
Microchip Technology - A3PN125-2VQ100 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 36864

Number of I/O 71

Number of Gates 125000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -20°C ~ 85°C (TJ)

Package / Case 100-TQFP

Supplier Device Package 100-VQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn125-2vq100

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn125-2vq100-4482658
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3 nano FPGA Fabric User’s Guide
PLL Core Specifications . 84
Functional Description . 85
Software Configuration . 96
Detailed Usage Information . 104
Recommended Board-Level Considerations . 112
Conclusion . 113
Related Documents . 113
List of Changes . 113

5 FlashROM in Microsemi’s Low Power Flash Devices . 117
Introduction . 117
Architecture of User Nonvolatile FlashROM . 117
FlashROM Support in Flash-Based Devices . 118
FlashROM Applications . 120
FlashROM Security . 121
Programming and Accessing FlashROM . 122
FlashROM Design Flow . 124
Custom Serialization Using FlashROM . 129
Conclusion . 130
Related Documents . 130
List of Changes . 130

6 SRAM and FIFO Memories in Microsemi's Low Power Flash Devices . 131
Introduction . 131
Device Architecture . 131
SRAM/FIFO Support in Flash-Based Devices . 134
SRAM and FIFO Architecture . 135
Memory Blocks and Macros . 135
Initializing the RAM/FIFO . 148
Software Support . 154
Conclusion . 157
List of Changes . 157

7 I/O Structures in nano Devices. 159
Introduction . 159
Low Power Flash Device I/O Support . 161
nano Standard I/Os . 162
I/O Architecture . 164
I/O Standards . 166
Wide Range I/O Support . 166
I/O Features . 167
Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout . 176
I/O Software Support . 177
User I/O Naming Convention . 178
I/O Bank Architecture and CCC Naming Conventions . 179
Board-Level Considerations . 181
Conclusion . 182
Related Documents . 183
List of Changes . 183
Revision 5 3

2 – Low Power Modes in ProASIC3/E and
ProASIC3 nano FPGAs

Introduction
The demand for low power systems and semiconductors, combined with the strong growth observed for
value-based FPGAs, is driving growing demand for low power FPGAs. For portable and battery-operated
applications, power consumption has always been the greatest challenge. The battery life of a system
and on-board devices has a direct impact on the success of the product. As a result, FPGAs used in
these applications should meet low power consumption requirements.
ProASIC®3/E and ProASIC3 nano FPGAs offer low power consumption capability inherited from their
nonvolatile and live-at-power-up (LAPU) flash technology. This application note describes the power
consumption and how to use different power saving modes to further reduce power consumption for
power-conscious electronics design.

Power Consumption Overview
In evaluating the power consumption of FPGA technologies, it is important to consider it from a system
point of view. Generally, the overall power consumption should be based on static, dynamic, inrush, and
configuration power. Few FPGAs implement ways to reduce static power consumption utilizing sleep
modes.
SRAM-based FPGAs use volatile memory for their configuration, so the device must be reconfigured
after each power-up cycle. Moreover, during this initialization state, the logic could be in an indeterminate
state, which might cause inrush current and power spikes. More complex power supplies are required to
eliminate potential system power-up failures, resulting in higher costs. For portable electronics requiring
frequent power-up and -down cycles, this directly affects battery life, requiring more frequent recharging
or replacement.

SRAM-Based FPGA Total Power Consumption = Pstatic + Pdynamic + Pinrush + Pconfig

EQ 1

ProASIC3/E Total Power Consumption = Pstatic + Pdynamic

EQ 2
Unlike SRAM-based FPGAs, Microsemi flash-based FPGAs are nonvolatile and do not require power-up
configuration. Additionally, Microsemi nonvolatile flash FPGAs are live at power-up and do not require
additional support components. Total power consumption is reduced as the inrush current and
configuration power components are eliminated.
Note that the static power component can be reduced in flash FPGAs (such as the ProASIC3/E devices)
by entering User Low Static mode or Sleep mode. This leads to an extremely low static power
component contribution to the total system power consumption.
The following sections describe the usage of Static (Idle) mode to reduce the power component, User
Low Static mode to reduce the static power component, and Sleep mode and Shutdown mode to achieve
a range of power consumption when the FPGA or system is idle. Table 2-1 on page 22 summarizes the
different low power modes offered by ProASIC3/E devices.
Revision 5 21

Low Power Modes in ProASIC3/E and ProASIC3 nano FPGAs
Table 2-4 shows the current draw in Sleep mode for an A3P250 device with the following test conditions:
VCCI = VMV; VCC = VJTAG = VPUMP = GND.

