB 0.200

Secondary2 Clock Frequency 50.000
Secondary2 Clock Phase Shift 0.000
Secondary2 Clock Global Output Delay from CLKC 0.200

######################################
Dynamic Stream Data
######################################

|NAME |SDIN |VALUE |TYPE |

FINDIV	[6:0]	0000101	EDIT
FBDIV	[13:7]	0100000	EDIT
OADIV	[18:14]	00100	EDIT
OBDIV	[23:19]	00000	EDIT
OCDIV	[28:24]	00000	EDIT
OAMUX	[31:29]	100	EDIT
OBMUX	[34:32]	000	EDIT
OCMUX	[37:35]	000	EDIT
FBSEL	[39:38]	01	EDIT
FBDLY	[44:40]	00000	EDIT
XDLYSEL	[45]	0	EDIT
DLYGLA	[50:46]	00000	EDIT
DLYGLB	[55:51]	00000	EDIT
DLYGLC	[60:56]	00000	EDIT
DLYYB	[65:61]	00000	EDIT
DLYYC	[70:66]	00000	EDIT
STATASEL	[71]	X	MASKED
STATBSEL	[72]	X	MASKED
STATCSEL	[73]	X	MASKED
VCOSEL	[76:74]	100	EDIT
DYNASEL	[77]	X	MASKED
DYNBSEL	[78]	X	MASKED
DYNCSEL	[79]	X	MASKED
RESETEN	[80]	1	READONLY

Below is the resultant Verilog HDL description of a legal dynamic PLL core configuration generated by
SmartGen:
module dyn_pll_macro(POWERDOWN, CLKA, LOCK, GLA, GLB, GLC, SDIN, SCLK, SSHIFT, SUPDATE,

MODE, SDOUT, CLKB, CLKC);

input POWERDOWN, CLKA;
output LOCK, GLA, GLB, GLC;
input SDIN, SCLK, SSHIFT, SUPDATE, MODE;
output SDOUT;
input CLKB, CLKC;

wire VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
102 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
• Use quadrant global region assignments by finding the clock net associated with the CCC macro
under the Nets tab and creating a quadrant global region for the net, as shown in Figure 4-33.

External I/O–Driven CCCs
The above-mentioned recommendation for proper layout techniques will ensure the correct assignment.
It is possible that, especially with External I/O–Driven CCC macros, placement of the CCC macro in a
desired location may not be achieved. For example, assigning an input port of an External I/O–Driven
CCC near a particular CCC location does not guarantee global assignments to the desired location. This
is because the clock inputs of External I/O–Driven CCCs can be assigned to any I/O location; therefore,
it is possible that the CCC connected to the clock input will be routed to a location other than the one
closest to the I/O location, depending on resource availability and placement constraints.

Clock Placer
The clock placer is a placement engine for low power flash devices that places global signals on the chip
global and quadrant global networks. Based on the clock assignment constraints for the chip global and
quadrant global clocks, it will try to satisfy all constraints, as well as creating quadrant clock regions when
necessary. If the clock placer fails to create the quadrant clock regions for the global signals, it will report
an error and stop Layout.
The user must ensure that the constraints set to promote clock signals to quadrant global networks are
valid.

Cascading CCCs
The CCCs in low power flash devices can be cascaded. Cascading CCCs can help achieve more
accurate PLL output frequency results than those achievable with a single CCC. In addition, this
technique is useful when the user application requires the output clock of the PLL to be a multiple of the
reference clock by an integer greater than the maximum feedback divider value of the PLL (divide by
128) to achieve the desired frequency.
For example, the user application may require a 280 MHz output clock using a 2 MHz input reference
clock, as shown in Figure 4-34 on page 110.

