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Introduction

Contents
This user’s guide contains information to help designers understand and use Microsemi's ProASIC®3
nano devices. Each chapter addresses a specific topic. Most of these chapters apply to other Microsemi
device families as well. When a feature or description applies only to a specific device family, this is made
clear in the text.

Revision History
The revision history for each chapter is listed at the end of the chapter. Most of these chapters were
formerly included in device handbooks. Some were originally application notes or information included in
device datasheets. 
A "Summary of Changes" table at the end of this user’s guide lists the chapters that were changed in
each revision of the document, with links to the "List of Changes" sections for those chapters.

Related Information
Refer to the ProASIC3 nano Low Power Flash FPGAs datasheet for detailed specifications, timing, and
package and pin information.
The website for ProASIC3 nano devices is /www.microsemi.com/soc/products/pa3nano/default.aspx.
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FPGA Array Architecture in Low Power Flash Devices
I/O State of Newly Shipped Devices
Devices are shipped from the factory with a test design in the device. The power-on switch for VCC is
OFF by default in this test design, so I/Os are tristated by default. Tristated means the I/O is not actively
driven and floats. The exact value cannot be guaranteed when it is floating. Even in simulation software,
a tristate value is marked as unknown. Due to process variations and shifts, tristated I/Os may float
toward High or Low, depending on the particular device and leakage level. 
If there is concern regarding the exact state of unused I/Os, weak pull-up/pull-down should be added to
the floating I/Os so their state is controlled and stabilized.

Note: Flash*Freeze technology only applies to IGLOOe devices.
Figure 1-7 • IGLOOe and ProASIC3E Device Architecture Overview (AGLE600 device is shown)
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ProASIC3 nano FPGA Fabric User’s Guide
VersaNet Global Network Distribution
One of the architectural benefits of low power flash architecture is the set of powerful, low-delay
VersaNet global networks that can access the VersaTiles, SRAM, and I/O tiles of the device. Each device
offers a chip global network with six global lines (except for nano 10 k, 15 k, and 20 k gate devices) that
are distributed from the center of the FPGA array. In addition, each device (except the 10 k through 30 k
gate device) has four quadrant global networks, each consisting of three quadrant global net resources.
These quadrant global networks can only drive a signal inside their own quadrant. Each VersaTile has
access to nine global line resources—three quadrant and six chip-wide (main) global networks—and a
total of 18 globals are available on the device (3 × 4 regional from each quadrant and 6 global). 
Figure 3-1 shows an overview of the VersaNet global network and device architecture for devices 60 k
and above. Figure 3-2 and Figure 3-3 on page 34 show simplified VersaNet global networks. 
The VersaNet global networks are segmented and consist of spines, global ribs, and global multiplexers
(MUXes), as shown in Figure 3-1. The global networks are driven from the global rib at the center of the
die or quadrant global networks at the north or south side of the die. The global network uses the MUX
trees to access the spine, and the spine uses the clock ribs to access the VersaTile. Access is available
to the chip or quadrant global networks and the spines through the global MUXes. Access to the spine
using the global MUXes is explained in the "Spine Architecture" section on page 41. 
These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including
clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-
skew local clock networks using spines for up to 252 internal/external clocks or other high-fanout nets in
low power flash devices. Optimal usage of these low-skew networks can result in significant
improvement in design performance.

Note: Not applicable to 10 k through 30 k gate devices
Figure 3-1 • Overview of VersaNet Global Network and Device Architecture
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ProASIC3 nano FPGA Fabric User’s Guide
Figure 3-6 shows all nine global inputs for the location A connected to the top left quadrant global
network via CCC.

Since each bank can have a different I/O standard, the user should be careful to choose the correct
global I/O for the design. There are 54 global pins available to access 18 global networks. For the single-
ended and voltage-referenced I/O standards, you can use any of these three available I/Os to access the
global network. For differential I/O standards such as LVDS and LVPECL, the I/O macro needs to be
placed on (A0, A1), (B0, B1), (C0, C1), or a similar location. The unassigned global I/Os can be used
as regular I/Os. Note that pin names starting with GF and GC are associated with the chip global
networks, and GA, GB, GD, and GE are used for quadrant global networks. Table 3-2 on page 38 and
Table 3-3 on page 39 show the general chip and quadrant global pin names.