Table 2-5 shows the current draw in Sleep mode for an A3PE600 device with the following test
conditions: VCCI = VMV; VCC = VJTAG = VPUMP = GND.

ProASIC3/E and ProASIC3 nano devices were designed such that before device power-up, all I/Os are
in tristate mode. The I/Os will remain tristated during power-up until the last voltage supply (VCC or
VCCI) is powered to its functional level. After the last supply reaches the functional level, the outputs will
exit the tristate mode and drive the logic at the input of the output buffer. The behavior of user I/Os is
independent of the VCC and VCCI sequence or the state of other FPGA voltage supplies (VPUMP and
VJTAG). During power-down, device I/Os become tristated once the first power supply (VCC or VCCI)
drops below its brownout voltage level. The I/O behavior during power-down is also independent of
voltage supply sequencing.
Figure 2-5 on page 27 shows a timing diagram for the FPGA core entering the activation and
deactivation trip points for a typical application when the VCC power supply ramp rate is 100 µs (ramping
from 0 V to 1.5 V). This is, in fact, the timing diagram for the FPGA entering and exiting Sleep mode, as it
is dependent on powering down or powering up VCC. Depending on the ramp rate of the power supply
and board-level configurations, the user can easily calculate how long it takes for the core to become
active or inactive. For more information, refer to the "Power-Up/-Down Behavior of Low Power Flash
Devices" section on page 307.

Table 2-4 • A3P250 Current Draw in Sleep Mode

Typical Conditions

A3P250

ICCI (µA) ICCI (µA) per Bank

VCCI = 3.3 V 31.57 7.89

VCCI = 2.5 V 23.96 5.99

VCCI = 1.8 V 17.32 4.33

VCCI = 1.5 V 14.46 3.62

ICC FPGA Core 0.0 0.0

Leakage Current per I/O 0.1 0.1

VPUMP 0.0 0.0

Note: The data in this table were taken under typical conditions and are based on characterization. The
data is not guaranteed.

Table 2-5 • A3PE600 Current Draw in Sleep Mode

Typical Conditions

A3PE600

ICCI (µA) ICCI (µA) per Bank

VCCI = 3.3 V 59.85 7.48

VCCI = 2.5 V 45.50 5.69

VCCI = 1.8 V 32.98 4.12

VCCI = 1.5 V 27.66 3.46

VCCI = 0 V or Floating 0.0 0.0

ICC FPGA Core 0.0 0.0

Leakage Current per I/O 0.1 0.1

IPUMP 0.0 0.0

Note: The data in this table were taken under typical conditions and are based on characterization. The
data is not guaranteed.
26 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Spine Architecture
The low power flash device architecture allows the VersaNet global networks to be segmented. Each of
these networks contains spines (the vertical branches of the global network tree) and ribs that can reach
all the VersaTiles inside its region. The nine spines available in a vertical column reside in global
networks with two separate regions of scope: the quadrant global network, which has three spines, and
the chip (main) global network, which has six spines. Note that the number of quadrant globals and
globals/spines per tree varies depending on the specific device. Refer to Table 3-4 for the clocking
resources available for each device. The spines are the vertical branches of the global network tree,
shown in Figure 3-3 on page 34. Each spine in a vertical column of a chip (main) global network is further
divided into two spine segments of equal lengths: one in the top and one in the bottom half of the die
(except in 10 k through 30 k gate devices).
Top and bottom spine segments radiating from the center of a device have the same height. However,
just as in the ProASICPLUS® family, signals assigned only to the top and bottom spine cannot access the
middle two rows of the die. The spines for quadrant clock networks do not cross the middle of the die and
cannot access the middle two rows of the architecture.
Each spine and its associated ribs cover a certain area of the device (the "scope" of the spine; see
Figure 3-3 on page 34). Each spine is accessed by the dedicated global network MUX tree architecture,
which defines how a particular spine is driven—either by the signal on the global network from a CCC, for
example, or by another net defined by the user. Details of the chip (main) global network spine-selection
MUX are presented in Figure 3-8 on page 44. The spine drivers for each spine are located in the middle
of the die.
Quadrant spines can be driven from user I/Os or an internal signal from the north and south sides of the
die. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. Access to the top quadrant spine regions is from the top
of the die, and access to the bottom quadrant spine regions is from the bottom of the die. The A3PE3000
device has 28 clock trees and each tree has nine spines; this flexible global network architecture enables
users to map up to 252 different internal/external clocks in an A3PE3000 device.