Figure 4-33 • Quadrant Clock Assignment for a Global Net
Revision 5 109

5 – FlashROM in Microsemi’s Low Power Flash
Devices

Introduction
The Fusion, IGLOO, and ProASIC3 families of low power flash-based devices have a dedicated
nonvolatile FlashROM memory of 1,024 bits, which provides a unique feature in the FPGA market. The
FlashROM can be read, modified, and written using the JTAG (or UJTAG) interface. It can be read but
not modified from the FPGA core. Only low power flash devices contain on-chip user nonvolatile memory
(NVM).

Architecture of User Nonvolatile FlashROM
Low power flash devices have 1 kbit of user-accessible nonvolatile flash memory on-chip that can be
read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits (16 bytes) during
programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the
FlashROM from the FPGA core. Figure 5-1 shows the FlashROM logical structure.
The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports
synchronous read. The address is latched on the rising edge of the clock, and the new output data is
stable after the falling edge of the same clock cycle. For more information, refer to the timing diagrams in
the DC and Switching Characteristics chapter of the appropriate datasheet. The FlashROM can be read
on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank
being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16
bytes in the bank is being accessed.

Figure 5-1 • FlashROM Architecture

B
an

k
N

um
be

r 3
 M

SB
 o

f
A

D
D

R
 (R

EA
D

)

Byte Number in Bank 4 LSB of ADDR (READ)

7

0

1

2

3

4

5

6

0123456789101112131415
Revision 5 117

ProASIC3 nano FPGA Fabric User’s Guide
Simulation of FlashROM Design
The MEM file has 128 rows of 8 bits, each representing the contents of the FlashROM used for
simulation. For example, the first row represents page 0, byte 0; the next row is page 0, byte 1; and so
the pattern continues. Note that the three MSBs of the address define the page number, and the four
LSBs define the byte number. So, if you send address 0000100 to FlashROM, this corresponds to the
page 0 and byte 4 location, which is the fifth row in the MEM file. SmartGen defaults to 0s for any
unspecified location of the FlashROM. Besides using the MEM file generated by SmartGen, you can
create a binary file with 128 rows of 8 bits each and use this as a MEM file. Microsemi recommends that
you use different file names if you plan to generate multiple MEM files. During simulation, Libero SoC
passes the MEM file used as the generic file in the netlist, along with the design files and testbench. If
you want to use different MEM files during simulation, you need to modify the generic file reference in the
netlist.
…………………
UFROM0: UFROM
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_a.mem")
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_b.mem")
…………………….

The VITAL and Verilog simulation models accept the generics passed by the netlist, read the MEM file,
and perform simulation with the data in the file.

Programming File Generation for FlashROM Design
FlashPoint is the programming software used to generate the programming files for flash devices.
Depending on the applications, you can use the FlashPoint software to generate a STAPL file with
different FlashROM contents. In each case, optional AES decryption is available. To generate a STAPL
file that contains the same FPGA core content and different FlashROM contents, the FlashPoint software
needs an Array Map file for the core and UFC file(s) for the FlashROM. This final STAPL file represents
the combination of the logic of the FPGA core and FlashROM content.
FlashPoint generates the STAPL files you can use to program the desired FlashROM page and/or FPGA
core of the FPGA device contents. FlashPoint supports the encryption of the FlashROM content and/or
FPGA Array configuration data. In the case of using the FlashROM for device serialization, a sequence
of unique FlashROM contents will be generated. When generating a programming file with multiple
unique FlashROM contents, you can specify in FlashPoint whether to include all FlashROM content in a
single STAPL file or generate a different STAPL file for each FlashROM (Figure 5-11). The programming
software (FlashPro) handles the single STAPL file that contains the FlashROM content from multiple
devices. It enables you to program the FlashROM content into a series of devices sequentially
(Figure 5-11). See the FlashPro User’s Guide for information on serial programming.