Figure 3-6 • Global Inputs
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ProASIC3 nano FPGA Fabric User’s Guide
Table 3-3 • Quadrant Global Pin Name 

I/O Type Beginning of I/O Name Notes

Single-Ended GAAO/IOuxwByVz
GAA1/IOuxwByVz
GAA2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time

GABO/IOuxwByVz
GAB1/IOuxwByVz
GAB2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GAC0/IOuxwByVz
GAC1/IOuxwByVz
GAC2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GBAO/IOuxwByVz
GBA1/IOuxwByVz
GBA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBBO/IOuxwByVz
GBB1/IOuxwByVz
GBB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBC0/IOuxwByVz
GBC1/IOuxwByVz
GBC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDAO/IOuxwByVz
GDA1/IOuxwByVz
GDA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDBO/IOuxwByVz
GDB1/IOuxwByVz
GDB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDC0/IOuxwByVz
GDC1/IOuxwByVz
GDC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEAO/IOuxwByVz
GEA1/IOuxwByVz
GEA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEBO/IOuxwByVz
GEB1/IOuxwByVz
GEB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEC0/IOuxwByVz
GEC1/IOuxwByVz
GEC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

Note: Only one of the I/Os can be directly connected to a quadrant at a time. 
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Global Resources in Low Power Flash Devices
Using Clock Aggregation
Clock aggregation allows for multi-spine clock domains to be assigned using hardwired connections,
without adding any extra skew. A MUX tree, shown in Figure 3-8, provides the necessary flexibility to
allow long lines, local resources, or I/Os to access domains of one, two, or four global spines. Signal
access to the clock aggregation system is achieved through long-line resources in the central rib in the
center of the die, and also through local resources in the north and south ribs, allowing I/Os to feed
directly into the clock system. As Figure 3-9 indicates, this access system is contiguous.
There is no break in the middle of the chip for the north and south I/O VersaNet access. This is different
from the quadrant clocks located in these ribs, which only reach the middle of the rib. 

Figure 3-8 • Spine Selection MUX of Global Tree

Figure 3-9 • Clock Aggregation Tree Architecture
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IGLOO and ProASIC3 CCC Locations
In all IGLOO and ProASIC3 devices (except 10 k through 30 k gate devices, which do not contain PLLs), 
six CCCs are located in the same positions as the IGLOOe and ProASIC3E CCCs. Only one of the 
CCCs has an integrated PLL and is located in the middle of the west (middle left) side of the device. The 
other five CCCs are simplified CCCs and are located in the four corners and the middle of the east side 
of the device (Figure 4-14). 

Note: The number and architecture of the banks are different for some devices.
10 k through 30 k gate devices do not support PLL features. In these devices, there are two CCC-GLs at 
the lower corners (one at the lower right, and one at the lower left). These CCC-GLs do not have 
programmable delays.

Figure 4-14 • CCC Locations in IGLOO and ProASIC3 Family Devices
(except 10 k through 30 k gate devices)
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Fusion CCC Locations
Fusion devices have six CCCs: one in each of the four corners and one each in the middle of the east 
and west sides of the device (Figure 4-17 and Figure 4-18). The device can have one integrated PLL in 
the middle of the west side of the device or two integrated PLLs in the middle of the east and west sides 
of the device (middle right and middle left).

Figure 4-17 • CCC Locations in Fusion Family Devices (AFS090, AFS250, M1AFS250)

Figure 4-18 • CCC Locations in Fusion Family Devices (except AFS090, AFS250, M1AFS250)
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Phase Adjustment
The four phases available (0, 90, 180, 270) are phases with respect to VCO (PLL output). The 
VCO is divided to achieve the user's CCC required output frequency (GLA, YB/GLB, YC/GLC). The 
division happens after the selection of the VCO phase. The effective phase shift is actually the VCO 
phase shift divided by the output divider. This is why the visual CCC shows both the actual achievable 
phase and more importantly the actual delay that is equivalent to the phase shift that can be 
achieved.

Dynamic PLL Configuration
The CCCs can be configured both statically and dynamically.
In addition to the ports available in the Static CCC, the Dynamic CCC has the dynamic shift register 
signals that enable dynamic reconfiguration of the CCC. With the Dynamic CCC, the ports CLKB and 
CLKC are also exposed. All three clocks (CLKA, CLKB, and CLKC) can be configured independently.
The CCC block is fully configurable. The following two sources can act as the CCC configuration bits.

Flash Configuration Bits 
The flash configuration bits are the configuration bits associated with programmed flash switches. These 
bits are used when the CCC is in static configuration mode. Once the device is programmed, these bits 
cannot be modified. They provide the default operating state of the CCC.