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices

ProASIC3/
ProASIC3L
Devices

IGLOO
Devices

Chip
Globals

Quadrant
Globals

(4×3)
Clock
Trees

Globals/
Spines

per
Tree

Total
Spines

per
Device

VersaTiles
in Each

Tree
Total

VersaTiles

Rows
in

Each
Spine

A3PN010 AGLN010 4 0 1 0 0 260 260 4

A3PN015 AGLN015 4 0 1 0 0 384 384 6

A3PN020 AGLN020 4 0 1 0 0 520 520 6

A3PN060 AGLN060 6 12 4 9 36 384 1,536 12

A3PN125 AGLN125 6 12 8 9 72 384 3,072 12

A3PN250 AGLN250 6 12 8 9 72 768 6,144 24

A3P015 AGL015 6 0 1 9 9 384 384 12

A3P030 AGL030 6 0 2 9 18 384 768 12

A3P060 AGL060 6 12 4 9 36 384 1,536 12

A3P125 AGL125 6 12 8 9 72 384 3,072 12

A3P250/L AGL250 6 12 8 9 72 768 6,144 24

A3P400 AGL400 6 12 12 9 108 768 9,216 24

A3P600/L AGL600 6 12 12 9 108 1,152 13,824 36

A3P1000/L AGL1000 6 12 16 9 144 1,536 24,576 48

A3PE600/L AGLE600 6 12 12 9 108 1,120 13,440 35

A3PE1500 6 12 20 9 180 1,888 37,760 59

A3PE3000/L AGLE3000 6 12 28 9 252 2,656 74,368 83
Revision 5 41

ProASIC3 nano FPGA Fabric User’s Guide
Simple Design Example
Consider a design consisting of six building blocks (shift registers) and targeted for an A3PE600-PQ208
(Figure 3-16 on page 52). The example design consists of two PLLs (PLL1 has GLA only; PLL2 has both
GLA and GLB), a global reset (ACLR), an enable (EN_ALL), and three external clock domains (QCLK1,
QCLK2, and QCLK3) driving the different blocks of the design. Note that the PQ208 package only has
two PLLs (which access the chip global network). Because of fanout, the global reset and enable signals
need to be assigned to the chip global resources. There is only one free chip global for the remaining
global (QCLK1, QCLK2, QCLK3). Place two of these signals on the quadrant global resource. The
design example demonstrates manually assignment of QCLK1 and QCLK2 to the quadrant global using
the PDC command.