Figure 5-11 • Single or Multiple Programming File Generation

FlashPoint

FPGA Array
Map File

FPGA Array
Map File

Security SettingsSecurity Settings

UFC File for
Multiple FlashROM

Contents

UFC File for
Single FlashROM

Contents

FlashPoint

Single
STAPL

File

Single
STAPL

File

Single
STAPL

File
Revision 5 127

http://www.microsemi.com/soc/documents/flashpro_ug.pdf

ProASIC3 nano FPGA Fabric User’s Guide
The ROM emulation application is based on RAM block initialization. If the user's main design has
access only to the read ports of the RAM block (RADDR, RD, RCLK, and REN), and the contents of the
RAM are already initialized through the TAP, then the memory blocks will emulate ROM functionality for
the core design. In this case, the write ports of the RAM blocks are accessed only by the user interface
block, and the interface is activated only by the TAP Instruction Register contents.
Users should note that the contents of the RAM blocks are lost in the absence of applied power.
However, the 1 kbit of flash memory, FlashROM, in low power flash devices can be used to retain data
after power is removed from the device. Refer to the "SRAM and FIFO Memories in Microsemi's Low
Power Flash Devices" section on page 131 for more information.

Sample Verilog Code
Interface Block
`define Initialize_start 8'h22 //INITIALIZATION START COMMAND VALUE
`define Initialize_stop 8'h23 //INITIALIZATION START COMMAND VALUE

module interface(IR, rst_n, data_shift, clk_in, data_update, din_ser, dout_ser, test,
test_out,test_clk,clk_out,wr_en,rd_en,write_word,read_word,rd_addr, wr_addr);

input [7:0] IR;
input [3:0] read_word; //RAM DATA READ BACK
input rst_n, data_shift, clk_in, data_update, din_ser; //INITIALIZATION SIGNALS
input test, test_clk; //TEST PROCEDURE CLOCK AND COMMAND INPUT
output [3:0] test_out; //READ DATA
output [3:0] write_word; //WRITE DATA
output [1:0] rd_addr; //READ ADDRESS
output [1:0] wr_addr; //WRITE ADDRESS
output dout_ser; //TDO DRIVER
output clk_out, wr_en, rd_en;

wire [3:0] write_word;
wire [1:0] rd_addr;
wire [1:0] wr_addr;
wire [3:0] Q_out;
wire enable, test_active;

reg clk_out;

//SELECT CLOCK FOR INITIALIZATION OR READBACK TEST
always @(enable or test_clk or data_update)
begin

case ({test_active})
1 : clk_out = test_clk ;
0 : clk_out = !data_update;
default : clk_out = 1'b1;

endcase
end

assign test_active = test && (IR == 8'h23);
assign enable = (IR == 8'h22);
assign wr_en = !enable;
assign rd_en = !test_active;
assign test_out = read_word;
assign dout_ser = Q_out[3];

//4-bit SIN/POUT SHIFT REGISTER
shift_reg data_shift_reg (.Shiften(data_shift), .Shiftin(din_ser), .Clock(clk_in),

.Q(Q_out));

//4-bit PIPELINE REGISTER
D_pipeline pipeline_reg (.Data(Q_out), .Clock(data_update), .Q(write_word));
Revision 5 151

ProASIC3 nano FPGA Fabric User’s Guide
I/O Software Support
In Microsemi's Libero software, default settings have been defined for the various I/O standards
supported. Changes can be made to the default settings via the use of attributes; however, not all I/O
attributes are applicable for all I/O standards.

Table 7-15 • nano I/O Attributes vs. I/O Standard Applications

I/O Standard

SLEW
(output
only)

OUT_DRIVE
(output only) RES_PULL

OUT_LOAD
(output only)

Schmitt
Trigger Hold State

Combine
Register

IGLOO
nano

ProASIC
3 nano

LVTTL/
LVCMOS3.3

✓ ✓ (8) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS2.5 ✓ ✓ (8) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.8 ✓ ✓ (4) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.5 ✓ ✓ (2) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.2 ✓ ✓ (2) ✓ ✓ – ✓ ✓ ✓

Software
Defaults

HIGH Refer to
numbers in
parentheses

in above cells.