Dynamic Shift Register Outputs
This source does not require core reprogramming and allows core-driven dynamic CCC reconfiguration. 
When the dynamic register drives the configuration bits, the user-defined core circuit takes full control 
over SDIN, SDOUT, SCLK, SSHIFT, and SUPDATE. The configuration bits can consequently be 
dynamically changed through shift and update operations in the serial register interface. Access to the 
logic core is accomplished via the dynamic bits in the specific tiles assigned to the PLLs. 
Figure 4-21 illustrates a simplified block diagram of the MUX architecture in the CCCs. 

The selection between the flash configuration bits and the bits from the configuration register is made 
using the MODE signal shown in Figure 4-21. If the MODE signal is logic HIGH, the dynamic shift 
register configuration bits are selected. There are 81 control bits to configure the different functions of the 
CCC.

Note: *For Fusion, bit <88:81> is also needed. 
Figure 4-21 • The CCC Configuration MUX Architecture
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
global assignments are not allocated properly. See the "Physical Constraints for Quadrant Clocks" 
section for information on assigning global signals to the quadrant clock networks.
Promoted global signals will be instantiated with CLKINT macros to drive these signals onto the global 
network. This is automatically done by Designer when the Auto-Promotion option is selected. If the user 
wishes to assign the signals to the quadrant globals instead of the default chip globals, this can done by 
using ChipPlanner, by declaring a physical design constraint (PDC), or by importing a PDC file.

Physical Constraints for Quadrant Clocks
If it is necessary to promote global clocks (CLKBUF, CLKINT, PLL, CLKDLY) to quadrant clocks, the user 
can define PDCs to execute the promotion. PDCs can be created using PDC commands (pre-compile) or 
the MultiView Navigator (MVN) interface (post-compile). The advantage of using the PDC flow over the 
MVN flow is that the Compile stage is able to automatically promote any regular net to a global net before 
assigning it to a quadrant. There are three options to place a quadrant clock using PDC commands:

• Place a clock core (not hardwired to an I/O) into a quadrant clock location.
• Place a clock core (hardwired to an I/O) into an I/O location (set_io) or an I/O module location 

(set_location) that drives a quadrant clock location.
• Assign a net driven by a regular net or a clock net to a quadrant clock using the following 

command:
assign_local_clock -net <net name> -type quadrant <quadrant clock region>

where
<net name> is the name of the net assigned to the local user clock region.
<quadrant clock region> defines which quadrant the net should be assigned to. Quadrant 
clock regions are defined as UL (upper left), UR (upper right), LL (lower left), and LR (lower right).

Note: If the net is a regular net, the software inserts a CLKINT buffer on the net.
For example:
assign_local_clock -net localReset -type quadrant UR

Keep in mind the following when placing quadrant clocks using MultiView Navigator:

Hardwired I/O–Driven CCCs
• Find the associated clock input port under the Ports tab, and place the input port at one of the 

Gmn* locations using PinEditor or I/O Attribute Editor, as shown in Figure 4-32. 

Figure 4-32 • Port Assignment for a CCC with Hardwired I/O Clock Input
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FlashROM in Microsemi’s Low Power Flash Devices
Figure 5-12 shows the programming file generator, which enables different STAPL file generation
methods. When you select Program FlashROM and choose the UFC file, the FlashROM Settings
window appears, as shown in Figure 5-13. In this window, you can select the FlashROM page you want
to program and the data value for the configured regions. This enables you to use a different page for
different programming files.   

The programming hardware and software can load the FlashROM with the appropriate STAPL file.
Programming software handles the single STAPL file that contains multiple FlashROM contents for
multiple devices, and programs the FlashROM in sequential order (e.g., for device serialization). This
feature is supported in the programming software. After programming with the STAPL file, you can run
DEVICE_INFO to check the FlashROM content.

Figure 5-12 • Programming File Generator

Figure 5-13 • Setting FlashROM during Programming File Generation
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7 – I/O Structures in nano Devices 

Introduction
Low power flash devices feature a flexible I/O structure, supporting a range of mixed voltages (1.2 V,
1.5 V, 1.8 V, 2.5 V, and 3.3 V) through bank-selectable voltages. IGLOO® and ProASIC3 nano devices
support standard I/Os with the addition of Schmitt trigger and hot-swap capability.
Users designing I/O solutions are faced with a number of implementation decisions and configuration
choices that can directly impact the efficiency and effectiveness of their final design. The flexible I/O
structure, supporting a wide variety of voltages and I/O standards, enables users to meet the growing
challenges of their many diverse applications. The Microsemi Libero® System-on-Chip (SoC) software
provides an easy way to implement I/O that will result in robust I/O design. 
This document describes Standard I/O types used for the nano devices in terms of he supported
standards. It then explains the individual features and how to implement them in Libero SoC. 