Figure 3-19 • Block Diagram of the Global Management Example Design

reg256_behave

REG_PLLCLK2GLA_OUT

REG_QCLK1_OUT

REG_QCLK2_OUT

REG_PLLCLK2GLB_OUT

REG_QCLK3_OUT

REG_PLLCLK1_OUT

REG_PLLCLK2GLA

PDOWN
PLLZ_CLKA

DATA_QCLK1

DATA_PLLCQCLK2
EN_ALL

QCLK1

DATA_QCLK2

QCLK2
ACLR

DATA_QCLK3

DATA_PLLCLK1

PLL1_CLKA

QCLK3

Shhl_In
Shhl_In
Adr
Clock

Shhl_out

REG_QCLK1

REG_QCLK2

REG_PLLCLK2GLB

REG_QCLK3

REG_PLLCLK1

PLL1

\$115

POWER-DOWN
CLKA

LOCK
GLA

POWER-DOWN
CLKA

LOCK
GLA
GLB

PLL2

\$116

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out
Revision 5 55

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Global Buffers with No Programmable Delays
Access to the global / quadrant global networks can be configured directly from the global I/O buffer,
bypassing the CCC functional block (as indicated by the dotted lines in Figure 4-1 on page 61). Internal
signals driven by the FPGA core can use the global / quadrant global networks by connecting via the
routed clock input of the multiplexer tree.
There are many specific CLKBUF macros supporting the wide variety of single-ended I/O inputs
(CLKBUF) and differential I/O standards (CLKBUF_LVDS/LVPECL) in the low power flash families. They
are used when connecting global I/Os directly to the global/quadrant networks.
Note: IGLOO nano and ProASIC nano devices do not support differential inputs.
When an internal signal needs to be connected to the global/quadrant network, the CLKINT macro is
used to connect the signal to the routed clock input of the network's MUX tree.
To utilize direct connection from global I/Os or from internal signals to the global/quadrant networks,
CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are used (Figure 4-2).

• The CLKBUF and CLKBUF_LVPECL/LVDS1 macros are composite macros that include an I/O
macro driving a global buffer, which uses a hardwired connection.

• The CLKBUF, CLKBUF_LVPECL/LVDS1 and CLKINT macros are pass-through clock sources
and do not use the PLL or provide any programmable delay functionality.

• The CLKINT macro provides a global buffer function driven internally by the FPGA core.
The available CLKBUF macros are described in the IGLOO, ProASIC3, SmartFusion, and Fusion
Macro Library Guide.

Global Buffer with Programmable Delay
Clocks requiring clock adjustments can utilize the programmable delay cores before connecting to the
global / quadrant global networks. A maximum of 18 CCC global buffers can be instantiated in a device—
three per CCC and up to six CCCs per device.
Each CCC functional block contains a programmable delay element for each of the global networks (up
to three), and users can utilize these features by using the corresponding macro (Figure 4-3 on page 65).

1. B-LVDS and M-LVDS are supported with the LVDS macro.

Note: IGLOO nano and ProASIC nano devices do not support differential inputs.
Figure 4-2 • CCC Options: Global Buffers with No Programmable Delay

NoneCLKBUF_LVDS/LVPECL Macro

PADN

PADP Y

Y

Y

A

ED

PAD

PAD

Y

CLKINT Macro CLKBUF Macro

CLKBIBUF Macro GLA, GLB,
or GLC

Clock Source Clock Conditioning Output

CLKBIBUF
64 Revision 5

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

ProASIC3 nano FPGA Fabric User’s Guide
This section outlines the following device information: CCC features, PLL core specifications, functional
descriptions, software configuration information, detailed usage information, recommended board-level
considerations, and other considerations concerning global networks in low power flash devices.

Clock Conditioning Circuits with Integrated PLLs
Each of the CCCs with integrated PLLs includes the following:

• 1 PLL core, which consists of a phase detector, a low-pass filter, and a four-phase voltage-
controlled oscillator

• 3 global multiplexer blocks that steer signals from the global pads and the PLL core onto the
global networks

• 6 programmable delays and 1 fixed delay for time advance/delay adjustments
• 5 programmable frequency divider blocks to provide frequency synthesis (automatically

configured by the SmartGen macro builder tool)

Clock Conditioning Circuits without Integrated PLLs
There are two types of simplified CCCs without integrated PLLs in low power flash devices.

1. The simplified CCC with programmable delays, which is composed of the following:
– 3 global multiplexer blocks that steer signals from the global pads and the programmable

delay elements onto the global networks
– 3 programmable delay elements to provide time delay adjustments

2. The simplified CCC (referred to as CCC-GL) without programmable delay elements, which is
composed of the following:
– A global multiplexer block that steer signals from the global pads onto the global networks
Revision 5 79

ProASIC3 nano FPGA Fabric User’s Guide
Phase Adjustment
The four phases available (0, 90, 180, 270) are phases with respect to VCO (PLL output). The
VCO is divided to achieve the user's CCC required output frequency (GLA, YB/GLB, YC/GLC). The
division happens after the selection of the VCO phase. The effective phase shift is actually the VCO
phase shift divided by the output divider. This is why the visual CCC shows both the actual achievable
phase and more importantly the actual delay that is equivalent to the phase shift that can be
achieved.