None All
Devices:

5 pF

10 pF or
35 pF*

Off Off No

Note: *10 pF for A3PN010, A3PN015, and A3PN020; 35 pF for A3PN060, A3PN125, and A3PN250.
Revision 5 177

ProASIC3 nano FPGA Fabric User’s Guide
• Programming Centers
Microsemi programming hardware policy also applies to programming centers. Microsemi
expects all programming centers to use certified programmers to program Microsemi devices. If a
programming center uses noncertified programmers to program Microsemi devices, the
"Noncertified Programmers" policy applies.

Important Programming Guidelines

Preprogramming Setup
Before programming, several steps are required to ensure an optimal programming yield.

Use Proper Handling and Electrostatic Discharge (ESD) Precautions
Microsemi FPGAs are sensitive electronic devices that are susceptible to damage from ESD and other
types of mishandling. For more information about ESD, refer to the Quality and Reliability Guide,
beginning with page 41.

Use the Latest Version of the Designer Software to Generate Your
Programming File (recommended)
The files used to program Microsemi flash devices (*.bit, *.stp, *.pdb) contain important information about
the switches that will be programmed in the FPGA. Find the latest version and corresponding release
notes at http://www.microsemi.com/soc/download/software/designer/. Also, programming files must
always be zipped during file transfer to avoid the possibility of file corruption.

Use the Latest Version of the Programming Software
The programming software is frequently updated to accommodate yield enhancements in FPGA
manufacturing. These updates ensure maximum programming yield and minimum programming times.
Before programming, always check the version of software being used to ensure it is the most recent.
Depending on the programming software, refer to one of the following:

• FlashPro: http://www.microsemi.com/soc/download/program_debug/flashpro/
• Silicon Sculptor: http://www.microsemi.com/soc/download/program_debug/ss/

Use the Most Recent Adapter Module with Silicon Sculptor
Occasionally, Microsemi makes modifications to the adapter modules to improve programming yields
and programming times. To identify the latest version of each module before programming, visit
http://www.microsemi.com/soc/products/hardware/program_debug/ss/modules.aspx.

Perform Routine Hardware Self-Diagnostic Test
• Adapter modules must be regularly cleaned. Adapter modules need to be inserted carefully into

the programmer to make sure the DIN connectors (pins at the back side) are not damaged.
• FlashPro

The self-test is only applicable when programming with FlashPro and FlashPro3 programmers. It
is not supported with FlashPro4 or FlashPro Lite. To run the self-diagnostic test, follow the
instructions given in the "Performing a Self-Test" section of
http://www.microsemi.com/soc/documents/FlashPro_UG.pdf.

• Silicon Sculptor
The self-diagnostic test verifies correct operation of the pin drivers, power supply, CPU, memory,
and adapter module. This test should be performed with an adapter module installed and before
every programming session. At minimum, the test must be executed every week. To perform self-
diagnostic testing using the Silicon Sculptor software, perform the following steps, depending on
the operating system:
– DOS: From anywhere in the software, type ALT + D.
– Windows: Click Device > choose Actel Diagnostic > select the Test tab > click OK.
Silicon Sculptor programmers must be verified annually for calibration. Refer to the Silicon
Sculptor Verification of Calibration Work Instruction document on the website.
Revision 5 229

http://www.microsemi.com/soc/documents/RelGuide.pdf
http://www.microsemi.com/soc/download/software/designer/
http://www.microsemi.com/soc/download/program_debug/flashpro/
http://www.microsemi.com/soc/download/program_debug/ss/
http://www.microsemi.com/soc/products/hardware/program_debug/ss/modules.aspx
http://www.microsemi.com/soc/documents/FlashPro_UG.pdf
http://www.microsemi.com/soc/documents/SiliSculptProgCali_UG.pdf
http://www.microsemi.com/soc/documents/SiliSculptProgCali_UG.pdf

Security in Low Power Flash Devices
Note: If programming the Security Header only, just perform sub-flow 1.
If programming design content only, just perform sub-flow 2.