Figure 7-1 • I/O Block Logical Representation for Single-Tile Designs (10 k, 15 k, and 20 k devices)
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I/O Structures in nano Devices
Table 7-8 • Hot-Swap Level 1

Description Cold-swap

Power Applied to Device No

Bus State –

Card Ground Connection –

Device Circuitry Connected to Bus Pins –

Example Application System and card with Microsemi FPGA chip are
powered down, and the card is plugged into the
system. Then the power supplies are turned on for
the system but not for the FPGA on the card.

Compliance of nano Devices Compliant 

Table 7-9 • Hot-Swap Level 2

Description Hot-swap while reset

Power Applied to Device Yes

Bus State Held in reset state

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins –

Example Application In the PCI hot-plug specification, reset control
circuitry isolates the card busses until the card
supplies are at their nominal operating levels and
stable.

Compliance of nano Devices Compliant
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I/O Structures in nano Devices
Power-Up Behavior 
Low power flash devices are power-up/-down friendly; i.e., no particular sequencing is required for
power-up and power-down. This eliminates extra board components for power-up sequencing, such as a
power-up sequencer.
During power-up, all I/Os are tristated, irrespective of I/O macro type (input buffers, output buffers, I/O
buffers with weak pull-ups or weak pull-downs, etc.). Once I/Os become activated, they are set to the
user-selected I/O macros. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" section
on page 307 for details. 

Drive Strength
Low power flash devices have up to four programmable output drive strengths. The user can select the
drive strength of a particular output in the I/O Attribute Editor or can instantiate a specialized I/O macro,
such as OUTBUF_S_8 (slew = low, out_drive = 8 mA).
The maximum available drive strength is 8 mA per I/O. Though no I/O should be forced to source or sink
more than 8 mA indefinitely, I/Os may handle a higher amount of current (refer to the device IBIS model
for maximum source/sink current) during signal transition (AC current). Every device package has its own
power dissipation limit; hence, power calculation must be performed accurately to determine how much
current can be tolerated per I/O within that limit.

I/O Interfacing 
Low power flash devices are 5 V–input– and 5 V–output–tolerant without adding any extra circuitry.
Along with other low-voltage I/O macros, this 5 V tolerance makes these devices suitable for many types
of board component interfacing.
Table 7-17 shows some high-level interfacing examples using low power flash devices.

Conclusion
IGLOO nano and ProASIC3 nano device support for multiple I/O standards minimizes board-level
components and makes possible a wide variety of applications. The Microsemi Designer software,
integrated with Libero SoC, presents a clear visual display of I/O assignments, allowing users to verify
I/O and board-level design requirements before programming the device. The nano device I/O features
and functionalities ensure board designers can produce low-cost and low power FPGA applications
fulfilling the complexities of contemporary design needs. 

Table 7-17 • nano High-Level Interface

Interface

Clock I/O

Type Frequency Type Signals In Signals Out Data I/O

GM Src Sync 125 MHz LVTTL 8 8 125 Mbps

TBI Src Sync 125 MHz LVTTL 10 10 125 Mbps
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Related Documents

Application Notes
Board-Level Considerations
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf

User’s Guides
Libero SoC User’s Guide
http://www.microsemi.com/soc/documents/libero_ug.pdf
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
SmartGen Core Reference Guide
http://www.microsemi.com/soc/documents/genguide_ug.pdf

List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 Figure 7-2 • I/O Block Logical Representation for Dual-Tile Designs (60 k,125 k,
and 250 k Devices) was revised to indicate that resets on registers 1, 3, 4, and 5
are active high rather than active low (SAR 40698).

160

The hyperlink for the Board-Level Considerations application note was corrected
(SAR 36663).

181, 183

June 2011 Figure 7-2 • I/O Block Logical Representation for Dual-Tile Designs (60 k,125 k, 
and 250 k Devices) was revised so that the I/O_CLR and I/O_OCLK nets are no 
longer joined in front of Input Register 3 but instead on the branch of the CLR/PRE 
signal (SAR 26052).

160

The following sentence was removed from the "LVCMOS (Low-Voltage CMOS)"
section (SAR 22634): "All these versions use a 3.3 V–tolerant CMOS input buffer
and a push-pull output buffer."