Dynamic PLL Configuration
The CCCs can be configured both statically and dynamically.
In addition to the ports available in the Static CCC, the Dynamic CCC has the dynamic shift register
signals that enable dynamic reconfiguration of the CCC. With the Dynamic CCC, the ports CLKB and
CLKC are also exposed. All three clocks (CLKA, CLKB, and CLKC) can be configured independently.
The CCC block is fully configurable. The following two sources can act as the CCC configuration bits.

Flash Configuration Bits
The flash configuration bits are the configuration bits associated with programmed flash switches. These
bits are used when the CCC is in static configuration mode. Once the device is programmed, these bits
cannot be modified. They provide the default operating state of the CCC.

Dynamic Shift Register Outputs
This source does not require core reprogramming and allows core-driven dynamic CCC reconfiguration.
When the dynamic register drives the configuration bits, the user-defined core circuit takes full control
over SDIN, SDOUT, SCLK, SSHIFT, and SUPDATE. The configuration bits can consequently be
dynamically changed through shift and update operations in the serial register interface. Access to the
logic core is accomplished via the dynamic bits in the specific tiles assigned to the PLLs.
Figure 4-21 illustrates a simplified block diagram of the MUX architecture in the CCCs.

The selection between the flash configuration bits and the bits from the configuration register is made
using the MODE signal shown in Figure 4-21. If the MODE signal is logic HIGH, the dynamic shift
register configuration bits are selected. There are 81 control bits to configure the different functions of the
CCC.

Note: *For Fusion, bit <88:81> is also needed.
Figure 4-21 • The CCC Configuration MUX Architecture

SDIN

SCLK

RESET_ENABLE

SDOUT

SSHIFT

MODE

SUPDATE

Configuration Bits

Dynamic Shift
Register

Flash
Programming
Configuration

Bits

<80:0>*

<80>
<79:0> <79:0>*
Revision 5 87

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each group of control bits is assigned a specific location in the configuration shift register. For a list of the
81 configuration bits (C[80:0]) in the CCC and a description of each, refer to "PLL Configuration Bits
Description" on page 90. The configuration register can be serially loaded with the new configuration
data and programmed into the CCC using the following ports:

• SDIN: The configuration bits are serially loaded into a shift register through this port. The LSB of
the configuration data bits should be loaded first.

• SDOUT: The shift register contents can be shifted out (LSB first) through this port using the shift
operation.

• SCLK: This port should be driven by the shift clock.
• SSHIFT: The active-high shift enable signal should drive this port. The configuration data will be

shifted into the shift register if this signal is HIGH. Once SSHIFT goes LOW, the data shifting will
be halted.

• SUPDATE: The SUPDATE signal is used to configure the CCC with the new configuration bits
when shifting is complete.

To access the configuration ports of the shift register (SDIN, SDOUT, SSHIFT, etc.), the user should
instantiate the CCC macro in his design with appropriate ports. Microsemi recommends that users
choose SmartGen to generate the CCC macros with the required ports for dynamic reconfiguration.
Users must familiarize themselves with the architecture of the CCC core and its input, output, and
configuration ports to implement the desired delay and output frequency in the CCC structure.
Figure 4-22 shows a model of the CCC with configurable blocks and switches.
88 Revision 5

5 – FlashROM in Microsemi’s Low Power Flash
Devices

Introduction
The Fusion, IGLOO, and ProASIC3 families of low power flash-based devices have a dedicated
nonvolatile FlashROM memory of 1,024 bits, which provides a unique feature in the FPGA market. The
FlashROM can be read, modified, and written using the JTAG (or UJTAG) interface. It can be read but
not modified from the FPGA core. Only low power flash devices contain on-chip user nonvolatile memory
(NVM).