Figure 11-9 • Security Programming Flows

Software Generates Programming File
with Desired Security Settings:
 – Encrypted with AES and Protected
 with FlashLock Pass Key
 – Protected with FlashLock Pass Key Only

Program
Design
Contents

Program
Security
Settings

User

1

2

Designer Software Programming Software

Programming
Previously
Secured

Device(s)?

Yes

No

No

Software Generates
Programming File

with Desired
Design Contents

(FPGA Array,
FlashROM, FB,

or All) Yes

No

Device
Previously

Programmed?

Software Performs
Comparison of

FlashLock Pass Key
between

Programming File
and Device

Software Performs
Comparison of

FlashLock Pass Key
between

Programming File
and Device

Encrypted Design
Content Passes
through MAC for
Authentication

Software
Programs
Selected

Security Settings
into Device

No

Does
FlashLock
Pass Key
Match?

Does
FlashLock
Pass Key
Match?

Yes

No

Returns Error

Returns Error

Yes

Correct?

Yes

No

AES Key Used
Previously?

Yes

User Assigns Desired Security Settings
To FPGA/FlashROM/FB/All:
 – AES Key and FlashLock Pass Key
 – FlashLock Pass Key Only

User Must
Reassign Exact

FlashLock Pass Key
Previously

Programmed
into the Device

User Must
Reassign Exact

AES Key
Previously

Programmed
into the Device

Software Generates
Programming File

with FlashLock
Pass Key and

Design Contents

Design Content
Programmed
into Device

Software Generates
Programming File

with Encrypted
Design Contents

Design Content
Decrypted and
Programmed
into Device
246 Revision 5

Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming
Circuit Verification
The power switching circuit recommended above is implemented on Microsemi's Icicle board
(Figure 13-2). On the Icicle board, VJTAGENB is used to control the N-Channel Digital FET; however,
this circuit was modified to use TRST instead of VJTAGENB in this application. There are three important
aspects of this circuit that were verified:

1. The rise on VCC from 1.2 V to 1.5 V when TRST is HIGH
2. VCC rises to 1.5 V before programming begins.
3. VCC switches from 1.5 V to 1.2 V when TRST is LOW.

Verification Steps
1. The rise on VCC from 1.2 V to 1.5 V when TRST is HIGH.

In the oscilloscope plots (Figure 13-2), the TRST from FlashPro3 and the VCC core voltage of the
IGLOO device are labeled. This plot shows the rise characteristic of the TRST signal from FlashPro3.
Once the TRST signal is asserted HIGH, the LTC3025 shown in Figure 13-1 on page 277 senses the
increase in voltage and changes the output from 1.2 V to 1.5 V. It takes the circuit approximately 100 µs
to respond to TRST and change the voltage to 1.5 V on the VCC core.

Figure 13-2 • Core Voltage on the IGLOO AGL125-QNG132 Device

VCC Signal

TRST Signal
278 Revision 5

http://www.microsemi.com/soc/products/hardware/devkits_boards/igloo_icicle.aspx

Boundary Scan in Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

August 2012 In the "Boundary Scan Chain" section, the reference made to the datasheet for
pull-up/-down recommendations was changed to mention TCK and TRST pins
rather than TDO and TCK pins. TDO is an output, so no pull resistor is needed
(SAR 35937).

293

The "Advanced Boundary Scan Register Settings" section is new (SAR 38432). 295

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

Table 15-3 • TRST and TCK Pull-Down Recommendations was revised to add
VJTAG at 1.2 V.

294

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 15-1 • Flash-Based
FPGAs.

292

v1.3
(October 2008)

The "Boundary Scan Support in Low Power Devices" section was revised to include
new families and make the information more concise.

293

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 15-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

292

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices.

N/A

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 292
296 Revision 5