166

The "5 V Input Tolerance" section was revised to state that 5 V input tolerance can
be used with LVTTL 3.3 V and LVCMOS 3.3 V configurations. LVCMOS 2.5 V,
LVCMOS 1.8 V, LVCMOS 1.5 V, and LVCMOS 1.2 V were removed from the
sentence listing supported configurations (SAR 22427).

171
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Rules for the DDR I/O Function
• The fanout between an I/O pin (D or Y) and a DDR (DDR_REG or DDR_OUT) macro must be

equal to one for the combining to happen on that pin.
• If a DDR_REG macro and a DDR_OUT macro are combined on the same bidirectional I/O, they

must share the same clear signal.
• Registers will not be combined in an I/O in the presence of DDR combining on the same I/O. 

Using the I/O Buffer Schematic Cell
Libero SoC software includes the ViewDraw schematic entry tool. Using ViewDraw, the user can insert
any supported I/O buffer cell in the top-level schematic. Figure 8-5 shows a top-level schematic with
different I/O buffer cells. When synthesized, the netlist will contain the same I/O macro.

Figure 8-5 • I/O Buffer Schematic Cell Usage
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Input Support for DDR
The basic structure to support a DDR input is shown in Figure 9-2. Three input registers are used to
capture incoming data, which is presented to the core on each rising edge of the I/O register clock. Each
I/O tile supports DDR inputs.

Output Support for DDR
The basic DDR output structure is shown in Figure 9-1 on page 205. New data is presented to the output
every half clock cycle. 
Note: DDR macros and I/O registers do not require additional routing. The combiner automatically

recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip.
The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR
macro.

Figure 9-2 • DDR Input Register Support in Low Power Flash Devices
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UJTAG Applications in Microsemi’s Low Power Flash Devices
UJTAG Operation
There are a few basic functions of the UJTAG macro that users must understand before designing with it.
The most important fundamental concept of the UJTAG design is its connection with the TAP Controller
state machine. 

TAP Controller State Machine
The 16 states of the TAP Controller state machine are shown in Figure 16-4 on page 301. The 1s and 0s,
shown adjacent to the state transitions, represent the TMS values that must be present at the time of a
rising TCK edge for a state transition to occur. In the states that include the letters "IR," the instruction
register operates; in the states that contain the letters "DR," the test data register operates. The TAP
Controller receives two control inputs, TMS and TCK, and generates control and clock signals for the rest
of the test logic. 
On power-up (or the assertion of TRST), the TAP Controller enters the Test-Logic-Reset state. To reset
the controller from any other state, TMS must be held HIGH for at least five TCK cycles. After reset, the
TAP state changes at the rising edge of TCK, based on the value of TMS. 

Note: Do not connect JTAG pins (TDO, TDI, TMS, TCK, or TRST) to I/Os in the design.
Figure 16-3 • Connectivity Method of UJTAG Macro
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Figure 17-4 • I/O State as a Function of VCCI and VCC Voltage Levels for IGLOO V5, IGLOO nano V5, 
IGLOO PLUS V5, ProASIC3L, and ProASIC3 Devices Running at VCC = 1.5 V ± 0.075 V

Region 1: I/O buffers are OFF

Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs) 
but slower because VCCI / VCC are below 
specification. For the same reason, input 
 buffers do not meet VIH / VIL levels, and 
output buffers do not meet VOH / VOL levels.

Min VCCI datasheet specification
voltage at a selected I/O

standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V 

VCC

VCC = 1.425 V

Region 1: I/O Buffers are OFF

Activation trip point:
Va = 0.85 V ± 0.25 V

Deactivation trip point:
Vd = 0.75 V ± 0.25 V

Activation trip point:
Va = 0.9 V ± 0.3 V

Deactivation trip point:
Vd = 0.8 V ± 0.3 V

VCC = 1.575 V

Region 5: I/O buffers are ON 
and power supplies are within 
specification.
I/Os meet the entire datasheet 
and timer specifications for 
speed, VIH/VIL , VOH /VOL , etc. 

 but slower because VCCI is
below specifcation. For the 

same reason, input buffers do not 
meet VIH/VIL levels, and output

buffers do not meet VOH/VOL levels.    

Region 4: I/O 
buffers are ON.

I/Os are functional
(except differential inputs) 

Where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC = VCCI + VT 

VCCI

Region 3: I/O buffers are ON.
I/Os are functional; I/O DC 
specifications are met, 
but I/Os are slower because 
the VCC is below specification
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