Architecture of User Nonvolatile FlashROM
Low power flash devices have 1 kbit of user-accessible nonvolatile flash memory on-chip that can be
read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits (16 bytes) during
programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the
FlashROM from the FPGA core. Figure 5-1 shows the FlashROM logical structure.
The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports
synchronous read. The address is latched on the rising edge of the clock, and the new output data is
stable after the falling edge of the same clock cycle. For more information, refer to the timing diagrams in
the DC and Switching Characteristics chapter of the appropriate datasheet. The FlashROM can be read
on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank
being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16
bytes in the bank is being accessed.

Figure 5-1 • FlashROM Architecture

B
an

k
N

um
be

r 3
 M

SB
 o

f
A

D
D

R
 (R

EA
D

)

Byte Number in Bank 4 LSB of ADDR (READ)

7

0

1

2

3

4

5

6

0123456789101112131415
Revision 5 117

FlashROM in Microsemi’s Low Power Flash Devices
SmartGen allows you to generate the FlashROM netlist in VHDL, Verilog, or EDIF format. After the
FlashROM netlist is generated, the core can be instantiated in the main design like other SmartGen
cores. Note that the macro library name for FlashROM is UFROM. The following is a sample FlashROM
VHDL netlist that can be instantiated in the main design:
library ieee;
use ieee.std_logic_1164.all;
library fusion;

entity FROM_a is
port(ADDR : in std_logic_vector(6 downto 0); DOUT : out std_logic_vector(7 downto 0));

end FROM_a;

architecture DEF_ARCH of FROM_a is

component UFROM
generic (MEMORYFILE:string);
port(DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7 : out std_logic;

ADDR0, ADDR1, ADDR2, ADDR3, ADDR4, ADDR5, ADDR6 : in std_logic := 'U') ;
end component;

component GND
port(Y : out std_logic);

end component;

signal U_7_PIN2 : std_logic ;

begin

GND_1_net : GND port map(Y => U_7_PIN2);
UFROM0 : UFROM
generic map(MEMORYFILE => "FROM_a.mem")
port map(DO0 => DOUT(0), DO1 => DOUT(1), DO2 => DOUT(2), DO3 => DOUT(3), DO4 => DOUT(4),

DO5 => DOUT(5), DO6 => DOUT(6), DO7 => DOUT(7), ADDR0 => ADDR(0), ADDR1 => ADDR(1),
ADDR2 => ADDR(2), ADDR3 => ADDR(3), ADDR4 => ADDR(4), ADDR5 => ADDR(5),
ADDR6 => ADDR(6));

end DEF_ARCH;

SmartGen generates the following files along with the netlist. These are located in the SmartGen folder
for the Libero SoC project.

1. MEM (Memory Initialization) file
2. UFC (User Flash Configuration) file
3. Log file

The MEM file is used for simulation, as explained in the "Simulation of FlashROM Design" section on
page 127. The UFC file, generated by SmartGen, has the FlashROM configuration for single or multiple
devices and is used during STAPL generation. It contains the region properties and simulation values.
Note that any changes in the MEM file will not be reflected in the UFC file. Do not modify the UFC to
change FlashROM content. Instead, use the SmartGen GUI to modify the FlashROM content. See the
"Programming File Generation for FlashROM Design" section on page 127 for a description of how the
UFC file is used during the programming file generation. The log file has information regarding the file
type and file location.
126 Revision 5

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Software Support
The SmartGen core generator is the easiest way to select and configure the memory blocks
(Figure 6-12). SmartGen automatically selects the proper memory block type and aspect ratio, and
cascades the memory blocks based on the user's selection. SmartGen also configures any additional
signals that may require tie-off.
SmartGen will attempt to use the minimum number of blocks required to implement the desired memory.
When cascading, SmartGen will configure the memory for width before configuring for depth. For
example, if the user requests a 256×8 FIFO, SmartGen will use a 512×9 FIFO configuration, not 256×18.

Figure 6-12 • SmartGen Core Generator Interface
154 Revision 5

I/O Structures in nano Devices
I/O Architecture

I/O Tile
IGLOO and ProASIC3 nano devices utilize either a single-tile or dual-tile I/O architecture (Figure 7-1 on
page 159 and Figure 7-2 on page 160). The 10 k, 15 k, and 20 k devices utilize the single-tile design and
the 60 k, 125 k and 250 k devices utilize the dual-tile design. In both cases, the I/O tile provides a
flexible, programmable structure for implementing a large number of I/O standards. In addition, the
registers available in the I/O tile can be used to support high-performance register inputs and outputs,
with register enable if desired. For single-tile designs, all I/O registers share both the CLR and CLK ports,
while for the dual-tile designs, the output register and output enable register share one CLK port. For the
dual-tile designs, the registers can also be used to support the JESD-79C Double Data Rate (DDR)
standard within the I/O structure (see the "DDR for Microsemi’s Low Power Flash Devices" section on
page 205 for more information).

I/O Registers
Each I/O module contains several input and output registers. Refer to Figure 7-3 on page 165 for a
simplified representation of the I/O block. The number of input registers is selected by a set of switches
(not shown in Figure 7-2 on page 160) between registers to implement single-ended data transmission to
and from the FPGA core. The Designer software sets these switches for the user. For single-tile designs,
a common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. The I/O
register combining requires that no combinatorial logic be present between the register and the I/O.
164 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Software-Controlled I/O Attributes
Users may modify these programmable I/O attributes using the I/O Attribute Editor. Modifying an I/O
attribute may result in a change of state in Designer. Table 8-2 details which steps have to be re-run as a
function of modified I/O attribute.

Table 8-2 • Designer State (resulting from I/O attribute modification)

I/O Attribute
Designer States1

Compile Layout Fuse Timing Power
Slew Control2 No No Yes Yes Yes

Output Drive (mA) No No Yes Yes Yes

Skew Control No No Yes Yes Yes

Resistor Pull No No Yes Yes Yes

Input Delay No No Yes Yes Yes

Schmitt Trigger No No Yes Yes Yes

OUT_LOAD No No No Yes Yes

COMBINE_REGISTER Yes Yes N/A N/A N/A

Notes:
1. No = Remains the same, Yes = Re-run the step, N/A = Not applicable
2. Skew control does not apply to IGLOO nano, IGLOO PLUS, and ProASIC3 nano devices.
3. Programmable input delay is applicable only for ProASIC3E, ProASIC3EL, RT ProASIC3, and

IGLOOe devices.
Revision 5 187

DDR for Microsemi’s Low Power Flash Devices
Instantiating DDR Registers
Using SmartGen is the simplest way to generate the appropriate RTL files for use in the design.
Figure 9-4 shows an example of using SmartGen to generate a DDR SSTL2 Class I input register.
SmartGen provides the capability to generate all of the DDR I/O cells as described. The user, through the
graphical user interface, can select from among the many supported I/O standards. The output formats
supported are Verilog, VHDL, and EDIF.
Figure 9-5 on page 211 through Figure 9-8 on page 214 show the I/O cell configured for DDR using
SSTL2 Class I technology. For each I/O standard, the I/O pad is buffered by a special primitive that
indicates the I/O standard type.

Figure 9-4 • Example of Using SmartGen to Generate a DDR SSTL2 Class I Input Register
210 Revision 5

DDR for Microsemi’s Low Power Flash Devices
Design Example
Figure 9-9 shows a simple example of a design using both DDR input and DDR output registers. The
user can copy the HDL code in Libero SoC software and go through the design flow. Figure 9-10 and
Figure 9-11 on page 217 show the netlist and ChipPlanner views of the ddr_test design. Diagrams may
vary slightly for different families.

Figure 9-9 • Design Example

Figure 9-10 • DDR Test Design as Seen by NetlistViewer for IGLOO/e Devices

D QR

QF

CLR

PAD Y

INBUF_SSTL2_I DDR_REG

PAD

CLK

CLR

D PAD
DR Q

CLR

DF

DataR

DataF

OUTBUF_SSTL3_IDDR_OUT
216 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
For this scenario, generate the programming file as follows:
1. Select only the Security settings option, as indicated in Figure 11-14 and Figure 11-15 on

page 252. Click Next.

Table 11-5 • FlashLock Security Options for Fusion

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / no FlashLock – – – –

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓

Figure 11-14 • Programming IGLOO and ProASIC3 Security Settings Only
Revision 5 251

Microprocessor Programming of Microsemi’s Low Power Flash Devices
FlashROM
Microsemi low power flash devices have 1 kbit of user-accessible, nonvolatile, FlashROM on-chip. This
nonvolatile FlashROM can be programmed along with the core or on its own using the standard IEEE
1532 JTAG programming interface.
The FlashROM is architected as eight pages of 128 bits. Each page can be individually programmed
(erased and written). Additionally, on-chip AES security decryption can be used selectively to load data
securely into the FlashROM (e.g., over public or private networks, such as the Internet). Refer to the
"FlashROM in Microsemi’s Low Power Flash Devices" section on page 117.

Figure 14-3 • MCU FPGA Programming Model

Programming
Software

Source Code

Microprocessor Compiler

BIN File

Download to System

Program Device

Programming
File
286 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Figure 17-4 • I/O State as a Function of VCCI and VCC Voltage Levels for IGLOO V5, IGLOO nano V5,
IGLOO PLUS V5, ProASIC3L, and ProASIC3 Devices Running at VCC = 1.5 V ± 0.075 V

Region 1: I/O buffers are OFF

Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI / VCC are below
specification. For the same reason, input
 buffers do not meet VIH / VIL levels, and
output buffers do not meet VOH / VOL levels.

Min VCCI datasheet specification
voltage at a selected I/O

standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V

VCC

VCC = 1.425 V

Region 1: I/O Buffers are OFF

Activation trip point:
Va = 0.85 V ± 0.25 V

Deactivation trip point:
Vd = 0.75 V ± 0.25 V

Activation trip point:
Va = 0.9 V ± 0.3 V

Deactivation trip point:
Vd = 0.8 V ± 0.3 V

VCC = 1.575 V

Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH/VIL , VOH /VOL , etc.

 but slower because VCCI is
below specifcation. For the

same reason, input buffers do not
meet VIH/VIL levels, and output

buffers do not meet VOH/VOL levels.

Region 4: I/O
buffers are ON.

I/Os are functional
(except differential inputs)

Where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC = VCCI + VT

VCCI

Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification
Revision 5 313

Index

Numerics
5 V input and output tolerance 171

A
AES encryption 239
architecture 131

four I/O banks 13
global 31
IGLOO 12
IGLOO nano 11
IGLOO PLUS 13
IGLOOe 14
ProASIC3 nano 11
ProASIC3E 14
routing 18
spine 41
SRAM and FIFO 135

architecture overview 11
array coordinates 16

B
boundary scan 291

board-level recommendations 294
chain 293
opcodes 293

brownout voltage 315

C
CCC 82

board-level considerations 112
cascading 109
Fusion locations 83
global resources 62
hardwired I/O clock input 108
IGLOO locations 81
IGLOOe locations 82
locations 80
naming conventions 179
overview 61
ProASIC3 locations 81
ProASIC3E locations 82
programming 62
software configuration 96
with integrated PLLs 79
without integrated PLLs 79

chip global aggregation 43
CLKDLY macro 65
clock aggregation 44
clock macros 46
clock sources

core logic 76

PLL and CLKDLY macros 73
clocks

delay adjustment 86
detailed usage information 104
multipliers and dividers 85
phase adjustment 87
physical constraints for quadrant clocks 108
SmartGen settings 105
static timing analysis 107

cold-sparing 170, 316
compiling 195

report 195
contacting Microsemi SoC Products Group

customer service 321
email 321
web-based technical support 321

customer service 321

D
DDR

architecture 205
design example 216
I/O options 207
input/output support 209
instantiating registers 210

design example 55
design recommendations 46
device architecture 131
DirectC 280
DirectC code 285
dual-tile designs 160

E
efficient long-line resources 19
encryption 289
ESD protection 171

F
FIFO

features 141
initializing 148
memory block consumption 147
software support 154
usage 144

flash switch for programming 9
FlashLock

IGLOO and ProASIC devices 241
permanent 241

FlashROM
access using JTAG port 123
architecture 267
Revision 5 323

